欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>变风量空调系统管理论文参考

变风量空调系统管理论文参考

2023-12-20 08:38:55 收藏本文 下载本文

“雷人在唱歌”通过精心收集,向本站投稿了5篇变风量空调系统管理论文参考,下面是小编收集整理后的变风量空调系统管理论文参考,仅供参考,希望能够帮助到大家。

变风量空调系统管理论文参考

篇1:变风量空调系统管理论文参考

变风量空调系统管理论文参考

摘要:变风量系统有很强的动态特性,加之空调系统固有的非线性,使问题的解决变得非常困难。可目前这方面的研究还比较滞后,设计人员在设计时缺少有效的分析计算手段。国内变风量系统的实践正在兴起,迫切需要可行、有效的辅助设计的分析方法。

关键词:变风量优化设计

1、引言

变风量空调系统于60年代在美国诞生,其基本原理是通过改变送入房间的风量来满足室内变化的负荷。在当今特别提倡节能和舒适性的条件下,变风量空调系统正在逐渐被人们接收并得到应用。

变风量空调系统主要有以下几个优点:

*由于变风量空调系统是通过改变送入房间的风量来适应负荷的变化,而空调系统大部分时间的部分负荷下运行,所以风量的减少带来了风机能耗的降低。

*区别于常规的定风量或风机盘管系统,在每一个系统中的不同朝向房间,它的空调负荷的峰值出现在一天的不同时间,因此变风量空调器的容量不必按全部冷负荷峰值叠加来确定,而只要按某一时间各朝向冷负荷之各的最大值来确定。这样,变风量空调器的冷却能力及风量比定风量可风机盘管系统减少10-20%*变风量空调系统属于全空气系统,与风机盘管系统相比有明显的好处是冷冻水管与冷凝水管不进入建筑吊顶空间,因而免除了盘管凝水和霉变问题。

*系统的灵活性较好,易于改、扩建,尤其适用于格局多变的建筑。尽管变风量空调系统有其特有的优点,但在实际设计中还是应注意一些问题,以免其带来的一些负面影响,同时,应深入研究和探讨变风量空调系统,进一步优化其设计理念。

2、空调系统

2.1、变风量空调系统是通过改变进入房间的风量来满足室内变化的负荷,当房间低于设计额定负荷时,系统随之减少送风量,亦即降低了风机的能耗。故变风量系统比较适合多房间且负荷有一定变化的场合,如办公、会议、展厅等;对于象大堂公共空间、影剧院等负荷变化较小的场合,采用变风量系统的意义不大。所以,一般在以变风量空调为主的大厦中。其大堂等公共空间还是以定风量空调系统为好。由于其场合一般都是高大空间。如果采用变风量空调系统,当其变风量变小时,会改变气流组织,影响空调系统的舒适性效果。

2.2、当今国内设计的变风量空调系统,其末端装置以电动节流式压力无关型为主。该末端装置可分为有带风机和不带机两种。带风机的末端装置又可分为带并联风机的末端装置和带串联风机的末端装置,一般选用以后者为主。

图1是典型的单风道变风量空调系统。在通常设计的大楼中,将空调平面分成内外两个区,以围护结构退深3-4米的周边区域定为外区。其内中心区域则为内区。对内区而言,其空间需常年冷负荷,而外区在夏、冬季需不同的冷、热空调。由于内区常年供冷,建议采用不带风机的末端装置,其气流组织亦比较容易保证空调舒适性要求。对于外区,则建议采用带风机的末端装置,其出风口设置再加热器。在北方地区,其再加热器以热水盘管为主;而在南方地区,由于其加热量较小,可以考虑利用富裕的夏季电动制冷机组的用电装机容量来设置电加热器。在冬季空调运行中,周边区域的末端装置将一次冷风风量调至最小值(其设定的最小值用来满足将房间的最小新风量),再由末端装置出口处的加热器加热其空调送风。如设计采用无风机的末端装置出口处的加热器热其空调送风。如设计采用无风机的末端装置,则冬季最小送风量将大大低于夏季运行时的额定设计风量,则势必大大降低送风口的出风风速,严重影响周边区域的气流组织。对于一定的外区冬季空调时的再加热量,当风量减少时,则会提高其空调送风温度,同样影响空调的舒适性效果。故外区一般采用带风机的末端装置,则可完全避免以上两大问题。通过风机的作用,尽管一次风量减少,由于二次回风的补入,保证了送风量,定于设计的额定风量;同时由于送风量的增加,降低了其它调送风温差。另外,由于末端装置内的风机克服了其出风处再加热盘管的压力,从而降低空调器出风所需提供的静馀压。

2.3、还有一种设计思路,即内外区全部无风机的末端装置,出口处也不用设置再加热器,而在周边围护结构内侧下方另设立式风机盘管。夏季空调运行时,完全由变风量末端装置提供的送风量来满足内外区的冷负荷要求;冬季空调运行时,内区冷负荷空调仍由该区的变风量末端装置来提供,而外区的热负荷空调则由周边风机盘管来提供,外区的变风量末端装置只提供其所需的新风量。这种设计方法,由于避免了吊顶内设置带风机制末端装置,从而降低了该风机带来的噪声问题,介同时由于周边需另设立式风机盘管,这势必减少了空间的利用率,对室内装修也带来了一定的影响。当然,这种设计方法已不是真正意义上变内量空调系统。

3、空气处理

图2是典型的变风量空调系统冬季运行时的空气状态变化图,系统设计中,各楼层的一次风空调器只设冷却盘管,而集中式新风空调器设置冬季预热盘管和加湿器。作为冬季运行,新风经新风空调的预热盘管加热至O1或O2点,经加湿处理后至E点,而后与楼层空调回风混合后达到R点,再经一次风空调器的冷却盘管处理至出风状态点S.新风加器可以采用等温加湿和绝热加湿两种方法。由于新风加湿量较大,故等温加湿一般采用乾饱和蒸汽加湿法,而绝热加湿法,对于高压叶喷雾加湿法,由于无法做到比例调节,实际运行时控制精度很差,故新风加湿一般以采用乾饱和蒸汽等温加湿为主。该空调系统夏季运行时,新风空调器不作任何处理过程由楼层空调器各自承担,其空气处理过程如图3所示。这种设计方法的优点是,所有楼层空调器只设冷却盘管,而由新风空调器集中处理冬季室外新风的加热和加湿过程。这样,简化了整个大楼的空调系统,也大大节约了系统的初投资费用。但其缺点是,为了室内新风的集中加湿,必需先对其等湿加热,而楼层空调器对其混风空气进行冷却处理才能达到空调所需的一次风出风状态点。如此空气处理过程,势必产生空气先加热扣冷却的抵消作用,造成大楼空调系统运行时能耗的'大量浪费。

针对上述空调系统的缺点,笔者建议集中式新风空调器只设预热盘管,不设加湿器。大楼标准层的空调器只设冷却盘管和高压喷雾加湿器,而对于其它楼层有额定热负荷的情况下再加设加热盘管。该空调系统夏季运行时,其空气处理过程也如图3所示。而作为冬季运行,新风空调器只对室外新风进行预加热,新回风混合后进入楼层空调器,空调器则根据控制要求对其加热或冷却(对于不同楼层,回热或冷却可能同时存在)当然,新风加热处理后温度设定值的前提是大于+5°C,且保证标准层空调器的入风空气状态R2的焓值不低于S点,避免其加热过程。经盘管后的空气状态点,其空气处理过程如图4所示。该变风量空调系统,由于充分利用了冬季室外新风集中加湿而产生的大量冷热抵消作用,是一种比较节能的空调形式。

4、冷热源

对于变风量空调系统,冬季和过渡季节运行时需同时满足内外区的冷、热负荷要求,故空调水系统采用四管制。由于系统要求同时提供冷、热源,除采用常规的电动制冷机组加蒸汽或热水锅炉外,可以考虑采用直燃式溴化锂冷热不机组,其具有运转时无振动,无磨损,运行经济可靠等优点。不过,如采用直燃机组需注意以下几个问题:

*机组供水温度因为溴化锂机组的冷冻水供水温一般只能达到+7°C左右,当变风量空调系统设计低温系统时,系统需提供足够低温的冷冻水,而这对于溴化锂组而言就难以胜任了。

*直燃机组需采用分隔式供热机组如果采用主体供热式直燃机组,由于无法同时制冷和制热,不能满足变风量空调系统需同时提供冷、热源的要求。

*配置低负荷运行时只有内区少量冷负荷,其总冷负荷大大低于夏季空调时的总负荷,如在此低负荷情况下运行,直燃机组将大大降低其运行的经济性和可靠性。故此时,低负荷制冷由独立的电动冷水机组承担为好,直燃机组只作制热用。

在空调水系统设计中,冷却塔可以设计采用独立小塔不分彼此、统一组合的形式,所有冷却塔风机采用双速风机。实现运行时,不管入塔水量及水温如何变化,冷却塔通过调节风机风量以保证出塔却水的温度,这样可以有效降低冷却塔的运行能耗。由于变风量空调系统冬季亦需提供冷源,可考虑在室外空气条件允许的情况下,利用冷却塔的冷却能力,通过板式热交换器,提供一定低温的冷冻水,以达到不开冷水机能的节能空调运行。

5、风量平衡

图5是典型的变风量系统的经济运行。对于采用混风的空调系统,新风量在各个房间是按风量分配的。也就是说,即使总新风量达到要求,在的房音也会有新风不足的问题,对于变风量系统,由于送入房间的要求,总新风量将会增加,基至在有的时候可能超过空调需要的送风量。为此可这样考虑,在一定的新风量下,总回风中二氧化碳的含量不一定超标,可以利用回风以减少总新风量。图示空调系统运行时,送风机根据空调负荷确定送风量,新风机则根据回风的空气品质确定提供的新风量,而排风机则根据房间的所需正压值匹配新风机的运转。在过渡季节,调节新风机和排风机的运转风量来维持一定的新回风混风温度,这样做法是充利用室外新风的低湿冷却作用以减少冷机的开启时间。但在实际采用时,如大楼标准层独立设置一套变风量空调时间。但在实际采用时,如大楼标准层独立设置一套变风量空调系统,这种做法需在每个楼层设两台变频调速风机(新风机和排风机)。这势必增加了每个空调机房所占的空间,也大大增加了初投资费用。为保证室内空气品质,系统实际运行时,是通过探测回风空气中的CO2浓度来控制新风量的,但CO2浓度达到要求并不能代表室内建筑空气品质合格,室内还会存大其它挥发性污染物。

鉴于以上两点原因,在实际设计时,往往确定一个满足额定空调状态时室内空气品质所需的固定新、排风量。特别是在大楼存在大量分层空调的标准层系统时,通常各设置一套新风系统和一套空调排风系统,其总管统一设置的新、排风机采用变频调速风机,且系统在每个楼层的新、排风支管接口处各设一个定风量控制器,新风机的转速控制匹配于新风机的运转,保证整个大楼的风量平衡。当然,大楼内还需设置一套厕所不间断定风量排风系统,保证厕所内异味的排除。

在一些设计实例中,往往忽略了楼层内排风支管接口年设置定风量控制器,并把空调排风与厕所排风合为一个排风系统,对于这种设计,虽然排风机仍为变频调速控制,能达到整个大楼的新、排风总量平衡。但对于每个楼层而言,排风系统理论上各楼层排风量是平均分配的,而其馀空调运行的楼层所分配到的排风量减少,造成房间过高的正压。对于大楼的大堂等公共空间的空调设计,一般采用常规的定送风量、定新风量的空调系统。考虑到冬季空调运行时,对于楼体较高的大楼,会产生较大的热升效应,从而造成大堂冬季空调运行时产生较大的负压。为此,大堂等公共空间的空调可以考虑采用定送风量、变新风量的系统,空调新风由变频调速的新风风机提供,通过调整新风送入量来保证不同季节空调运行时室内,定正压(公共空间室内压力设定值应满足最小新风量所需的风量)。

6、自动控制

空调系统的正常运行主要依靠自动控制系统,这套自动控制系统与整个大楼的自动化管理系统的电脑相连接,实现中央监控和调节。在一般变风量空调系统的大厦中,包括以下几广面的要求。

*水阀的调节

在个别定风量系统中,由回风温度控制安装在冷热水回水管上的电动二通比例式调节阀。在新风系统在变风量系统中根据送风温度控制安装在冷热回水管上的电动二通比例式调节阀。如在高大公共空间设置空周边热水采暖设备,则由其周边采暖区域的温度控制设在热水采暖设备回水管上的电动二通比例式调节阀。

*风阀的调节

在变风量每个末端装置的控制区域,放置一个感温器。根据感温器所测的温度与室内温度设定值的差值,控制该区域的末端装置内一次风电电动机风阀的开启度,对于周边再加热变风箱,当室温下降,风阀关至最小风量值时,启动再加热器,提供外区空调所需的热负荷。

*变静压法的变风量系统控制

在一些小规模的变内量空调系统可采用变静压控制法采用变静压控制法的系统总风管中所需设置静压传感器,而是在变风量末端装置中设置阀门开度传感器,而是在变风量末端装置的开启度,由此判断和计算来调节一次风空调器内风机的变频器,使具有最小静压值的末端装置的阀门处于全开状器,使具有最小静压值的末端装置的阀门处于全开状态,这样可以尽量降低风机运行的静馀压,节约风机的能耗。

*定静压法的变风量系统控制

在通常的变风量空调系统中,一般设计采用定静压控制法。由于采用定静压,当所有末端风量都低于额定风量时,在系统的实际资用压力将低于设计资用压力,此时,再维持系统中的设定静压值则不利于风机的节能。但由于定静压控制的变风量系统,其空调器的风机调节与末端装置的控制无直接联系,故该系统控制方法比较简单,运行可靠,适合于较大的变风量空调系统的场合。

在公共空间和主楼标准新风竖井中各放置压力传感器。根据压力传感器所测的压力与设定值的差值,控制公共空间和办公新风竖井的压力定。主楼排风风量则根据新风机的运行情况而作自动相应调节。

*对于空调器内的加湿器,根据室内的相对温度,控制一次风的加湿量。

*在新风入口设置电动风阀,与新风送风机连锁开关,以防冬季非运行时盘管冻裂。

*空调自控系统还包括冷冻机组运行台数控制,优化启停控制,供回水压差恒定控制,启停联锁控制,各运行状态的遥感遥测和非正常状态的故障报警等。

7、设计中值得注意的问题

7.1、噪声

在变风量系统中,比较大的噪声源除了送、回(排)风机外,还在变风量末端装置,流过末端装置入口的风速都比较高。因为压力无关型的变风量末端装置都带有风速测量传感器,这些传感器一般要求风速高于一定数值才能保证测量准确。一般的节流型末端装置是靠调节阀片开度来改变风量的,所以当阀片的风速也增加了,所以,入口调节阀片关小时,流经阀片的风速也增加了,所以,入口调节阀片处是末端装置产生较高噪声的一个主要来源。另处,如果采用带风机的末端装置,该风机也是一个产生噪声的根源。

对于以上噪声问题,笔者提出以下几点建议供读者参考:

*校核选用的末端装置在最小风量、最大风量时产生的噪声。因为末端的型号越大噪声也越大,故在便于合理布置空调系统的前提下,尽量选用小型号的末端装置。

*在变风量系统中采用变静压法自动控制系统,尽量提高系统末端装置的节流调节阀的平均开度,从而降低末端入口调节阀的节流噪声。

*对于带风机的末端装置,视噪声控制要求而定,合理选择该末端置的风机运行风量,有可能的话,设计考虑全部采用无风机的末端装置。

*在末端装置的出风管上,合理设置所需的消声设备。

7.2、新风

图1是典型是单风道变风量空调系统。一定的新风量直接送入空调器与回风混合,再由末端装置分配送入各个房间。由于新回风比例在一定时期是固定的,当某一房间冬季的负荷降低而引起送风量的减少时,其送入房间的新风量也势必减少,特别是外区范围内的周边小房间,由于该房间冬季空调时,含新风的一次风量只为定最小值,在实际运行控制时,为了尽量减少外区的末端装置对空调送风再加热而与一次冷风造成的冷热抵消,往往将冬季一次风量最小值设定得过小,从而造成房间缺少新风,室内人员感到憋闷。故在这些特定房间内,应适应提高末端最小风量与最大风量之比(变风量比),以提高足够的新风所需。如在一些内外区连通的空间场合,由于内外区的空气可以自由流通,则可适当降低变风量比,减少一次风的冷热抵消量,以达到节能效果。

7.3、气流组织

在一些南方地区,冬季空调运行时外区的热负荷较小,故外区的末端装置设计采用电加热。由于采用了电加热器,它设有热水盘管所产生的额外空气流通阻力,因此采用无风机的末端装置也较多,此时,因设有风机的恒定送风量的作用,须仔细分析气流组织,合理布置周边空调送风口,一般应采用条缝型风口靠外窗布置为好。避免如同内区所采用的方形平面散流器的布置形式。同时,可适当提高末端装置设定的变风量比。

7.4、房间温度控制

空调系统设计中应尽量避免同一个末端装置的送风口跨分隔布置。因为末端装置的送风量是根据感温器所测温度与房间温度设定值之间的差值来控制的。当同一个末端装置的送风品跨度分隔布置时,感温器只能感知一个房间的温度,如不同房间的负荷变化不相同时,则势必会造成不同房间的实际控制温度的偏差。在冬季空调运行时,如在一些内外区连通的大空间场合,可考虑外区的设定温底低于内区2-3oC.这样,有利于内区产生的部分富裕热量传至外区,承担外区的部分热负荷,从而达到空调运行时的节能作用。

8、总结

篇2:浅谈办公楼变风量空调管理的论文

浅谈办公楼变风量空调管理的论文

摘要:指出保证室内新风量的三个控制环节——新风总量、新风分配量、新风均匀性,着重分析单风机变风量系统的新风分配量问题,并对目前的几种解决方法进行分析。

关键词:室内空气品质(IAQ)变风量系统新风量新风分配量

引言

随着人们对建筑物室内舒适性要求的提高,对建筑物室内空气品质(IAQ)的重视,空调系统为人们创造一个健康、良好的室内空气环境,成为大家共同追求的目标。现代建筑物室内装修和家具涂料中可能含有有毒、有害的挥发性有机污染物(V.O.C);室内人员产生CO2、异味等污染物,这些都需要向室内引入足够的新风,以稀释室内污染物。现代建筑物的密闭性大大提高,如果室内新风量不足,室内污染物积聚、浓度增加,将使室内人员感到不适,工作效率降低,甚至使人生病,称谓“建筑物综合症”。因此,保证室内新风量是空调系统设计时应该重视的问题。

1保证室内新风量的控制环节

1.1保证室内新风量,首先,要选取合适的新风量标准。上海国际航运大厦取30m3/h·人;久事大厦取30m3/h·人;上海金茂大厦取34m3/h·人。根据国内的设计规范,一般取30m3/h·人。

1.2保证室内新风量需要控制3个环节:

a.新风总量——控制整个系统的新风量,满足该空调系统所有服务区域的人员标准新风量之和;

b.新风分配量——控制送入系统各个末端服务区域的'新风量,满足区域内人员的标准新风量;

c.新风均匀性——控制送给服务区域内所有人员新风,满足人员需求新风量,避免区域内一部分人得到多于标准的新风量,而另一部分人得到少于标准的新风量。

1.3三个控制环节的关系如图1所示。

1.4控制新风均匀性,则要求处理好风口布置,气流组织问题,复杂空间尚需对流场进行模拟分析。控制难度较大(本文不做分析)。

2VAV系统中新风量问题

对于单风机定风量全空气系统,和风机盘管加新风系统,将系统新风总量和新风分配量,根据要求设定并调试好,也就控制了第一环节(新风总量)和第二环节(新风分配量)。而对于变风量全空气系统,送风量随负荷减小而减少,如何控制第一环节新风总量,目前已有不少文章对此进行了论述,本文着重讨论变风量系统中新风控制第二环节:新风分配量。新风分配量与室内负荷变化有关,以下分析设备、灯光和人员负荷变化和建筑负荷变化对新风分配量的影响。

2.1设备、灯光和人员负荷变化对新风分配量的影响

设备、灯光和人员负荷变化往往是由人员流动而引起的,因此负荷与区域人数同步变化,即该区域送风量与人员变化近似成正比。当区域人员减少,该区域末端实际送入新风量GO与该区域末端所需送入新风量GO.N的比值大于等于1时,则该区域新风量满足要求。反之,则该区域新风量不满足要求。

(1)式中:GT为末端的设计风量;R为系统新风比;RMIN为系统最小新风比;K1:为人员减少时,末端服务区域送风量与设计送风量的比值。K1≤1;K2:为该区域人数与设计人数的比值。K2≤1;K1=(QA+QI)/(QA+QI。D);K2=QI/QI。D;QA为该区域建筑负荷;QI为该区域设备、灯光和人员负荷;QI。D为该区域设计设备、灯光和人员负荷。

(2)由于K2≤1,则≥1。当QA=0时,该区域建筑负荷为零(如内区),则=1。

对于式(1),因为≥1,又≥1,所以式(1)≥1,则区域新风分配量满足要求。同时由以上分析可知:对于外区,人员减少越多,K2越小,越大,该区域新风分配量越富裕;对于内区,人员减少越多,区域送风量越小,系统新风比R越大,该区域新风分配量越富裕。因此,设备、灯光和人员负荷变化一般不会造成新风分配量不足的问题。

2.2建筑负荷变化对新风分配量的影响采用虚拟工程来说明。

虚拟工程(见图2):内区面积900m2,外区面积900m2,内走道200m2,芯筒400m2。人员密度7m2/p。内外区采用一套单风机变风量系统,外区变风量末端采用并联型风机动力箱(ParallelFanTerminals)带热水盘管(1~2排),内区设单风管变风量末端(SingleDuctTerminalsVAV.T)。系统需求新风总量7714m3/h,系统送风量为30000m3/h。系统新风总量由定风量装置来保证(见图3。

2.3建筑负荷变化之一:年建筑负荷变化对新风分配量产生的影响。

由于室外温度变化,外区负荷随之变化,由于内外区送风参数相同,外区送风量随外区负荷发生变化,而内区送风量不随室外温度变化。内外区的新风分配比发生变化:当外区送风量增加时,内区的新风分配量不足,而外区新风分配量过剩,为避免这种差异,我们将系统送风量为70%时,内外区新风分配比满足要求。当送风量由70%增大时,外区新风供需比增大,最高达130%,当负荷减小时,外区送风量减小,新风量严重不足发生在系统送风量为48%时,仅为需求新风量的54%。详细计算结果见表1。如内区面积所占比例放大,问题更加严重;而内区正相反,当系统送风量最大时,其新风量为需求量的70%。系统送风量为70%,新风分配量满足要求。系统送风量为48%时,其新风量为需求量的146%。故如限制系统送风量调幅在100%~60%,内区新风量将控制在70%~117%的盈亏范围内,外区新风量将控制在130%~83%的盈亏范围内。内外区新风量供需关系详见图4。

表1送风量(m3/h)新风量(m3/h)

送风量变化(%)内区外区内区内区得到需求(%)外区外区得到需求(%)

10010500195002700705014130

8510500150003176824538118

70105001050038571003857100

601050075004500117321483

561050063004821125289375

481050039005625146208954

2.4建筑负荷变化之二:日建筑负荷变化对新风分配量的影响。(虚拟工程的外墙窗墙比为55%)

夏季由于东西向建筑负荷变化最大,因此仅分析东西向。东向外区从11:00开始,新风分配量出现不足现象,18:00时仅为需求新风量的51%。而西向外区仅在8:00时,出现新风分配量不足现象。详细计算结果见表2。由表2可见,即使同一天,不同时刻,不同朝向的新风分配量也存在严重问题。建筑负荷占室内负荷比重较大的建筑,比如采用较大玻璃幕墙的建筑,此问题更显突出。

表2时刻—次风量(m3/h)得到新风量(m3/h)得到新风量/需求新风量(%)

东西东西东西

8:003939228213577861.270.73

10:003561368411591.051.08

12:002682390780211680.751.09

14:002779561976515470.711.44

16:002735694770617930.661.67

18:001640426554114070.511.31

3解决新风分配量问题的几种办法

3.1方法一,大空间办公划分采用隔断*,不采用隔墙*。

由于采用隔断,新风量分配不均区域吊顶下空气相通,共享新风。新风分配量问题降为新风均匀性问题,可通过对气流组织的改善,风口布置的调整(图一中c)来解决。本方法简便,无须改变空调系统,但内区和外区之间的隔断受租售用户装修影响,有些工程较难保证能够实行。如隔墙必须存在,可考虑采用其他方法。

3.2方法二,内外区分设空调机组(AHU)。

内外区分别设AHU后,内区和外区可能不会出现表1中内外区新风量分配盈亏问题,内外区新风量依靠控制内外区系统新风总量(图1a)来保证。本方法只解决了内外区之间新风量分配不均的问题,对于外区之间新风量分配不均的问题仍无法解决。而且,本方法需设置两台AHU,一般将增加机房面积,增加吊顶内管道的交叉,影响层高。由于内区负荷变化不大,可采用定风量空调系统;外区变风量空调系统须进行供冷供热的模式转换。

3.3方法三,设专用新风机组。

专用新风机组可采用定风量,亦可采用变风量系统。VAV末端厂商,有生产设专用新风接口的VAV末端。如采用定风量,为满足不同季节、不同时刻、各个区域的新风量,将增加空调能耗。因此,专用新风机组多采用根据有害物浓度(一般采用CO2浓度)控制采用变风量系统。本方法解决了内外区新风量分配盈亏问题和外区之间新风量分配不均的问题。当然,本方法将增加VAV末端的投资,增加大楼BAS的控制点数,有时由于人的嗅觉和综合感觉能力比测试仪器灵敏,有时会出现即使室内已知有害物浓度均不超标,人员仍感不适的情况。一般,本方法也将增加机房面积,增加吊顶内管道的交叉,影响层高。

3.4方法四,增加系统新风需求量,即增加新风标准。

增加新风标准,通过适当提高系统新风比和冬季转换风量以保证系统内任何时刻所有人员均享有至少满足卫生标准的新风量来实现。一般,增加新风量必然增加能耗,增加机组装机容量和盘管处理能力,增加初投资,因此,新风标准增加的数值须经过详细计算确定。ASHARE手册IAQ章节中有详细论述。计算复杂,对控制依赖性大。但如建筑所在地区,一年中大多数时间可利用新风供冷,则本方法结合热回收装置使用,是可行的解决方法。

4结论

4.1保证室内的新风量需要控制3个环节:新风总量、新风分配量和新风均匀性。

4.2新风分配量与室内负荷变化有关。设备、灯光和人员负荷变化一般不会造成新风分配量不足的问题。建筑负荷变化对新风分配量的影响,以虚拟工程进行了分析。对于单风机变风量系统,新风总量能够得以较好的控制,而新风分配量的确存在问题。根据对虚拟工程的计算结果:夏季外区最高负荷时得到新风量高达130%(需求量为100%,下同),但内区得到新风量却只有70%,负荷较低时则相反,内区得到新风量高达146%,但外区得到新风量仅为54%。从朝向影响分析:西向外区上午8:00得到新风量只有73%,东向外区自中午12:00以后得到新风量均小于100%,18:00只有51%。

4.3本文讨论了4种解决方法,需结合实际工程特征来选择具体处理办法。笔者认为,就目前国内的经济状况和大楼BAS的控制、调试水平而言,方法一应作为首选。方法一,简单、经济。另外,限制变风量调幅,也可达到较好的效果。

4.4对于设送回风机的双风机变风量系统,同样也存在控制新风量的问题,本文亦可衍用至双风机变风量系统。双风机变风量系统的控制关键环节是新风总量。

*隔断为高度不到吊顶的划分;隔墙为高度至吊顶或楼板的划分。

参考文献:

1赵荣义、范存养、薛殿华、钱以明编空气调节(第三版)中国建筑工业出版社,1994

2陆耀庆主编,实用供热空调设计手册,中国建筑工业出版社,1993

篇3:变风量空调系统设计分析论文

任何事物都是与周围环境相互影响的,变风量空调系统的设计也必须综合考虑建筑物的实际情况以及周围环境的影响因素。这样才能将空调系统的设计与所处的环境结合起来,真正实现空调系统适用、实用的效果。同时在设计的过程中还要坚持节能的原则,充分利用各种有利的环境因素。在当前社会,变风量空调系统已经成为建筑物的一个基本组成部分,因此空调系统的设计不能只考虑空调本身的运行,还要根据所依托的建筑物进行可行性分析。我国的相关政策和规范也对变风量空调系统在环境保护方面做出了相关规定,要求变风量空调系统的设计必须满足建筑物所处环境的长期、变化的情况。在气候、温度变化较大的地区,或者其他工艺性变风量空调设计比较特殊的项目,变风量空调系统在设计时要做细致深入的工况分析,以确保空调系统能够正常运行。具体来说,在变风量空调系统的设计过程中,应严格参考以下几方面的因素:①在进行设计前,要实际考察建筑物的位置,及周围建筑物及其供热、供水尤其是空调系统的具体情况,并结合当地的气候、地形等客观因素,同时还要考虑到风力、日照等自然因素,综合分析这些因素,才能做好变风量空调系统的设计,如供热入口的设计,入口及大门的朝向设计等;②设计时还要认真了解建筑物的使用性质、类型,估算出使用空调的'人员数量、使用时间等,如居民建筑夜晚及节假日使用较多,而写字楼等建筑则工作日白天使用较多。综合分析这些因素,才能设计出空调系统的负荷,确保使用无碍;③设计时还要考虑建筑物的楼层及高度,对于高层建筑,在设计时还要遵守国家规定的高层建筑防火规范。

篇4:变风量空调系统设计分析论文

3.1新风量控制难题

变风量调系统设计面临的最大的难题之一就是对新风量的控制。由于空调系统在使用过程中,不同使用区域对新风量的需求量也不相同。新风量还是一个变化的数值,有时空调系统的总风量能够达到要求,但是分配到各个区域的却不一定能满足其需求。当前变风量空调系统在设计新风量的控制时主要有两种方式:①设置二氧化碳探测器,根据二氧化碳的浓度变化确定新风量;②设置VAV(或CAV)box,定时输送一定的新风量。

3.2空气净化难题

现在的空调一般都有空气过滤的功能,变风量空调系统自然也不例外。但是一些小型的空调主要采用尼龙锦凸网来过滤空气,很难起到空气净化的效果,有时甚至会造成二次污染。变风量空调系统是一种全空气运行系统,并且采用了初、中效两级过滤甚至三级过滤,能够有效净化空气。但是设定一个合适的过滤效率是空调系统设计的一个难题,还需研究解决。

3.3在推广使用中遇到的问题

变风量空调系统虽然具有众多优点,但是由于配件很多需要进口,价格昂贵,使用户较难接受。例如,变风量末端装置(VAVbox)、直接数字式控制器(DDC)、变频器等主要配件目前全部需要进口,经济压力较大。因此必须加强变风量空调系统的科技研发,配件国产化是推进变风量空调系统普及的关键。同时变风量空调系统的从业人员素质也亟需提高,以在施工、调试、管理方面实现有序、高效。总而言之,技术问题是最大的难题,国家和相关单位应加大投入,推进变风量空调系统的研发和普及。

4结束语

随着科技的发展,人们对生活得舒适度要求也越来越高,同时环保节能的意识也在加强,因此变风量空调系统有其出现和使用的必然性。但是变风量空调系统的设计还有很多问题亟待解决,希望国家和相关工作人员能够积极探索,吸收国外的先进经验,利用科学的设计方法和设计模式,完善和提高变风量空调系统的设计。

参考文献:

[1]曹艳鹏,冀兆良.几种控制方式在空调系统运行节能中的应用[J].制冷,,(1):46-50.

[2]曾艺,龙惟定.变风量空调系统的新风[J].暖通空调,,(6):35-38.

[3]邱少陵,李哲,沈国民.变风量空调系统中的控制技术[J].鄂州大学学报,,(3):3-9.

篇5:变风量空调系统设计分析论文

1.1分析空调系统所处环境

变风量空调系统是一个复杂的系统,是基于专业知识技术上的一种先进的科学技术产物。因此在变风量空调系统的设计过程中,要认真分析空调系统所处的具体环境,结合考虑实际情况的影响因素,利用先进的技术手段进行分析、控制和管理。

1.2控制模式

变风量空调系统作为一种先进的空调系统,仍然具有一般空调系统必备的结构模式,如空气处理机(即空调箱)、消音器、送回风机等。变风量空调系统将其先进的科学技术应用于空调系统的设计模式和处理过程。当前比较常见的变风量空调系统的数字化控制过程和组成模式是利用无关性单风道来进行的。在这个技术出现之前,变风量空调系统大多采用变温度变静压方式来控制,这种控制技术存在多种技能缺陷,因此逐渐被先进的控制模式取代。

1.3送风系统

变风量空调系统的送风系统一般设置有三级消音,即空调箱带消音段、送风总管设消音器、变风量箱出口设消音静压箱。送风口散流器一般采用条缝散流器和方形散流器。为了保证房间内的压力正常,减小回风管内压力的变化,回风口一般采用吊顶回风,条形或格栅式风口。

【变风量空调系统管理论文参考】相关文章:

1.ILASⅡ系统管理实践

2.系统管理个人工作计划

3.空调系统优化设计的论文

4.系统管理中文简历写作

5.网络工程专业系统管理简历

6.网络系统管理求职简历

7.部分系统管理笔试题

8.系统管理技术个人简历表格

9.变制冷剂流量空调系统列车论文

10.网络系统管理就业前景怎么样

下载word文档
《变风量空调系统管理论文参考.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部