高中电的知识点总结
“情難枕”通过精心收集,向本站投稿了18篇高中电的知识点总结,下面是小编为大家整理后的高中电的知识点总结,仅供参考,大家一起来看看吧。
篇1:高中电的知识点总结
高中电的知识点总结
一、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的'差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J; (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
二、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成 (2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻电流表内接法: 电流表外接法: 电压表示数:U=UR+UA 电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2] 选用电路条件Rx< 三、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A?m 2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 四、电磁感应 1.[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂(切割磁感线运动) {L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极} *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。 一、电场基本规律 1、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的.总量保持不变。(1)三种带电方式:摩擦起电,感应起电,接触起电。 (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19C――密立根测得e的值。 2、库仑定律 (1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。 (2)表达式:k=9.0×109N?m2/C2――静电力常量 (3)适用条件:真空中静止的点电荷。 二、电场能的性质 1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。 2、电势φ (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。 (2)定义式:φ――单位:伏(V)――带正负号计算 (3)特点: ○1电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。 ○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。 ○3电势的大小由电场本身决定,与Ep和q无关。 ○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。 (4)电势高低的判断方法 ○1根据电场线判断:沿着电场线电势降低。φA>φB ○2根据电势能判断: 正电荷:电势能大,电势高;电势能小,电势低。 负电荷:电势能大,电势低;电势能小,电势高。 结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。 3、电势能Ep (1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。 (2)定义式:――带正负号计算 (3)特点: ○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。 ○2电势能的变化量△Ep与零势能面的选择无关。 4、电势差UAB (1)定义:电场中两点间的电势之差。也叫电压。 (2)定义式:UAB=φA-φB (3)特点: ○1电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。 ○2单位:伏 ○3电场中两点的电势差是确定的,与零势面的选择无关 ○4U=Ed匀强电场中两点间的电势差计算公式。――电势差与电场强度之间的关系。 5、静电平衡状态 (1)定义:导体内不再有电荷定向移动的稳定状态 (2)特点 ○1处于静电平衡状态的导体,内部场强处处为零。 ○2感应电荷在导体内任何位置产生的电场都等于外电场在该处场强的大小相等,方向相反。 ○3处于静电平衡状态的整个导体是个等势体,导体表面是个等势面。 ○4电荷只分布在导体的外表面,在导体表面的分布与导体表面的弯曲程度有关,越弯曲,电荷分布越多。 6、电场力做功WAB (1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即与初末位置的电势差有关。 (2)表达式:WAB=UABq―带正负号计算(适用于任何电场) WAB=Eqd―d沿电场方向的距离。――匀强电场 (3)电场力做功与电势能的关系 WAB=-△Ep=EpA-EPB 结论:电场力做正功,电势能减少 电场力做负功,电势能增加 7、等势面: (1)定义:电势相等的点构成的面。 (2)特点: ○1等势面上各点电势相等,在等势面上移动电荷,电场力不做功。 ○2等势面与电场线垂直 ○3两等势面不相交 ○4等势面的密集程度表示场强的大小:疏弱密强。 ○5画等势面时,相邻等势面间的电势差相等。 (3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。 三、电场力的性质 1、电场的基本性质:电场对放入其中电荷有力的作用。 2、电场强度E (1)定义:电荷在电场中某点受到的电场力F与电荷的带电量q的比值,就叫做该点的电场强度。 (2)定义式:E与F、q无关,只由电场本身决定。 (3)电场强度是矢量:大小:单位电荷受到的电场力。 方向:规定正电荷受力方向,负电荷受力与E的方向相反。 高中原电池知识点总结 高一化学原电池知识点 一、原电池、电解池的两极 电子从负极通过导线流向正极,电子的定向移动形成电流,电流的方向是正极到负极,这是物理学规定的。 阴极、阳极是电化学规定的,失去电子的极即氧化极,也就是阳极;得到电子的极即还原极,也就是阴极。 原电池中阳极失去电子,电子由阳极通过导线流向阴极,阴极处发生得电子的反应,由于原电池是一种化学能转化为电能的装置,它作为电源,通常我们称其为负极和正极。在电解池中,连着负极的一极是电解池的阴极,连着正极的一极是电解池的阳极,由于电解池是一种电能转化为化学能的装置,我们通常说明它的阳极和阴极。 二、原电池、电解池、电镀池的判断规律 (1)若无外接电源,又具备组成原电池的三个条件。①有活泼性不同的两个电极;②两极用导线互相连接成直接插入连通的电解质溶液里;③较活泼金属与电解质溶液能发生氧化还原反应(有时是与水电离产生的H+作用),只要同时具备这三个条件即为原电池。 (2)若有外接电源,两极插入电解质溶液中,则可能是电解池或电镀池;当阴极为金属,阳极亦为金属且与电解质溶液中的金属离子属同种元素时,则为电镀池。 (3)若多个单池相互串联,又有外接电源时,则与电源相连接的装置为电解池成电镀池。若无外接电源时,先选较活泼金属电极为原电池的负极(电子输出极),有关装置为原电池,其余为电镀池或电解池。 三、分析电解应用的主要方法和思路 1、电解质在通电前、通电后的关键点是: 通电前:电解质溶液的电离(它包括了电解质的电离也包括了水的电离)。 通电后:离子才有定向的移动(阴离子移向阳极,阳离子移向阴极)。 2、在电解时离子的放电规律是: 阳极: 金属阳极>S2—>I—>Cl—>OH—>含氧酸根>F— 阴极: Ag+>Fe3+>Cu2+>H+(浓)>Pb2+>Sn2+>Fe2+>Zn2+>H+>Al3+>Mg2+>Na+>Ca2+>K+ 3、电解的结果:溶液的浓度、酸碱性的变化 溶液的离子浓度可能发生变化如:电解氯化铜、盐酸等离子浓度发生了变化。 因为溶液中的氢离子或氢氧根离子放电,所以酸碱性可能发生改变。 四、燃烧电池小结 在燃烧电池反应中确定哪一极发生的是什么反应的关键是: 负极:化合价升高,失去电子,发生氧化反应; 正极:化合价降低,得到电子发生还原反应; 总反应式为:两极反应的加合; 书写反应时,还应该注意得失电子数目应该守恒。 五、电化学的应用 1、原电池原理的应用 a。原电池原理的三个应用和依据: (1)电极反应现象判断正极和负极,以确定金属的活动性。其依据是:原电池的正极上现象是:有气体产生,电极质量不变或增加;负极上的现象是:电极不断溶解,质量减少。 (2)分析判断金属腐蚀的速率,分析判断的依据,对某一个指定金属其腐蚀快慢顺序是: 作电解池的阳极>作原电池的负极>非电池中的该金属>作原电池的正极>作电解池的阴极。 b。判断依据: (1)根据反应现象原电池中溶解的一方为负极,金属活动性强。 (2)根据反应的.速度判断强弱。 (3)根据反应的条件判断强弱。 (3)由电池反应分析判断新的化学能源的变化,分析的思路是先分析电池反应有关物质化合价的变化,确定原电池的正极和负极,然后根据两极的变化分析其它指定物质的变化。 2、电解规律的应用 (1)电解规律的主要应用内容是:依据电解的基本原理分析判断电解质溶液。 (2)恢复电解液的浓度: 电解液应先看pH的变化,再看电极产物。欲使电解液恢复一般是: 电解出什么物质就应该加入什么,如:电解饱和食盐水在溶液中减少的是氯气和氢气,所以应该加入的是氯化氢。 (3)在分析应用问题中还应该注意: 一要:不仅考虑阴极、阳极放电的先后顺序,还应该注意电极材料(特别是阳极)的影响; 二要:熟悉用惰性电极电解各类电解质溶液的规律。 高中电学知识点 1.电流强度:I=q/t {I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.纯电阻电路中:由于I=U/R , W=Q,因此W=Q=UIt=I2Rt=U2t/R 。 4.电阻、电阻定律:R=ρL/S {ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 5.电功与电功率:W=UIt,P=UI {W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.闭合电路欧姆定律:I =E /(r+R) 或 E=Ir + IR 也可以是E =U内 + U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 7.焦耳定律:Q=I2Rt {Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动力(V),U:路端电压(V),η:电源效率}。 9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与 R成反比)。 电阻关系:R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.滑动变阻器在电路中的限流接法与分压接法 限流接法:电压调节范围小,电路简单,功耗小,电压调节范围大,电路复杂,功耗较大便于调节电压的选择条件Rp >Rx 便于调节电压的选择条件Rp < Rx。 11.伏安法测电阻 电压表示数:U=UR+UA 电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2] 选用电路条件Rx< 12.欧姆表测电阻 (1)电路组成 (2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E /(r + Rg + Ro) 接入被测电阻Rx后通过电表的电流为 Ix=E /(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小。 (3)使用方法:机械调零、选择量程、短接欧姆调零、测量读数 {注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近每次换挡要重新短接欧姆调零。 <<<返回目录 高中电学重点 高中物理电学公式大全之电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J; (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕. 高中物理电学公式大全之恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成 (2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡. (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零. 11.伏安法测电阻 电流表内接法: 电压表示数:U=UR+UA 电流表外接法: 电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2] 选用电路条件Rx <<<返回目录 高中电学要点 一、电场基本规律 1、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。(1)三种带电方式:摩擦起电,感应起电,接触起电。 (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19C——密立根测得e的值。 2、库仑定律 (1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。 (2)表达式:k=9.0×109N?m2/C2——静电力常量 (3)适用条件:真空中静止的点电荷。 二、电场能的性质 1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。 2、电势φ (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。 (2)定义式:φ——单位:伏(V)——带正负号计算 (3)特点: ○1电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。 ○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。 ○3电势的大小由电场本身决定,与Ep和q无关。 ○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。 (4)电势高低的判断方法 ○1根据电场线判断:沿着电场线电势降低。φA>φB ○2根据电势能判断: 正电荷:电势能大,电势高;电势能小,电势低。 负电荷:电势能大,电势低;电势能小,电势高。 结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。 3、电势能Ep (1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。 (2)定义式:——带正负号计算 (3)特点: ○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。 ○2电势能的变化量△Ep与零势能面的选择无关。 4、电势差UAB (1)定义:电场中两点间的电势之差。也叫电压。 (2)定义式:UAB=φA-φB (3)特点: ○1电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。 ○2单位:伏 ○3电场中两点的电势差是确定的,与零势面的选择无关 ○4U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。 5、静电平衡状态 (1)定义:导体内不再有电荷定向移动的稳定状态 (2)特点 ○1处于静电平衡状态的导体,内部场强处处为零。 ○2感应电荷在导体内任何位置产生的电场都等于外电场在该处场强的大小相等,方向相反。 ○3处于静电平衡状态的整个导体是个等势体,导体表面是个等势面。 ○4电荷只分布在导体的外表面,在导体表面的分布与导体表面的弯曲程度有关,越弯曲,电荷分布越多。 6、电场力做功WAB (1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即与初末位置的电势差有关。 (2)表达式:WAB=UABq—带正负号计算(适用于任何电场) WAB=Eqd—d沿电场方向的距离。——匀强电场 (3)电场力做功与电势能的关系 WAB=-△Ep=EpA-EPB 结论:电场力做正功,电势能减少 电场力做负功,电势能增加 7、等势面: (1)定义:电势相等的点构成的面。 (2)特点: ○1等势面上各点电势相等,在等势面上移动电荷,电场力不做功。 ○2等势面与电场线垂直 ○3两等势面不相交 ○4等势面的密集程度表示场强的大小:疏弱密强。 ○5画等势面时,相邻等势面间的电势差相等。 (3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。 三、电场力的性质 1、电场的基本性质:电场对放入其中电荷有力的作用。 2、电场强度E (1)定义:电荷在电场中某点受到的电场力F与电荷的带电量q的比值,就叫做该点的电场强度。 (2)定义式:E与F、q无关,只由电场本身决定。 (3)电场强度是矢量:大小:单位电荷受到的电场力。 方向:规定正电荷受力方向,负电荷受力与E的方向相反。 <<<返回目录 高中电磁学知识点总结 电磁学包括静电场、稳恒电流、磁场、电磁感应、交流电、电磁振荡和电磁波,我们看看下面的高中电磁学知识点总结吧! 高中电磁学知识点总结 一、重要概念和规律 (一)重要概念 1.两种电荷、电量(q) 自然界只存在两种电荷。用丝绸摩擦过的玻璃棒上带的电荷叫做正电荷,用毛皮摩擦过的硬橡胶棒上带的电荷叫做负电荷。注意:两种物质摩擦后所带的电荷种类是相对的。电荷的多少叫电量。在SI制中,电量的单位是C(库)。 2.元电荷、点电荷、检验电荷 元电荷是指一个电子所带的电量e=1.6×10-19C。点电荷是指不考虑形状和大小的带电体。检验电荷是指电量很小的点电荷,当它放入电场后不会影响该电场的性质。 3.电场、电场强度(E)、电场力(F) 电场是物质的一种特殊形态,它存在于电荷的周围空间,电荷间的相互作用通过电场发生。电场的基本特性是它对放入其中的电荷有电场力的作用。电场强度是反映电场的力的性质的物理量。 描述电场强度有几种方法。 其一,用公式法定量描述;定义式为E=F/q,适用于任何电场。真空中的点电荷的场强为E=kq/r2。匀强电场的场强为E=U/d。 要注意理解:①场强是电场的一种特性,与检验电荷存在与否无关。②E是矢量。它的方向即电场的方向,规定场强的方向是正电荷在该点受力的方向。③注意区别三个公式的物理意义和适用范围。④几个电场叠加计算合场强时,要按平行四边形法则求其矢量和。 其二,用电场线形象描述:电场线的密(疏)程度表示场强的强(弱)。电场线上某点的切线方向表示该点的场强方向。匀强电场中的电场线是方向相同、距离相等的互相平行的直线。要注意:a.电场线是使电场形象化而假想的线.b.电场线起始于正电行而终止于负电荷。c.电场中任何两条电场线都不相交。电场力是电荷间通过电场相互作用的力。正(负)电荷受力方向与E的方向相同(反)。 4.电势能(B)、电势(U)、电势差(UAB) 电势能是电荷在电场中具有的势能。要注意理解:①物理意义;电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功。②电势能是相对的,通常取电荷在无限远处的电势能为零,这样,电势能就有正负。③电场力对电荷所做的正(负)功总等于电荷电势能的减少(增加),即WAB=εA-εB。(A点电势高于B点)。④电场力移动电荷做功,只跟电荷的始、末位置有关,跟具体路径无关。 电势是反映电场的能的性质的物理量.描述电势有几种方法。其一,用公式法定量描述:电场中某点的电势定义为U=ε/q。要注意理解:①电势是电场的一种特性,与检验电荷存在与否无关。②电势是标量。③在SI制中的单位:1V=1J/C。④电势是相对的,通常取无限远处(或大地)的电势为零,这样,电势就有正负。⑤几个电场叠加计算合电势时,只需求各个电场在该点产生的电势的代数和。其二,用等势面形象描述:任意两个等势面不能相交。等势面与电力线垂直。不同等势面的电势沿电力线方向逐渐降低。任何相邻两等势面间的电势差相等,场强大(小)的地方等势面间的距离小(大)。在同一等势面上的任何两点间移动电荷时,电场力不做功。在匀强电场中的等势面是一族限电力线垂直的平面。 电势差指电场中两点间的电势的差值,有时又叫做电压。表示为UAB=UA-UB。注意:①电场中两点间的电势差值是绝对的。电场中某点的电势实际上是指该点与无穷远处间的电势差。②电势差有正负,UAB=-UBA。 5.电客(C) 电容器的电容定义为C=Q/U。注意理解:①电容是表征电容器特性的物理量。对于给定的电容器,C一定。②电容器所带电量指每个导体(或极板)所带电量的绝对值。③电容器的电容只眼它的结构(两个导体的大小、形状、相对位置)、介质性质有关,而与它所带的电量q和电势差U无关。④平行板电容器的电容C=εS/4πkd,表示C与介电常数ε成正比,跟正对面积S成正比,跟极板间的距离d成反比。⑤电容器的额定电压应低于击穿电压。 6.电流强度(I) 电流强度是表示电流强弱的物理量。定义为I=q/t,要注意理解:①电流的形成:电荷的定向移动。②导体中存在持续电流的条件:一是要有可移动的电荷;二是保持导体两端的电势差(如电源)。③电流的方向:规定正电荷的移动方向为电流方向。在外(内)电路电流从电源的正(负)极流向负(正)极。④导体中自由电子定向移动速率并不快,电流的传导速率即电场的传播速率等于光速。 7.电阻(R)、电阻率(ρ)、超导体 电阻是表示导体对电流的阻碍作用的物理量,定义为R=U/I,其单位根据欧姆定律规定是欧姆,即1欧=1伏/安。电阻是导体的一种特性。电阻率是反映材料导电性好坏的物理量,根据电阻定律定义为ρ=RS/l,单位是欧姆“Ω·m”,各种材料的电阻率都随温度而变化,金属的电阻率随温度的升高(降低)而增大(减小)。当温度降低到绝对零度附近时某些金属、合金和化合物的电阻率会突然减小为零,此谓超导现象。处于这种状态的导体叫做超导体。超导体的电阻为零。 8.电功(W)电热(Q)、电功率(P) 电功是描述电路中电能转化为其它形式的能的物理量。可表示为W=UIt。在纯电阻电路中,W=UIt=I2Rt=U2t/R。电功的实用单位 1干瓦小时(度)=3.6×106焦。电热指电流通过导体产生的热量。在纯电阻电路里,W=Q,即电能全部转化为内能。在非纯电阻(如含电动机、电解槽等用电器)电路里,w>Q;电功率是描述电流做功快慢的物理量,可表示为P=W/t=UI。在纯电阻电路中,P=UI=I2R=U2/R。 9.电源、电动势(ε)、路端电压(U) 电源是把其他形式的能转化为电能的装置。对于给定的电源,电动势、内电阻和允许通过的最大电流一定。电动势是表征电源特性的物g量之一。要注意理解:①S是由电源本身所决定的,跟外电路的情况无关。②ε的物理意义;电动势在数值上等于路中通过1库仑电量时电源所提供的电能。③注意区别电动势和电压的概念。电动势是描述其他形式的能转化成电能的.物理量,是反映非静电力做功的特性。电压是描述电能转化为其他形式的能的物理量,是反映电场力做功的特性。路端电压是外电路两端的电压。可表示为:U=ε-U'(U'= Ir)。要明确:①U随I的变化规律。当I增大时,U减小;当I=0时,U=ε。②U随R的变化规律:当R增大(减小)时,U随着增大(减小)当R→∞(断路)时,U=ε(据此原理可用伏特计直接测ε)。当R→0(短路)时,U→0,此时有I=ε/r,电流很大。 10.磁性、磁体、磁极、磁化 磁性指物体能吸引铁、钴、镍等物质的性质。具有磁性的物体叫磁体。磁体上最强的部分叫磁极,指南(北)的磁极叫南(北)极,用S(N)表示。磁化指使原来没有磁性的物体得到磁性的过程。 11.磁场、磁感强度(B) 磁场是一种特殊形态的物质,它存在于磁体周围的空间,磁体间的相互作用通过磁场发生。磁场的基本特性是它对放入其中的电流(或磁极)有磁场力的作用。磁感强度是反映磁场的力的性质的物理量。描述磁感强度有几种方法。其一,用公式定量描述。定义式为B=F/Il。要注意理解 :①B是磁场的一种特性,与磁场力F、电流强度I、导线长度l无关。B不是电流I所产生的磁场。②B是矢量。它的方向即围场的方向,规定B的方向是磁针N极在该点受力的方向。③在SI制中,B的单位为(T)特斯拉。其二,用磁感线描述:磁感线的密(疏)程度表示磁场的强弱。磁感线上某点的切线方向表示该点的磁场方向.匀强磁场中的磁感线是方向相同的距离相等的互相平行的直线;直线电流磁场的磁力线是以导线上各点为圆心的在限导线垂直的平面上的同心圆,通电螺线管磁场的磁力线与条形磁铁相似。要注意:a.磁感线是使磁场形象化而假想的线。b.磁感线是闭合曲线,在磁体外(内)部,从N(S)极到S(N)极。③磁场中任何两条磁力线都不相交。 12.磁通量(Φ) 为了研究穿过某一个面上的磁场,定义磁通量Φ=BScosθ要理解:①适用于匀强磁场。②物理意义:穿过磁场中某个面的磁感线条线。③θ为所研究的平面的法线与B的夹角。④磁通量有正负。⑤在SI制中的单位为韦伯(Wb),⑤由B=Φ/S,常称磁通密度。 13.电磁感应、感应电动势(ε)、感应电流(I) 电磁感应是指利用磁场产生电流的现象。所产生的电动势叫感应电动势。所产生的电流叫感应电流。要注意理解;①产生感应电动势的那部分导体相当于电源。②产生感应电动势与电路是否闭合无关,而产生感应电流必需闭合电路。③产生感应电流的两种叙述是等效的,即闭合电路的一部分导体作切割磁力线运动与穿过闭合电路中的磁通量发生变化等效。 14.自感现象、自感电动势、自感系数(L) 自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。饰产生的感应电动势叫自感电动势。自感系数简称自感或电感,它是反映线圈特性的物理量。线图越长,单位长度上的匝数越多,截面积越大,它的自感系数越大。另外,有铁心的线囵的自感系数比没有铁心时要大得多。 15.交流电、表征交流电的物理量 交流电是指电流强度和方向都随时间作周期性变化的电流。交流电有单相和三相之分。中学所研究的是正弦交流电. 最大值 交流电的最大值是交流电在一周期内所能达到的最大值.有效值 交流电的有效值是根据电流热效应规定的,即如果在相同时间内交流电和直流电通过相同的电阻所产生的热量相等,则把这直流电的数值叫做这交流电的有效值。有效值=最大值/ 。注意:①该关系式适用于按正弦现律变化的交流电。②电气设备上所标的额定电压和额定充流以及电表测量的数值一般指有效值。③我国的交流电,照明电路电压为220伏,动力电路电压为380伏。周期(T)和频率(f)都是表征交流电变化快慢的物理量.其关系为:T=1/f。我国的交流电的周期为0.02S,频率是50Hz,电流方向每秒改变100次。 16.振荡电流、电磁振荡 振荡电流指大小和方向都作周期性变化的电流。通常由自感线圈和电容器组成的振荡电路(称LC回路)产生。电磁振荡是一种物理现象;在振荡电路里产生振荡的过程中,电容器极板上的电荷、回路中的电流以及与它们相联系的磁场和电场都在作周期性变化。电磁有无阻尼振荡(等幅振荡)和阻尼振荡(减幅振荡)之分。电磁振荡的过程可与简谐振动相类比。 17.电磁场、电磁波 电磁场是指由变化的电场和磁场组成的不可分离的统一的场。电磁场由近及远地传播形成电磁波。要注意理解:①没有静止的电磁场。②电磁波是横波,它的传播方向、电场方民_磁场方向互相会直。③传播电磁波不需要介质。 (二)、重要规律 1.电荷守恒定律 电荷守恒定律揭示了在电荷的分离和转移的过程冲总量保持不变的规律。要注意它在中和现象、三种起电(接触起电、摩擦起电、感应起电)过程、静电感应现象中的应用。 2.库仑定律 库仑定律反映了电荷间相互作用力的规律。可表示F=kQ1Q2/r2,其中静电力恒星k=9X109N·m2/C2.要注意:①适用于真空中的点电荷。②应用公式时,可把q和F的绝对值代入计算,库仑力的方向根据电荷的正负来判断。 3.处于静电平衡状态的导体的特点 处于静电平衡状态(指导体中没有电荷定向移动的状态)的导体的特点有四;其一,内部的场强处处为零。其二,表面上任何一点的场强方向跟该点的表面垂直。其三,电行只能分布在导体的外表面上(可用法拉第圆筒实验验证)。其四,该导体是一个等势体,它的表面是一个等势面。 4.电势差限电场力做功、跟电场强度的关系 电场中移动电荷时电场力做的功跟电势差的关系为W=qU。要注意:①公式适用于任何电场。②q、U、W三个量都有正、负。为避免错误,应用时,均取绝对值,功的正负可从电荷的正负及移动方向加以判断。③在电场力作用下,正(负)电荷总是从高(低)电势处移向低(高)电势处,且电荷的电势能减小。电势差跟电场强度的关系可从以下三方面理解:①大小关系:①U=Ed(适用于匀强电场,d为沿电场线方向的两点间距离)。②方向关系:场强的方向就是电势降低最快的方向.③单位关系:1V/m=1N/C。 5.带电粒子在电场中的运动规律 带电粒子在重力、电场力作用下。或处于平衡状态、或加速、或偏转(在匀强电场中作类抛体运动)。其运动规律同样遵循力学的三把金钥匙、只是在受力分析时要多考虑一个电场力而已。 6.电阻定律 电阻定律是一个实验定律,它揭示了影响导核电阻的因素间的关系。要注意理解:①当温度不变时,导线的电阻是由它的长短、粗细、材料决定的。而与加在导体两端的电压和通过的电流强度无关。②电阻还随着温度的升高而增大。③该公式适用于粗细均匀的金属导体及放度均匀一致的电解液 7.欧姆定律 部分电路欧姆定律为:I=U/R,要注意:①公式中的I、U、R三个量必须是属于同一段电路的。②适用范围;适用于金属导体和电解质的溶液,不适用于气体。或理解为仅适用于不含电源的某一部分电路。闭合电路欧姆定律可表示为:I=ε/(R+r),要注意:①适用于包括电源的整个闭合电路。②会从能量的转化观点理解Iε=IU+Ir的物理意义,明确电源的总功率(Iε)、输出功率(IU)和内电路消耗的功率(IU')及其关系。 8.焦耳定律 焦耳定律是定量反映电流热效应的规律。在SI制中表示为Q=I2Rt。要注意;①对任何电路,只要有电阻R存在,由电流热效应产生的热量都可用该公式计算。②在纯电阻电路中,还可表示为Q=UIt或U2t/R。③在SI制中Q用焦作单位。 9.电路串并联和电源串并联的特点 电路串并联要注意理解电压分配、电流分配、功率分配的规律。电源(相同电池)串并联要注意适用条件:当用电器额定电压高于单个电他的电动势时,应采用串联电池组。当用电器的额定电流比单个电地允许通过的最大电流大时,应采用并联电池组。必要时采用混联电池组。 10.改装电表的原理 将电流计改装成优特计.需给电流计串联一个分压电阻,该电阻可由R串=(n—1)Bg计算,其中n=U/Ug为电压量程扩大的倍数。将电流计改装螨安始计,需给电流计并取一个分流电阻,该电阻可由IgRg=(I-Ig)R并计算,其中n=I/Ig为电流量程扩大的倍数。 11.测量电阻的方法 (1)用伏安法测。应明确:当测量小(大)电阻时应采用安培计外(内)接法。(2)用欧姆计测。应理解:①这是一种能直接读出电阻值的粗略测量方法。②要先调零再测量。 12.磁极间的作用规律 磁极间相互作用的磁和同(异)名磁极相斥(吸)。 13.判定磁场方向的法则 用安培定则判定。注意;当判定直线电流的磁场方向时,大拇指表示充流方向,四指表示磁感线的环绕方向.当判定环形电流和通电螺线管的磁场方向时,大姆指表示磁感线的方向。四指表示电流方向。 14.磁场对电流的作用规律 (1)大小:电流所受的磁场力通常称为安培力。其大小F=BIlsinθ,注意:①适用于匀场磁场中长直通电导线.②θ为I与B的夹角。磁场对通电线圈有磁力矩作用,其大小 M=BIScosθ。注意:①适用于匀强磁场和辐向磁场 ②S为线圈(不一定有规则)面积。③θ为B与线圈平面的夹角。磁场对运动电荷的作用力通常称为洛仑兹力。其大小f=qvBsinθ。注意:①洛仑兹力是磁场对单个运动电荷的作用力,而安培力是磁场对通电导线上电流的作用力。②θ为B与v的夹角。在匀强磁场中,若θ=0,则电荷做匀速直线运动;若θ=90°,则电荷在向心力f=qvB作用下做匀速圆周运动,可以证明,电荷的运动周期跟轨道半径和运动速率无关。③f对运动电荷不做功。 (2)方向:由左手定则判既注意:当判定洛仑兹力方向时,四指的指向与正(负)电荷的运动方向相同(反)。 15.电磁感应规律 (1)感应电动势的大小:由法拉第电磁感应定律确定。公式一:ε=△Φ/△t。注意;①该式普遍适用于求平均感应电动势.②ε只与穿过电路的磁通量的变化率△Φ/△t有关,而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。公式二:ε=Blvsinθ。注意:①该式通常用于导体切割磁力线之时。且导线与磁感线互相垂直。②θ为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直于B方向上的投影)。公式三:ε=L△I/△t。注意:①该公式由法拉第电磁感应定律推出。适用于自感现象。②ε与电流的变化率△I/△t成正比。 (2)感应电动势和感应电流的方向:感应电动势和感应电流的方向是一致的,均由楞次定律和右手定则来判定。方法一:楞次定律。注意:①正确理解楞次定律比右手定则有更深刻的物理本质。反映了在电磁感应现象中能的转化与守恒规律。即发电机的基本原理:机械能转化为电能。②普遍适用。只是当导体和磁场无相对运动时,用楞次定律较方便。③掌握应用楞次定律的正确步骤;第一步,明确原磁场的方向及穿过闭合电路中的磁通量增减情况;第二步。根据格次定律确定感生电流的磁场方向;第三步,利用安培定则确定感应电流的方向。要深刻理解“阻碍”两字的含义,阻碍不同于相反。方法二:右手定则。注意:①两种判断方法结论一致。当导体和磁场有相对运动时,用右手定则较方便。右手定则可视为楞决定律的特殊情况.②与左手定则的区别。 15. 交流电的变化规律 (1)用函数式表示:感应电动势的瞬时值为:e=εmsinωt,εm=2Blv。电流的瞬时值为:i=Imsinωt,Im=εm/R。(2) 用函数图象表示:是正弦函数图象。 16.变压器的变压原理和变压规律 变压原理:在原、副线圈中由于电流交变而发生互相电磁感应使之变压。应理解;①变压过程的本质是传递能量。②变压过程中穿过原、副线圈的交变磁通量相同,每匝线圈的感生电动势相等。③适用于交流电。直流电不能用变压器变压。变压规律:对于理想变压器有U1/U2=n1/n2,I1/I2=n2/n1注意:该式仅适用于只有一个副线圈的情况。当有几个副线圈时,每个副线日与原线圈均有这种独立关系,且变压器的输出电流工:应等于各副线圈中的电流之和。③输入功率等于输出功率。 17.电磁振荡的规律 电磁振荡的固有周期T、固有频率f。注意:①适用于无阻尼自由振荡(不再从外界获得能量)。@T或f与振幅无关。 18.麦克斯韦电磁场理论 该理论的要点为;任何变化的电(磁)场都要在周围的空间产生磁(电)场。要理解:均匀变化的电(磁)场在周围产生稳担的磁(电)场;振荡电(磁)场在周围空间产生同样频率的磁(电)场。 二、重要研究方法 1.用比值定义物理量 若比值为恒量,则反映了物质的某种性质。如:物质的密度ρ、导体的电阻R、电场强度E、电势U、电容C等。 2. 类比 如:将电场与重力场、电场强度E与重力场强度(即重力加速度g)、电势能与重力势能、等势面与等高线相类比。将电磁振荡与简谐振动、电磁波与机械波、电指振与振动的共振相类比。其优点是利用已学过的知识去认识有类似特点或规律的未知抽象知识。 3.运用形象思维 如:用电场线和等势面描述电场的性质,帮助理解电场强度和电势等抽象概念,用小磁针和磁感线描述磁场的性质.用安培定则、左手定则描述相关物理量间的关系,提供判定某物理三的方向等。以达到由形象思维上升到抽象思维的境界。 4.运用等效思想 如;借助等效电阻、等效电路简化电路,便于解题。 5.极端分析法 如:研究闭合电路两端点的电压即路端电压、用电键的闭合和断开、变阻器滑片移至两极端、使电路断路和短路等都是运用了极端分析的思想方法。 6.寻求守恒规律 如:电荷守恒定律。在纯电阻电路中,电功等于电热。法拉第电磁感应定律和楞次定律反映了在电磁感应现象中的能量转化与守恒规律。在工C回路中,电场能和磁场能的相互转化。这实际上是能是守恒定律的具体体现。 7.运用图象法研究 如:在I-U坐标息中画出金属导体的伏安特性曲线来研究导体的电阻。在U-I坐标系中画出图线来研究路端电压随电流的变化规律,并借助它测算ε和r。用正弦函数图象描述正孩交流电、振荡电流。 8.实验检测 如:用验电器检测物体上是否带电、带何种电、带多少电,用静电计检测导体间的见势差。用库仑扭秤研究库仑定律,用伏特计测电压,用安培计测电流强度,用欧姆计测电阻等。 9.观察和实验 观察和实验是揭示物理规律的基本方法,物理规律依靠实验来证实。如:奥斯特实验发现了电流的磁场,罗兰实验证实了运动电荷能产生磁场,从而揭示了磁现象的电本质。用电子射线管检验了运动电荷在磁场中受到洛仑兹力的设想。法拉第的电磁感应实验使他的“把磁转变成电”的光辉思想变为现实.赫兹实验证实了电磁波的存在。还如:用示波器观察波形,用莱顿瓶说明电谐振等。 三、基本解题思路 解答电场和电路问题的基本思路大致与解力学和热学问题相仿,下面择其不同之处作些说明: 1. 关于研究对象。电场中的研究对象往往是电场中的某一点或某一个电荷。电路的研究对象住在是某些元件(包括电源、用电器、电表等)或一段电路. 2.关于受力分析。由于电场的参与,要多考虑一个电场力(库仑力)。 3.关于物理过程。电场中主要研究静电平衡、带电粒子在电场中的运动(平衡、加速、偏转)等.电路主要研究电路变化,如通过电键、转换开关、变阻器变换电路的组成并引起了电路中各个量的变化。为了便于认识电路,常常先要画出简化的等效电路。 4. 关于状态参量的分析。表征电场的状态量主要有场强、电势、电势能等,引起电场状态量变化的是力、功等。表征电路的状态量有电压、电流等,引起电路状态量变化的是电阻等。要抓住关键的物理量,如并联电路中的电压相等、串联电路中的电流相等、变化电路中电源的电动势和内阻不变、在全电路中能量守恒等. 解答磁场和电磁场问题的基本思路大致与前面的相仿,下面择其不同之处作些说明: 1.关于研究对象。四场中的研究对象往往是小磁针、带电粒子、通电直导线、通电线圈、闭合回路等。还有如:变压器、电磁波、振荡电流等。 2.关于受力分析。由于磁场的参与,要多考虑一个磁场力(安培力、洛仑兹力)。 3.关于物理过程。磁场中主要研究:通电导体受力平衡和带电粒子受到洛仑兹力而作匀速圆周运动,电磁感应现象,交流电和振荡电流的正弦变化过程,电磁波的发射、传播和接收过程等.一些问题的物理过程往往是在三维空间进行,为此,要善于发挥空间想象力,选择恰当的平面视图(如以通电导线的横截面作为受力面)将立体图形转化为平面图形,画出简明的物理过程示意图。 4.关于状态参量的分析。要抓住关键的物理量,如:磁场中运动物体的力(由此涉及加速度、冲量等)和骼(由此涉及功、动能、势能),电磁感应中的磁通量变化率,交流电中的最大值(或有效值)和周期(或频率)、传播电磁波的频率和波长、振荡电流的周期〔或频率)等。 5.注重方向的分析与判断。尤其是B的方向、安培力和洛仑兹力的方向、通电线因所受磁力矩后的转动方向、感应电动势和感应电流的方向等。 四、复习建议 1.通过对电磁学的复习,要求明确以电场和电路为主线的知识体系,深刻理解电场力、电场强度、电势能、电势、电势差和电压、电容、电动势、电流强度、电阻、电功、电功率等重要概念,熟练掌握库仑定律、电场力做功的规律、串并联电路和串并联电池的特点、欧姆定律、焦耳定律等重要规律。熟悉电流计、伏特计、安培计、欧姆计的测量原理和测量技能。要明确以电和进相互转变为主线的知识体系,深刻理解磁感应强度、磁通量、电磁感应、感应电动势、感应电流。自感系数、表征交流电的物理量(最大值和有效值、周期和频率)、电磁振荡、振荡电流、电磁场、电磁波等重要概念.熟练掌握磁极间的作用、磁场对电流的作用、法拉第电磁感应定律、几个有关判定方向的定则(安培定则、右手定则、左手定则)、交流电的变化、变压器、电磁振荡、麦克斯韦电磁场理论等重要规律。 2.把握知识的深广度 应用库仑定律求解的题目难度不超过固定在一条直线上的三个电荷的相互作用。电场叠加问题不要求计算不在一条直线上的电场强度的叠加。对电势能不要求讨论正电荷或负电荷形成的电场中正负电荷的电势能的正负问题。带电粒子在匀强电场中的偏转只限于带电粒子进入电场时速度的方向垂直于场强的方向情况.对平行板电容器不要求记住其电容公式并作定量计算。对直流电路计算不要求解含有反电动势的电路和有关电桥的问题。计算安培力时只要求掌握I与B垂直的情况.计算洛舍兹力时只要求掌握v跟B垂直的情况,计算导体切割磁力线产生感应电动势时只要求掌握l垂直于B、v的简单情况,不要求用自感系数计算自感电动势。 3.要进一步明确电磁学知识的整体结构 对于电场,从力和能两个角度研究分别得到了表征电场性质的两个物理量:电场强度和电势。对于电路,从研究稳恒电流得到了以电源、电路、电表为体系的有关概念和规律。从电的系列看,由静电(电场)至动电,而学过的动电有:稳恒电流、交流电、振荡电流等.电流有三大效应:热效应、磁效应、化学效应,本讲涉及电流的磁效应.电转变为磁的具体形式较多,但究其本质是磁场起源于运动电荷。从磁的系列看,由磁转变为电的具体形式也很多,但究其本质是穿过闭合电路的磁通量发生变化。 4.要善于把握研究问题的思想方法 研究力学、热学、电学的思想方法和解题思路有许多是相类似的,只是具体的研究对象、物理过程、状态参量有所不同而巳。 5.要善于从能量的观点去揭示物理现象的本质 如;电场中电势能和重力势能、粒子动能之间的转换,电路中电能、化学能、内能之间的转换、磁现象的电本质是运动电行产生磁场,电磁感应现象的本质是能量的转化和守恒,麦克斯韦电磁场理论的本质依据是能量的转化和守恒,电磁波传播的本质是传播能量,电磁振荡的本质是电场能和磁场能的相互转化和守恒等等,因此,在解题时须注意灵活运用。 电和磁知识点总结 电和磁知识点总结 一、磁现象 1.磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。 2.磁体:具有磁性的物质叫做磁体。 3.磁极:磁体上磁性最强的部分(任一个磁体都有两个磁极且是不可分割的) (1)两个磁极:南极(S)指南的磁极叫南极,北极(N)指北的磁极叫北极。 (2)磁极间的相互作用规律:同名磁极互相排斥,异名磁极互相吸引。 4.磁化:使原来没有磁性的物体获得磁性的过程。 二、磁场 1.磁场 (1)概念:在磁体周围存在的一种物质,能使磁针偏转,这种物质看不见,摸不到,我们把它叫做磁场。 (2)基本性质:磁场对放入磁场中的磁体产生磁力的作用。 (3)磁场的方向: 规定——在磁场中的任意一点,小磁针静止时,N即所指的方向就是那点的磁场方向。 注意——在磁场中的任意一个位置的磁场方向只有一个。 2.磁感线 (1)概念:为了形象地描述磁场,在物理学中,用一些有方向的曲线把磁场的分布情况描述下来,这些曲线就是磁感线。 (2)方向:为了让磁感线能反映磁场的方向,我们把磁感线上都标有方向,并且磁感线的方向就是磁场方向。 (3)特点: ①磁体外部的磁感线从N极出发回到S极。(北出南入) ②磁感线是有方向的,磁感线上任何一点的切线方向与该点的磁场方向一致。 ③磁感线的`分布疏密可以反映磁场磁性的强弱,越密越强,反之越弱。 ④磁感线是空间立体分布,是一些闭合曲线,在空间不能断裂,任意两条磁感线不能相交。 3.地磁场 (1)概念:地球周围存在着磁场叫做地磁场。 (2)磁场的N极在地理的南极附近,磁场的S极在地理的北极附近。 (3)磁偏角:首先由我国宋代的沈括发现的。 三、电生磁 1.电流的磁效应 (1)18,丹麦的科学家奥斯特第一个发现电与磁之间的联系。 (2)由甲、乙可知:通电导体周围存在磁场。 (3)由甲、丙可知:通电导体的磁场方向跟电流方向有关。 2.通电螺线管 (1)磁场跟条形的磁场是相似的。 (2)通电螺线管的磁极方向跟电流方向有关。 3.安培定则:用右手握住螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那端就是螺线管的北极。 四、电磁铁 1.电磁铁 定义:电磁铁是一个内部插有铁芯的螺线管。 2.判断电磁铁磁性的强弱(转换法):根据电磁铁吸引大头针的数目的多少来判断电磁铁磁性的强弱。 3.影响电磁铁磁性强弱的因素(控制变量法): ①电流大小; ②有无铁芯; ③线圈匝数的多少 结论(1):在电磁铁线圈匝数相同时,电流越大,电磁铁的磁性越强。 结论(2):电磁铁的磁性强弱跟有无铁芯有关,有铁芯的磁性越强。 结论(3):当通过电磁铁的电流相同时,电磁铁的线圈匝数越多,磁性越强。 4.电磁铁的优点 (1)电磁铁磁性有无,可由电流的有无来控制。(2)电磁铁磁性强弱,可由电流大小和线圈匝数的多少来控制。 (3)电磁铁的磁性可由电流方向来改变。 5.电磁铁的应用:电磁起重机、磁悬浮列车、电磁选矿机、电铃、电磁自动门等。 第一节磁现象 一、磁现象 1.磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性) 2.磁体:具有磁性的物体。 3.磁极:磁体上吸引能力最强的两部分叫磁极(磁体两端磁性最强,中间磁性最弱) 种类:能够自由转动的磁体,静止时指南的磁极叫做南极(S极),指北的磁极叫做北极(N极) 作用规律:同名磁极相互排斥,异名磁极相互吸引。 注:一个磁体分成多个部分后,每一个部分仍存在两个磁极 4.磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 二、磁场 1.定义:磁体周围存在着一种物质,能使磁针偏转,这种物质我们把他叫做磁场。 2.基本性质:磁场对放入其中的磁体有力的作用。 3.方向规定:在磁场中的某一点,小磁针静止时北极所指的方向(小磁针北极所受磁力的方向)就是该点的磁场方向。 4.磁感线 (1)定义:描述磁场的带箭头的假想曲线,任何一点的曲线方向都与放在该点的小磁针北极所指的方向一致。 (2)方向:磁体外部的磁感线都是从磁体的北极(N)出发,回到磁体的南极(S)。注: 1.磁感线是为了直观、形象的描述磁场而引入的带方向的曲线,不是客观存在的,但磁场客观存在。 2.磁感线立体的分布在磁体周围,而不是平面的;磁感线不相交;磁感线的疏密程度表示磁场的强弱。 5.磁场受力:在磁场中的某点,小磁针静止时,北极所受的磁力的方向与该点的磁场方向一致,南极所受磁力的方向与该点的磁场方向相反。 6.地磁场: (1)定义:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。 (2)磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。 (3)磁偏角:磁针所指的南北方向与地理的`南北方向略有偏移,这是由我国宋代学者沈括首先发现并记述的。 【方法】 1、注意区分带电性与磁性的不同:带电性是指具有吸引轻小物体的性质;磁性是指吸引铁、钴、镍等物质的性质。 2、判断有无磁性的方法。 (1)根据磁性的吸铁性判断:将被测物体靠近铁类物质,若能吸引铁类物质(如铁屑),说明物体具有磁性,否则没有磁性。 (2)根据磁体的指向性判断:让物体在水平面内自由转动,静止时若总指南北方向,说明该物体具有磁性,否则便没有磁性。 (3)根据磁极间的相互作用判断:将被测物体分别靠近静止的小磁针的两极,若发现有一端发生排斥现象,则说明该物体具有磁性。 (4)根据磁极的磁性判断:A,B两个外形相同的钢棒,已知其中一个具有磁性,另一个没有磁性。具体的区分方法:将A的一端从B的左端向右滑动,若发现吸引力的大小不变,则说明A具有磁性,否则A没有磁性。 第二节电生磁及其应用 一、电流的磁效应。 1.奥斯特实验证实电流周围存在磁场。 2.通电螺线管的磁场 (1)通电螺线管周围存在磁场,其磁感线与条形磁铁的磁感线形状相似。 (2)磁场方向与螺线管中的电流方向及导线的绕线方向有关。磁极方向和电流的关系可用右手安培定则判定:用右手握住螺线管,让四指指向螺线管中电流方向,则拇指所指的那端就是螺线管的北极。 3.电生磁的应用——电磁铁 (1)电磁铁:带有铁芯的螺线管,在有电流通过时有磁性,没有电流的时候就失去磁性。 特点:磁性有无由通断电来控制,磁性强弱由电流大小和线圈匝数来控制。 (2)电磁继电器:电磁继电器是由电磁铁控制的自动开关,是利用低电压、弱电流电路的通断,来间接控制高电压、强电流通断的装置,可以进行远距离操作和自动控制。 工作原理:通过通断电流控制电磁铁磁性有无来工作。 二、电动机 1.能量转化:电能转化为机械能 2.工作原理:利用通电导体在磁场中受力运动 3.换向器的作用:使电流始终从一个方向进入线圈 4.电动机转动方向的改变方法 (1)将外部电源的正负极对调; (2)将磁极(N、S)对调 第三节磁生电及其应用 1.发电机原理:法拉第电磁感应现象(闭合电路中的一部分导体在磁场中做切割磁感线运动而产生电流的现象) 2.感应电流:由电磁感应产生的电流就叫做感应电流 3.直流电与交流电 (1)直流电:电流的方向不变,叫做直流电。 (2)交流电:家庭电路中的电流是交流电。 【方法】 区别电动机与发电机: 看外电路是否有电源,有电源的是电动机,无电源的是发电机。 电与磁知识点总结 一、磁现象 1.磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)。 2.磁体:具有磁性的物质。分类:永磁体分为天然磁体、人造磁体。 3.磁极:磁体上磁性最强的部分叫磁极。(磁体两端最强中间最弱) 种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)。 作用规律:同名磁极相互排斥,异名磁极相互吸引。 说明:最早的指南针叫司南。一个永磁体分成多部分后,每一部分仍存在两个磁极。 4.磁化: ①定义:使原来没有磁性的物体获得磁性的过程。 磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。 ②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。 钢被磁化后,磁性能长期保持,称为硬磁性材料。所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。 5.物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。②根据磁体的指向性判断。③根据磁体相互作用规律判断。④根据磁极的磁性最强判断。 练习:☆磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。(填“软”和“硬”) 磁悬浮列车底部装有用超导体线圈饶制的电磁体,利用磁体之间的相互作用,使列车悬浮在轨道的上方以提高运行速度。 这种相互作用是指:同名磁极的相互排斥作用。 放在条形磁铁南极附近的一根铁棒被磁化后,靠近磁铁南极的一端是磁北极。 用磁铁的N极在钢针上沿同一方向摩擦几次钢针被磁化如图那么钢针的右端被磁化成S极。 二、磁场 1.定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。磁场看不见、摸不着我们可以根据它所产生的作用来认识它。这里使用的是转换法。通过电流的效应认识电流也运用了这种方法。 2.基本性质:磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。 3.方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。 4.磁感应线: ①定义:在磁场中画一些有方向的曲线。任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。 ②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。 ③典型磁感线: ④说明: A、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。但磁场客观存在。 B、用磁感线描述磁场的方法叫建立理想模型法。 C、磁感线是封闭的曲线。 D、磁感线立体的分布在磁体周围,而不是平面的。 E、磁感线不相交。 F、磁感线的疏密程度表示磁场的强弱。 5.磁极受力:在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。 6.分类: Ι、地磁场: 定义:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。 磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。 磁偏角:首先由我国宋代的沈括发现。 Ⅱ、电流的磁场: 奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。该现象在18被丹麦的物理学家奥斯特发现。该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。 通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。 ③应用:电磁铁 A、定义:内部插入铁芯的通电螺线管。 B、工作原理:电流的磁效应,通电螺线管插入铁芯后磁场大大增强。 C、优点:磁性有无由通断电来控制,磁极由电流方向来控制,磁性强弱由电流大小、线圈匝数、线圈形状来控制。 D、应用:电磁继电器、电话。 电磁继电器:实质由电磁铁控制的开关。应用:用低电压弱电流控制高电压强电流,进行远距离操作和自动控制。 电话:组成:话筒、听筒。基本工作原理:振动、变化的电流、振动。 三、电磁感应 1、通电导线的周围有磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。这一现象是由丹麦物理学家奥斯特在1820年发现的。 2、把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。通电螺线管的磁场相当于条形磁体的磁场。 3、通电螺线管的磁场方向与电流方向以及螺线管的绕线方向有关。磁场的强弱与电流强弱、线圈匝数、有无铁芯有关。 4、在通电螺线管里面加上一根铁芯,就成了一个电磁铁。可以制成电磁起重机、排水阀门等。 5、判断通电螺线管的磁场方向可以使用右手定则:将右手的四指顺着电流方向抓住螺线管,姆指所指的方向就是该螺线管的北极。 四、电磁继电器 扬声器 1、继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置。实质上它就是利用电磁铁来控制工作电路的一种开关。 2、电磁继电器由电磁铁、衔铁、簧片、触点组成;其工作电路由低压控制电路和高压工作电路两部分组成。 3、扬声器是把电信号转换成声信号的一种装置。它主要由固定的永久磁体、线圈和锥形纸盆构成。 电动机 1、通电导体在磁声中会受到力的作用。它的受力方向跟电流方向、磁感线方向有关。 2、电动机由两部分组成:能够转动的部分叫转子;固定不动的部分叫定子。 3、当直流电动机的线圈转动到平衡位置时,线圈就不再转动,只有改变线圈中的电流方向,线圈才能继续转动下去。这一功能是由换向器实现的。换向器是由一对半圆形铁片构成的,它通过与电刷的接触,在平衡位置时改变电流的方向。实际生活中电动机的电刷有很多对,而且会用电磁场来产生强磁场。 磁生电 1、在1831年由英国物理学家法拉第首先发现了利用磁场产生电流的条件和规律。当闭合电路的一部分在磁场中做切割磁感线运动时,电路中就会产生电流。这个现象叫电磁感应现象,产生的电流叫感应电流。 2、没有使用换向器的发电机,产生的电流,它的方向会周期性改变方向,这种电流叫交变电流,简称交流电。它每秒钟电流方向改变的次数叫频率,单位是赫兹,简称赫,符号为Hz。我国的交流电频率是50Hz。 3、使用了换向器的发电机,产生的电流,它的方向不变,这种电流叫直流电。(实质上和直流电动机的构造完全一样,只是直流发电机是磁生电,而直流电动机是电生磁) 4、实际生活中的大型发电机由于电压很高,电流很强,一般都采用线圈不动,磁极旋转的方式来发电,而且磁场是用电磁铁代替的。发电机发电的过程,实际上就是其它形式的能量转化为电能的过程。 高中圆知识点总结 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 圆周角定理推论: 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。 ①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。 ②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。 ③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。) ④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。 ⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ⑥在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。 圆周运动 1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。 2、描述匀速圆周运动快慢的'物理量 (1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上 **匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。 (2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的 (3)周期T,频率f=1/T (4)线速度、角速度及周期之间的关系: 3、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。 4、向心加速度:描述线速度变化快慢,方向与向心力的方向相同, 5,注意的结论: (1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。 (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。 (3)做匀速圆周运动的物体受到的合外力就是向心力。 6、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。 高中有机化学知识点总结 1.有机化合物的组成与结构: ⑴能根据有机化合物的元素含量、相对分子质量确定有机化合物的分子式。 ⑵了解常见有机化合物的结构。了解有机物分子中的官能团,能正确地表示它们的结构。 ⑶了解确定有机化合物结构的化学方法和某些物理方法。 ⑷了解有机化合物存在异构现象、能判断简单有机化合物的同分异构体(不包括手性异构体) ⑸能根据有机化合物命名规则命名简单的有机化合物。 ⑹能列举事实说明有机分子中基团之间存在相互影响。 2.烃及其衍生物的性质与应用 ⑴以烷、烯、炔和芳香烃的代表物为例,比较它们在组成、结构、性质上的差异。 ⑵了解天然气、石油液化气和汽油的主要成分及其应用。 ⑶举例说明烃类物质在有机合成和有机化工中的重要作用。 ⑷了解卤代烃、醇、酚、醛、羧酸、酯的典型代表物的级成和结构特点以及它们的相互联系。 ⑸了解加成反应、取代反应和消去反应。 ⑹结合实际了解某些有机化合物对健康可能产生影响,关注有机化合物的安全使用问题。 3.糖类、氨基酸和蛋白质 ⑴了解糖类的组成和性质特点,能举例说明糖类在食品加工和生物质能源开发上的应用。 ⑵了解氨基酸的组成、结构特点和主要化学性质,氨基酸与人体健康的关系。 ⑶了解蛋白质的组成、结构和性质。 ⑷了解化学科学在生命科学发展中所起的重要作用。 4.合成高分子化合物 ⑴了解合成高分子的组成与结构特点,能依据简单合成高分子的结构分析其链节和单体。 ⑵了解加聚反应和缩聚反应的特点。 ⑶了解新型高分子材料的性能及其在高新技术领域中的应用。 ⑷了解合成高分子化合物在发展经济、提高生活质量方面的贡献。 依据反应条件: ⑴能与NaOH反应的有:①卤代烃水解;②酯水解;③卤代烃醇溶液消去;④酸;⑤酚;⑥乙酸钠与NaOH制甲烷 ⑵浓H2SO4条件:①醇消去;②醇成醚;③苯硝化;④酯化反应 ⑶稀H2SO4条件:①酯水解;②糖类水解;③蛋白质水解 ⑷Ni,加热:适用于所有加氢的加成反应 ⑸Fe:苯环的卤代 ⑹光照:烷烃光卤代 ⑺醇、卤代烃消去的结构条件:β-C上有氢 ⑻醇氧化的结构条件:α-C上有氢 依据反应现象 ⑴水或溴的CCl4溶液褪色:C═C或C≡C; ⑵FeCl3溶液显紫色:酚; ⑶石蕊试液显红色:羧酸; ⑷Na反应产生H2:含羟基化合物(醇、酚或羧酸); ⑸Na2CO3或NaHCO3溶液反应产生CO2:羧酸; ⑹Na2CO3溶液反应但无CO2气体放出:酚; ⑺NaOH溶液反应:酚、羧酸、酯或卤代烃; ⑻生银镜反应或与新制的Cu(OH)2悬浊液共热产生红色沉淀:醛; ⑼常温下能溶解Cu(OH)2:羧酸; ⑽能氧化成羧酸的醇:含“─CH2OH”的结构(能氧化的醇,羟基相“连”的碳原子上含有氢原子;能发生消去反应的醇,羟基相“邻”的碳原子上含有氢原子); ⑾水解:酯、卤代烃、二糖和多糖、酰胺和蛋白质; ⑿既能氧化成羧酸又能还原成醇:醛; 高中导数知识点总结 导数的定义: 当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。 函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。 一般地,我们得出用函数的导数来判断函数的增减性(单调性)的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值 求导数的步骤: 求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)—f(x0) ② 求平均变化率 ③ 取极限,得导数。 导数公式: ① C'=0(C为常数函数); ② (x^n)'= nx^(n—1) (n∈Q*);熟记1/X的导数 ③ (sinx)' = cosx; (cosx)' = — sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 —(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanxsecx (cscx)'=—cotxcscx (arcsinx)'=1/(1—x^2)^1/2 (arccosx)'=—1/(1—x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=—1/(1+x^2) (arcsecx)'=1/(|x|(x^2—1)^1/2) (arccscx)'=—1/(|x|(x^2—1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=—hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=—1/(sinhx)^2=—(cschx)^2 (sechx)'=—tanhxsechx (cschx)'=—cothxcschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2—1)^1/2 (artanhx)'=1/(x^2—1) (|x|<1) (arcothx)'=1/(x^2—1) (|x|>1) (arsechx)'=1/(x(1—x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) ⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(—1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(—1) (1/x)'=—x^(—2) 导数的应用: 1.函数的单调性 (1)利用导数的符号判断函数的增减性 利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。 一般地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递减。 如果在某个区间内恒有f'(x)=0,则f(x)是常数函数。 注意:在某个区间内,f'(x)>0是f(x)在此区间上为增函数的`充分条件,而不是必要条件,如f(x)=x3在R内是增函数,但x=0时f'(x)=0。也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0。 (2)求函数单调区间的步骤(不要按图索骥 缘木求鱼 这样创新何言?1。定义最基础求法2。复合函数单调性) ①确定f(x)的定义域; ②求导数; ③由(或)解出相应的x的范围。当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数。 2.函数的极值 (1)函数的极值的判定 ①如果在两侧符号相同,则不是f(x)的极值点; ②如果在附近的左右侧符号不同,那么,是极大值或极小值。 3.求函数极值的步骤 ①确定函数的定义域; ②求导数; ③在定义域内求出所有的驻点与导数不存在的点,即求方程及的所有实根; ④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。 4.函数的最值 (1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念。 (2)求f(x)在[a,b]上的最大值与最小值的步骤 ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。 5.生活中的优化问题 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题。解决这些问题具有非常现实的意义。这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题。 (一)现实主义的创作方法 《氓》诗是诗人现实生活典型情绪的再现,诗人不自觉地运用了现实主义的创作方法,歌唱抒述自己悲惨的遭遇,起了反映、批判当时社会现实的作用。人们在流传中,把自己关于恋爱婚姻方面的感受,渗透到歌唱中去,故作品富于现实性。诗中女主人公所叙述的是自己的切身经历,自己的感受,都是真情实感。而这种真情实感在阶级社会中是带有普遍性、典型性的。诗人善于把握题材的各种复杂的矛盾。她抓住自己和氓的矛盾,氓是夫权的代理人,他们从夫妻关系而变为压迫与被压迫的关系,透露了男尊女卑、夫权制度的社会现实。 (二)比兴艺术手法 诗人是农村妇女,农村四周的自然景物,是她每天所接触的熟悉的,诗人触物联想,便歌唱起来。第三章的“桑之未落,其叶沃若,”是起兴,比喻年青貌美的少女初婚的幸福。第四章的“桑之落矣,其黄而陨,”也是起兴,比喻弃妇面容憔悴与被弃的痛苦。第三章的“吁嗟鸠兮,无食桑葚”,是对喻,喻下两句,“吁嗟女兮,无与士耽”。第六章的“淇则有岸,湿则有泮,”是反比,比氓的变心是无边无际不可捉摸的。这些,对于塑造形象,突出主题,加强诗的思想意义,都起了积极作用。 (三)对比的表现手法 这是由于现实矛盾在人们头脑中的反映。其形式有二:1.句法对比者,如“女也不爽,士贰其行”。“士之耽也,犹可说也;女子耽也,不可说也。”这是士和女两种不同人物的对比。“桑之未落”与“桑之落兮”的对比,“不见复关”与“既见复关”的对比,都是互相映衬,收到更好地塑造形象、抒发感情的效果。2.前后对比者,如氓在未婚前是“言笑晏晏,信誓旦旦”,在婚后则“言既遂矣,至于暴矣。”前后不同态度互相映衬,描绘出氓虚伪的本质。 (四)借代修辞 诗是形象思维,不是抽象的说教,要用具体的事物,抒写抽象的意境。形象的语言,容易引起读者想象、共鸣,增强诗的魅力。《氓》诗人用氓住的'地方“复关”代表氓,用“总角”代表幼年。以送行之远、乘垣望关表多情。以车来贿迁表同居,以“淇水汤汤,渐车帷裳”表大归。以“三岁”表多年,以“二三”表反复。这和《采薇》诗人用“杨柳依依”代春,“雨雪霜霏”代冬,性质是一样的。收到语言隽永,耐人寻味的效果。 (五)顶真修辞 陈望道《修辞学发凡》说:“顶真是用前一句的结尾来做后一句的起头,使邻接的句子头尾蝉联,而有上递下接趣味的一种修辞法。”这种修辞,多见于歌曲。这可能由于集体歌唱,口耳相传,此唱彼和,互相衔接,便于记诵所产生的一种句式。如“抱布贸丝,匪来贸丝”,“以望复关,不见复关”,“无与士耽,士之耽兮”,“及尔偕老,老使我怨”,“不思其反,反是不思”等,都是《氓》诗中的顶真句。蝉联词不一定都在句首,有的在句中,它们的作用是一样的,都是加强诗的音乐性。 (六)叹辞的应用 诗人抒发猛烈的感情或深沉的思想的时候,经常用一种呼声或感叹辞来表达。如当她追叙婚前恋爱生活的时候,感情比较稳定,没有使用叹辞。第三章转入抒情,感情激昂,连用两个“于嗟”(哎呀),三个“兮”(啊)字,两个“也”(呀)字。第四章对“桑落”有所感,用了一个“矣”字。第五章诉说被丈夫虐待,被兄弟讥笑,情绪最激动,连用六个“矣”字,借表她沉痛的心情和口气。最后一章对氓表示愤慨和决绝,加强了语气,拖长了音调,坚决地唱出“亦已焉哉”(也就算了吧)!焉哉二字连用,就象歌剧幕终,使人有余音袅袅,不绝如缕之感。 (七)呼告的表现手法 由于诗人感情的强烈,对所爱者或所憎者,虽不在面前,但觉得如在面前,向他陈诉或斥责,这就是呼告的特征。它在抒情诗中用得最普遍。《氓》诗第三章诗人叙述她的被弃,心情愤激,把个人的命运和当时一般女子的命运联系起来,仿佛有一群青年女子在她面前,她把自己的痛苦告诉她们,在恋爱过程中,要警惕男子将来会变心,自己将难摆脱祸害:“于嗟女兮,无与士耽!士之耽兮,犹可说也;女之耽兮,不可说也!”这几句呼告,唱出了对男女不平等社会现象的强烈悲愤。第六章又转为呼告的形式,“及尔偕老,老使我怨”,这时好象氓站在面前,斥责他的誓言是个欺骗。接着以少时两情融洽,言笑宴宴,信誓旦旦的情景,反衬氓今日的负心。悲愤之情,又达到了高潮。最后又高呼“不思其反,反是不思,亦已焉哉!”如果这里不用呼告手法向氓发出斥责,是不足以解恨的。 这首诗音调铿锵自然,富有真情实感。诗中用了不少“蚩蚩”、“涟涟”、“汤汤”、“晏晏”、“旦旦”等叠字形容词,它们不但起了摹声绘貌的作用,且加强了诗的音乐性。《诗经》民歌的章法,多半是叠章复唱的。由于《氓》诗人感情复杂,叙事曲折,故分章而不复唱,这在《国风》民歌中是少见的。 (八)古今异义 至于,古义:到;今义:达到某种高度 以为,古义:把......当作;今义:认为 泣涕,古义:眼泪;今义:眼泪和鼻涕 贿,古义:财物;今义:用财物贿赂 高中有机物知识点总结 狭义上的有机化合物主要是由碳元素、氢元素组成,以下是“高中有机物知识点总结”希望能够帮助的到您! 蛋白质 蛋白质的基本组成单位是氨基酸,生物体中组成蛋白质的氨基酸大约有20种,在结构上都符合结构通式。氨基酸分子间以肽键的方式互相结合。由两个氨基酸分子缩合而成的化合物称为二肽,由多个氨基酸分子缩合而成的化合物称为多肽,其通常呈链状结构,称为肽链。一个蛋白质分子可能含有一条或几条肽链,通过盘曲﹑折叠形成复杂(特定)的空间结构。蛋白质分子结构具有多样性的特点,其原因是:构成蛋白质的氨基酸种类不同、数目成百上千、氨基酸排列顺序千变万化、多肽链形成的空间结构千差万别。由于结构的多样性,蛋白质在功能上也具有多样性的特点,其功能主要如下:(1)结构蛋白,如肌肉、载体蛋白、血红蛋白;(2)信息传递,如胰岛素(3)免疫功能,如抗体;(4)大多数酶是蛋白质如胃蛋白酶(5)细胞识别,如细胞膜上的糖蛋白。总而言之,一切生命活动都离不开蛋白质,蛋白质是生命活动的主要承担者。 脱水缩合:一个氨基酸分子的氨基(-NH2)与另一个氨基酸分子的羧基(-COOH)相连接,同时失去一分子水。 有关计算: ① 肽键数 = 脱去水分子数 = 氨基酸数目 - 肽链数 ② 至少含有的羧基(-COOH)或氨基数(-NH2) = 肽链数 核酸 核酸是遗传信息的载体,是一切生物的遗传物质,对于生物体的遗传和变异、蛋白质的生物合成有极其重要作用。核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类,基本组成单位是核苷酸,由一分子含氮碱基﹑一分子五碳糖和一分子磷酸组成。组成核酸的碱基有5种,五碳糖有2种,核苷酸有8种。 脱氧核糖核酸简称DNA,主要存在于细胞核中,细胞质中的线粒体和叶绿体也是它的载体。 核糖核酸简称RNA,主要存在于细胞质中。对于有细胞结构(同时含DNA和RNA)的生物,其遗传物质就是DNA;没有细胞结构的病毒,有的遗传物质是DNA如:噬菌体等;有的遗传物质是RNA如:烟草花叶病毒、HIV等 细胞中的糖类和脂质 糖类分子都是由C、H、O三种元素组成。糖类是细胞的主要能源物质。 糖类可分为单糖、二糖和多糖等几类。单糖是不能再水解的`糖, 常见的有葡萄糖、果糖、半乳糖、核糖、脱氧核糖,其中葡萄糖 是细胞的重要能源物质,核糖和脱氧核糖一般不作为能源物质,它们是核酸的组成成分;二糖中蔗糖和麦芽糖是植物糖,乳糖、糖原是动物糖;多糖中糖原 是动物糖 ,淀粉和纤维素是植物糖 ,糖原和淀粉是细胞中重要的储能物质。 脂质主要是由C H O 3种化学元素组成,有些还含有P (如磷脂) 。脂质包括脂肪、磷脂、和固醇、。脂肪是生物体内的储能物质。 除此以外,脂肪还有保温、缓冲、减压的作用;磷脂是构成包括细胞膜在内的膜物质重要成分;固醇类物质主要包括胆固醇、性激素、维生素D等,这些物质对于生物体维持正常的生命活动,起着重要的调节作用。 多糖、蛋白质、核酸等都是生物大分子,组成它们的基本单位分别是单糖(葡萄糖)﹑氨基酸和核苷酸,这些基本单位称为单体,这些生物大分子就称为单体的多聚体,每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体 。 细胞内有机物质的鉴定 糖类中的还原糖(葡萄糖、果糖)能与斐林试剂发生作用,生成砖红色沉淀; 脂肪可以被苏丹Ⅳ染成橘黄色;蛋白质与双缩脲试剂发生作用,产生紫色反应。在还原糖的检测中,斐林试剂甲液和乙液应等量混合均匀后再使用,并且要水裕加热;在蛋白质的检测中,在组织样液中应先加入双缩脲试剂A液1ml,再加入双缩脲试剂B液4滴,不需加热。 甲基绿能使DNA呈现绿色,吡罗红能使RNA呈现红色,因此利用这两种染色剂将细胞染色,可以显示DNA和RNA在细胞中的分布。在此实验中,盐酸的作用是改变膜的通透性,加速色素进入细胞。用人的口腔上皮细胞做实验材料,此实验的步骤是制片、水解、冲洗涂片、染色、观察。 有机化合物知识点的分享已经结束,希望考生可以认真仔细的复习,发挥出自己的潜力。 磁场知识点总结高中 磁场 磁极和磁极之间的相互作用是通过磁场发生的。电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。电流和电流之间的相互作用也是通过磁场产生的。 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 磁现象的电本质 1罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3磁现象的电本质 运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。 磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 磁感线 1.磁感线的概念: 在磁场中画出一系列有方向的`曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点: (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 (2)磁感线是闭合曲线。 (3)磁感线不相交。 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线: (1)条形磁铁。 (2)通电直导线。 ①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向; ②其磁感线是内密外疏的同心圆。 (3)环形电流磁场: ①安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。 ②所有磁感线都通过内部,内密外疏。 (4)通电螺线管: ①安培定则:让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向; ②通电螺线管的磁场相当于条形磁铁的磁场。 磁感应强度 1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度l的乘积Il的比值叫做通电导线处的磁感应强度。 2.定义式:B=F/IL 3.单位:特斯拉(T),1T=1N/A.m 4.磁感应强度是矢量,其方向就是对应处磁场方向。 5.物理意义:磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电流强度的大小、导线的长短等因素无关。 6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的1m2面积上的磁感线条数跟那里的磁感应强度一致。 7.匀强磁场: (1)磁感应强度的大小和方向处处相等的磁场叫匀强磁场。 (2)匀强磁场的磁感线是均匀且平行的一组直线。 磁通量 1.定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量。 2.定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角) 3.单位:韦伯(Wb) 4.物理意义:表示穿过磁场中某个面的磁感线条数。 5.B=φ/S,所以磁感应强度也叫磁通密度。 安培力 1.定义:磁场对电流的作用力叫安培力。 2.安培力大小:安培力的大小等于电流I、导线长度L、磁感应强度B以及I和B间的夹角的正弦sinθ的乘积,即F=BIlsinθ。 注意:公式只适用于匀强磁场。 3.安培力的方向:安培力的方向可利用左手定则判断。 函数与导数 第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。 第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。 第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。 第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。 第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b) 第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。 第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。 第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。 >>>返回目录 高中数学的学习方法 首先,不要忽视课本。把高一高二的所有教学课本找出来,认认真真仔仔细细地把里面的知识点定理公理等等都看一遍,包括书上的证明也不要忽视。不是说看一遍就了事的,而是真正的去理解他。因为在你高一高二所有的月考,期中考,期末考,经历了这么多题海战术之后你要做的就是要回归课本。你会发现有些高考题,他是很巧妙的利用了书上一些简单的定义进行变换和引申得到的。所以当老师带着从头复习的时候,不要排斥,而是要回忆,消化,理解和掌握这些书本上的基础知识。 第二,要尝试着去掌握一些新的定理和法则。在高一高二的时候,老师可能会说这个公式不是大纲要求的,所以不必掌握。这是完全正确的,因为当时所有的知识都是新的,你在面对过多新知识的时候,很难消化和掌握。但是现在你已经掌握了很多知识的基础上,在去适当的结合自己的能力去了解一些考纲之外的,就更容易掌握了。比如洛必达法则,高中虽然不讲,但是在答大题的时候用起来很方便的一个法则。如果你掌握了,你就会比别人做的更好更快更准确。 第三,要注意数学思想和方法的总结。比如说画图的思想,转化的思想等等。这个操作起来还是比较容易的。就是在你每次做完题要注意看解析,看他是怎么分析试题的;老师讲课的时候是怎么讲解和归类的;甚至可以多问一下身边的同学是怎么做这道题的,来寻求一题多解,多思路,看有没有比你的方法更好的方法。良好的方法是成功的一半,掌握了正确的方法不仅省时更省力。 第四,计算能力的提高。讲真,我是没有这个毛病的。但是我身边的好多同学有这个问题,就是明明会做的题一定会算错。小题大题一张卷下来能扣出来10分。嘴上说着是粗心,但我认为不是。我觉得有两个原因,一个是知识掌握的不牢固,另一个是自身计算能力太差。这两点都是很致命的。计算能力的提高,会让正确率上升,会做的题会一次性做对。同时,也会节省出很多时间,去做其他的题。所以从一轮复习开始就要学会提升自己的计算能力,这样到最后才不会后悔 >>>返回目录 如何提升高中数学成绩 1.数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,比较自己的解题思路与教师所讲有哪些不同。先把基础吃透了,公式的推导过程是万变的根基,首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 2.要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,这是必要的,中学的题开型就那么些类型,一定要熟练掌握各种类型,主攻错题。 3.应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。 高中数学与初中数学最大的区别是概念多并且较抽象,学起来和以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。 4.数学的学习一点都不比熟悉电脑游戏难,但也不必像小学生那样搞“题海战术”,以“题海战术”这种方法只会使数学越学越糟。做过多的题会让人失去耐心,当做到真正重要的题目的时候反而容易混淆。当我们所学的概念在题目中出现时,那些与重要概念直接相关的题目就是重要的题目。 5.数学能力差,主要表现在对基本技能的理解、掌握和应用上.只有在巩固基础知识和掌握基本技能的前提下,才能进行综合能力的强化。因此,学习数学一定要在基础上下功夫,在数学的学习上不少学生会犯一个错误,因为大多老师和各种数学方法上都说要大量做题,其实它有个前提条件,做题是在三律吃透的前提下才有作用。 6.多从举一反三上下功夫,上课能听懂,作业能完成,就是成绩提不高.这是高中生共同的“心声...由于课堂信息容量小,知识单一,在老师的指导下,学生一般都能听懂,课后的练习多是直接应用概念套用算法,过程简单且技能技巧要求较低,还有受速度和时间等方面的影响,不大注重课后的理解掌握和能力提高,只想着多做题。因此,学习中要多分析基础类、综合类、方法类、变条件、变结论、变思想、变方法,并对其中具有代表性的问题进行详尽的剖析,做到触类旁通,这有利于提高高中生的学习数学成绩。 >>>返回目录 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。 3.常见函数的导数公式:①;②;③; ⑤;⑥;⑦;⑧。 4.导数的四则运算法则: 5.导数的应用: (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立。 (2)求极值的步骤: ①求导数; ②求方程的根; ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值; (3)求可导函数值与最小值的步骤: ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。 导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧! 导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0 一、求导数的方法 (1)基本求导公式 (2)导数的四则运算 (3)复合函数的导数 设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即 二、关于极限 .1.数列的极限: 粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如: 2函数的极限: 当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作 三、导数的概念 1、在处的导数. 2、在的导数. 3.函数在点处的导数的几何意义: 函数在点处的导数是曲线在处的切线的斜率, 即k=,相应的切线方程是 注:函数的导函数在时的函数值,就是在处的导数。 例、若=2,则=A-1B-2C1D 四、导数的综合运用 (一)曲线的切线 函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步: (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为_。 离骚高中知识点 1、掩涕:长太息以掩涕兮(掩面拭泪) 2、谇:謇(jiǎn)朝谇(suì)而夕替(谏争) 3、替:謇朝谇而夕替(废弃,贬斥) 4、虽:虽九死而未悔(纵然,即使) 5、众女:众女嫉余之蛾眉兮(喻指许多小人) 6、蛾眉:众女嫉余之蛾眉兮(喻指高尚德行) 7、遥诼:谣诼(zhuó)谓余以善淫(造谣,诽谤) 8、偭:偭(miǎn)规矩而改错(背向,引申为违背) 9、度:竞周容以为度(法度,准则) 10、溘:宁溘(kè)死以流亡兮(突然,忽然) 11、异道:夫熟异道而相安(不同道) 12、尤:忍尤而攘诟(罪过) 13、伏:伏清白以死直兮(守,保持) 14、相道:悔相道之不察兮(观察,选择道路) 15、及:及行迷之未远(趁着) 16、止息:驰椒丘且焉止息(停下来休息) 17、初服:退将复修吾初服(当初的衣服,比喻原先的志向) 18、岌岌:高余冠之岌岌兮(高耸的样子) 19、游目:忽反顾以游目兮(放眼观看) 20、缤纷:佩缤纷其繁饰兮(繁多) 21、未变:虽体解吾犹未变兮(不会改变) 读《离骚》有感 《离骚》为屈原所做,是一首比较长的诗歌,内容充满浪漫主义思想。它不止是一首辞藻华丽的诗歌也寄托了作者伟大的理想和抱负以及所带来的失落。屈原生平坎坷,被当时的楚怀王放逐到了南方的荒僻地区,受尽折磨,但诗人佩戴香草的高尚品德却没有被玷污,这与他本人的努力克制是分不开的。端午节就是为了纪念他而被人们记住。穿越时空的距离一直到了现代,可想而知这是一种多么高尚的情操啊!人才的变质,楚怀王的昏庸是屈原悲剧的原因,是社会的不公,今天读《离骚》还是会为屈原的那种爱国精神所感动,就是因为时代的主题无论发生什么都是不会变的,他教育我们尽管被人遗弃也不能忘记自己的祖国和人民,这是对理想的不懈追求,是人格的升华,相信自己的志向终会被人们所理解。 文学的魅力是无限的,它是历代人们的结晶,不止是《离骚》能带给我们精神的愉悦,其他的优秀的作品也是如此,古代的优秀作品极多,需要我们去认真地学习,而不只是只了解现代,忽略历史,否则就会失去人类世界的宝贵文化遗产,这是一种深深的遗憾,也是中国五千年历史的遗憾。 《离骚》全诗的主题思想 即通过诗人为崇高理想而奋斗终生的描写,强烈地抒发了他遭谗被害的苦闷和矛盾的心情,表现了他为国献身的精神,和与国家同休戚、共存亡的深挚的爱国主义和同情人民的感情,表现了诗人勇于追求真理和光明,坚持正义和理想的不屈不挠的斗争精神。 化学是一门以实验为主的科目。下面是为您整理的高中化学无机化学部分知识点梳理,希望对各位有所帮助。 生成氧气的反应 1、氯酸钾热分解(二氧化锰催化)2、高锰酸钾热分解3、过氧化氢分解(二氧化锰催化)4、电解水5、氧化汞热分解6、浓硝酸分解7、次氯酸分解光、8、氟与水置换反应9、过氧化钠与水反应10、过氧化钠与二氧化碳反应11、光合作用以上1~3适合实验室制取氧气,但一般所谓“实验室制取氧气”是指1、2两种方法。工业用氧气主要来自分离液态空气。 生成氢气反应 1、锌、镁、铁等金属与非氧化性酸反应2、铝与氢氧化钠溶液反应3、硅与氢氧化钠溶液反应4、钠、镁、铁等金属在一定的温度下与水反应5、钠钾、镁、铝、与醇类反应6、苯酚与钠反应7、焦碳与水高温反应8、一氧化碳与水催化反应9、碘化氢热分解10、硫化氢热分解11、电解水12、甲烷高温分解 氯气的反应 1、氯气与大多数金属反应。与铁、铜等变价金属反应时,生成高价氯化物、2、氯气与磷反应3Cl2+2P==2PCl3PCl3+Cl2==PCl5白色烟雾;哪种生成物制敌百虫?、3、氯气与氢气反应纯净氢气在氯气中燃烧;混合气爆炸;卤素的活泼程度比较、4、氯气与水反应跟其它卤素比较:氟的特殊性;溴,碘与水反应的程度、5、氯气与氢氧化钠溶液反应用氢氧化钠溶液吸收残余氯气、6、氯气与氢氧化钙反应制漂白粉、7、氯气与溴化钠溶液反应8、氯气与碘化钾溶液反应卤素相互置换的规律如何?氟置换其它卤素有何特殊?、9、氯气与甲烷取代反应条件?、10、氯气与乙烯的反应反应类别?、乙烯通入溴水使溴水褪色、11、氯气与苯的取代反应条件?、12、氯气与氯化亚铁溶液反应13、*氯气与硫化氢溶液反应现象?、14、*氯气与二氧化硫溶液反应溶液酸性变化?漂白作用的变化?、15、氯气的检验方法---淀粉碘化钾试纸单质碘的检验方法如何?、 氯化氢、盐酸、卤化物 1、浓盐酸被二氧化锰氧化实验室制氯气、2、氯化钠与浓硫酸反应用于实验室制氯化氢;温度的影响;溴化氢及碘化氢制取的不同点、3、盐酸、氯化钠等分别与硝酸银溶液的反应盐酸及氯化物溶液的检验;溴化物、碘化物的检验、4、盐酸与碱反应5、盐酸与碱性氧化物反应6、盐酸与锌等活泼金属反应7、盐酸与弱酸盐如碳酸钠、硫化亚铁反应8、盐酸与苯酚钠溶液反应9、稀盐酸与漂白粉反应10、氯化氢与乙烯加成反应11、氯化氢与乙炔加成反应制聚氯乙烯、12、浓盐酸与乙醇取代反应13、漂白粉与空气中的二氧化碳反应14、HF,HCl,HBr,HI酸性的比较15、HF对玻璃的特殊作用,如何保存氢氟酸?17、用于人工降雨的物质有哪些?18、氟化钠在农业上有何用途? 氯水性质的多重性 一、氯水的多重性质1、Cl2的强氧化性2、次氯酸的强氧化性3、次氯酸的不稳定性4、盐酸的酸性,次氯酸的酸性 二、氯水反应时反应物的处理。 1、作氧化剂时,如果Cl2能发生反应则主要是Cl2反应,氯气不能发生的反应则认为是次氯酸的作用。A、氯水与碘化钾、溴化钠、硫化钠等溶液反应是Cl2反应B、氯水与氯化亚铁反应是Cl2的反应C、氯水与SO2溶液反应是Cl2的作用D、氯水的漂白作用是次氯酸的作用。 2、氯水中加AgNO3是盐酸的作用即Cl-、的作用。3、氯水与强碱足量、反应时,盐酸和次氯酸共同作用生成氯化物和次氯酸盐 无机化学实验现象: 1、铝片与盐酸反应是放热的,Ba(OH)2与NH4Cl反应是吸热的; 2、Na与H2O(放有酚酞)反应,熔化、浮于水面、转动、有气体放出;(熔、浮、游、嘶、红) 3、焰色反应:Na 黄色、K紫色(透过蓝色的钴玻璃)、Cu 绿色、Ca砖红、Na+(黄色)、K+(紫色)。 4、Cu丝在Cl2中燃烧产生棕色的烟; 5、H2在Cl2中燃烧是苍白色的火焰; 无机化学实验现象: 6、Na在Cl2中燃烧产生大量的白烟; 7、P在Cl2中燃烧产生大量的白色烟雾; 8、SO2通入品红溶液先褪色,加热后恢复原色; 9、NH3与HCl相遇产生大量的白烟; 10、铝箔在氧气中激烈燃烧产生刺眼的白光; 无机化学实验现象: 11、镁条在空气中燃烧产生刺眼白光,在CO2中燃烧生成白色粉末(MgO),产生黑烟; 12、铁丝在Cl2中燃烧,产生棕色的烟; 13、HF腐蚀玻璃:4HF + SiO2= SiF4+2H2O 14、Fe(OH)2在空气中被氧化:由白色变为灰绿最后变为红褐色; 15、在常温下:Fe、Al 在浓H2SO4和浓HNO3中钝化; 无机化学实验现象: 16、向盛有苯酚溶液的试管中滴入FeCl3溶液,溶液呈紫色;苯酚遇空气呈粉红色。 17、蛋白质遇浓HNO3变黄,被灼烧时有烧焦羽毛气味; 18、在空气中燃烧:S——微弱的淡蓝色火焰 H2——淡蓝色火焰H2S——淡蓝色火焰 CO——蓝色火焰 CH4——明亮并呈蓝色的火焰S在O2中燃烧——明亮的蓝紫色火焰。 19.特征反应现象: 20.浅黄色固体:S或Na2O2或AgBr 无机化学实验现象: 21.使品红溶液褪色的气体:SO2(加热后又恢复红色)、Cl2(加热后不恢复红色) 22.有色溶液:Fe2+(浅绿色)、Fe3+(黄色)、Cu2+(蓝色)、MnO4-(紫色)有色固体:红色(Cu、Cu2O、Fe2O3)、红褐色[Fe(OH)3] 蓝色[Cu(OH)2]黑色(CuO、FeO、FeS、CuS、Ag2S、PbS) 黄色(AgI、Ag3PO4) 白色[Fe(0H)2、CaCO3、BaSO4、AgCl、BaSO3]有色气体:Cl2(黄绿色)、NO2(红棕色) 【高中电的知识点总结】相关文章: 1.电与磁知识点总结 8.数电知识点整理篇2:高中电学知识点总结
篇3:高中原电池知识点总结
篇4:高中电学知识点总结
篇5:高中电磁学知识点总结
篇6:电和磁知识点总结
篇7:电生磁知识点总结
篇8:电与磁知识点总结
篇9:高中圆知识点总结
篇10:高中有机化学知识点总结
篇11:高中导数知识点总结
篇12:高中氓知识点总结
篇13:高中有机物知识点总结
篇14:磁场知识点总结高中
篇15:高中导数知识点总结
篇16:高中导数知识点总结
篇17:离骚高中知识点总结
篇18:高中无机化学知识点总结






文档为doc格式