欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>初中配方法分解因式

初中配方法分解因式

2024-12-30 20:08:40 收藏本文 下载本文

“plmabc”通过精心收集,向本站投稿了6篇初中配方法分解因式,下面是小编为大家整理后的初中配方法分解因式,仅供参考,欢迎大家阅读,希望可以帮助到有需要的朋友。

初中配方法分解因式

篇1:初中配方法分解因式

配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

初中配方法分解因式的方法

提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

运用公式法

①平方差公式:.a^2-b^2=(a+b)(a-b)

②完全平方公式:a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

※多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

配方法:对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

换元法:有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

待定系数法:首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

因式分解之十字交叉法

二次项系数为1的情况

二次项系数为1的标准情形如下,其中a和b可以是正整数、负整数或者0。

上面图片等号右方的(X+a)(X+b),从分解的因式正向运算来看是下面的结果,大家先看图,然后下一步总结规律。

总结起来:(X+a)(X+b)中a+b的和会成为X一次项的系数,ab的积会成为常数项。所以这种因式分解的关键就是:将常数项分解成两个数字的乘积,然后其和等于一次项X的系数。

常数项为负数经典的拆解法如:-6=-2*3或者-6=2*-3,也就是常数项是一个绝对值较大的负数,而一次项的系数是一个绝对值较小的正数或者负数,如下例题:

常数项为正数时类似,如下图:

注意:常数项是正数的时候可以拆解为两个正数的积,也可以拆解成两个负数的积。主要看一次项的符号。

总结二次项系数为1的情况分解因式规律:

1)拆分常数项成两个数字的积,和等于一次项X的系数;

2)常数项为负数,拆分成一个正数和一个负数的积,如果常数项符号为正,那么拆分数字正数绝对值要大,反之亦然;

3)常数项为正数,可拆分成两个正数或两个负数,符号也是看常数项的系数符号。

二次项系数不为1的情况:

二次项因数为1的情况下,十字拆分方法是一样的,不过还要将二次项也进行拆分。

总结二次项系数不为1的情况分解因式规律:

1)二次项也要进行拆分,和常数项拆分数字分别相乘并求和;

2)常数项是正数的情况,拆分数字符号与一次项系数一致;

3)常数项是负数的情况,拆分数字结果乘积之和与一次项系数一致。

当X平方的系数为负数,可以先提取出符号再拆分,或者直接按照系数为负数直接拆分也可以。

篇2:初中分解因式的方法

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

篇3:初中分解因式的方法

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

分解因式的应用

1.使一些较复杂的计算简便;2.求一些无法直接求解的代数式的值;3.判断多项式的整除性质;4.与几何中三角形的三边关系结合解决一些综合性问题。

常见考法

实际生活中,人们为了解决问题常常遇到某些复杂的计算问题,如果根据题目的特点,运用分解因式将式子变形,会简化运算量,提高准确率,所以灵活应用各种方法分解因式是历届中考的重点。题型一般是小型综合题,难度一般,解题规律明显。

误区提醒

(舟山)给出三个整式a2,b2和2ab.

(1)当a=3,b=4时,求a2+b2+2ab的值;

(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.

【解析】(1) 当a=3,b=4时, a2+b2+2ab==49.

(2) 答案不唯一,例如,

若选a2,b2,则a2-b2=(a+b)(a-b).

若选a2,2ab,则a2±2ab=a(a±2b).

篇4:初中因式分解方法

初中因式分解方法

因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用,它和整式乘法互为逆运算,在初中代数中占有重要的.地位和作用,在其它学科中也有广泛应用。那么教材是怎么定义因式分解的呢?把一个多项式化为几个整式乘积的形式,叫做多项式的因式分解从定义我们可以得出:因式分解的对象是多项式;因式分解的结果一定是整式乘积的形式;我在中学数学教材基础上,对因式分解的方法做了一些归纳: 初中数学教材中主要介绍了提取公因式法和公式法、对于十字相乘法和分组分解法提到的较少,其他的方法基本不涉及.我们对因式分解的一般步骤归纳如下:(1)通常采用一“提”、二“套”、三“十”、四“分”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式(主要是平方差公式和完全平方公式);如前两个步骤都不能实施,在考虑十字相乘法,最后才用分组分解法,而分组的最终目的是使得分组后有公因式可提或可套用公式从而继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆添项等方法。

篇5:初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点

1.同底数幂的乘法法则:(m,n都是正数)

2..幂的乘方法则:(m,n都是正数)

3.整式的乘法

(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

初中数学逆袭方法

一、课前预习阅读

预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。

二、提高听课质量

要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

三、课后复习阅读

课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。

初中数学不等式与不等式组知识点

(1)不等式

用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

(2)不等式的性质

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

(3)一元一次不等式

用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

(4)一元一次不等式组

一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

篇6:基于匹配追踪的谱分解方法及其应用

基于匹配追踪的谱分解方法及其应用

谱分解技术作为一项新颖的地震解释技术,在储层预测等方面得到越来越多的应用.准确刻画地震信号在时频空间分布特征是谱分解技术的关键.短时傅里叶变换的时频分辨率受时窗长度限制,不同的.时窗参数对结果有较大的影响.小波变换以其多分辨率的特点能够得到更好的时频分布,但其在时间-尺度概念下的时频分解难以理解,而具有自适应特征的匹配追踪方法时频概念相对明确,模型和实际应用表明匹配追踪谱分解具有较好的时频分辨率,更适用于复杂的地震信号.

作 者:冯磊 姜在兴 Feng Lei Jiang Zaixing  作者单位:中国地质大学(北京)能源学院,北京,100083 刊 名:勘探地球物理进展 英文刊名:PROGRESS IN EXPLORATION GEOPHYSICS 年,卷(期):2009 32(1) 分类号:P631.4 关键词:地震信号   谱分解   时频分析   小波变换   匹配追踪  

【初中配方法分解因式】相关文章:

1.分解因式教学反思

2.分解因式的教学反思

3.配方法教学反思

4.配方法解一元二次方程教学反思

5.目标分解范文

6.任务分解范文

7.轻松记忆专四专八单词方法:分解联想记忆

8.初中作文方法

9.《用配方法解一元二次方程》教学反思

10.力的分解教案

下载word文档
《初中配方法分解因式.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部