欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>高中数学《与函数概念》教学设计

高中数学《与函数概念》教学设计

2022-08-19 08:25:59 收藏本文 下载本文

“梨山共椒”通过精心收集,向本站投稿了17篇高中数学《与函数概念》教学设计,下面是小编精心整理后的高中数学《与函数概念》教学设计,希望能够帮助到大家。

高中数学《与函数概念》教学设计

篇1: 高中数学《与函数概念》教学设计

高中数学《集合与函数概念》教学设计

一、教材分析

集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.

函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.

二、学情分析

1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.

2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.

3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.

三、设计思路

本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.

四、教学目标分析

(一)知识与技能

1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.

A:能从集合间的运算分析出集合的基本关系.B:对于分类讨论问题,能区分取交还是取并.

2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.

A:会用定义证明函数的单调性、奇偶性.B:会分析函数的单调性、奇偶性、对称性的关系.

(二)过程与方法

1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的.内容网络化、系统化.

2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.

(三)情感态度与价值观

在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.

五、重难点分析

重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.

难点:含参问题的讨论,函数性质之间的关系.

六、知识梳理(约10分钟)

提出问题

问题1:把本章的知识结构用框图形式表示出来.

问题2:一个集合中的元素应当是确定的、互异的、无序的,你能结合具体实例说明集合的这些基本要求吗?

问题3:类比两个数的关系,思考两个集合之间的基本关系.类比两个数的运算,思考两个集合之间的基本运算,交、并、补.

问题4:通过本章学习,你对函数概念有什么新的认识和体会吗?

请结合具体实例分析,表示函数的三种方法,每一种方法的特点.

问题5:分析研究函数的方向,它们之间的联系.

在前一次晚自习上,学生相互展示自己的结果,通过相互讨论,每组提供最佳的方案.在自己的原有方案的基础上进行补充与完善.

学生回答问题要点预设如下:

1.集合语言可以简洁准确表达数学内容.

2.运用集合与对应进一步描述了函数的概念,与初中的函数的定义比较,突出了函数的本质函数是描述变量之间依赖关系的重要数学模型.

3.函数的表示方法主要有三种,这三种表示方法有各自的适用范围,要根据具体情况选用.

4.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法.

设计意图:通过布置任务,让学生充分的认识自己在学习的过程中,哪些知识学习的不透彻.让学生更有针对的进行复习,让复习进行的更有效.让学生体会到知识的横向联系与纵向联系.通过类比初中与高中两种函数的定义,让学生体会到两种函数的定义本质是一样的.

篇2:高中数学概念教学设计

一、问题导入,引发探究

师:我在旅游时买回来一种磁性蛇蛋玩具(如图),所谓生活处处皆学问嘛,我把它运动过程中的轴截面用图形计算器做出了以下有趣的现象:

两个全等的椭圆形卵,相互依偎旋转(动画)。你能通过所学解析几何知识,构造出这种有趣的现象吗?

二、实验探究,交流发现

探究1:卵之由来——椭圆的形成

(1)单个定椭圆的形成

椭圆的定义:平面内到两定点、的距离之和等于常数(大于)的点的轨迹叫做椭圆。(即若平面内的动点到两定点、的距离之和等于常数(大于),则点的轨迹为以、为焦点的椭圆。)

思考1:如何使为定值?

(不妨将两条线段的长度和转化为一条线段,即在线段的延长线上取点,使得,此时,为定值则可转化为为定值。)

思考2:若为定值,则点的轨迹是什么?定点与点轨迹的位置关系?

(以定点为圆心,为半径的圆。由于>,则点在圆内。)

思考3:如何确定点的位置,使得,且?

(线段的中垂线与线段的交点为点。)

揭示思路来源:(高中数学选修2-1P497)如图,圆的半径为定长,是圆内一个定点,是圆上任意一点,线段的垂直平分线l和半径相交于点,当点在圆上运动时,点的轨迹是什么?为什么?

(设圆的半径为,由椭圆定义,(常数),且,所以当点在圆周上运动时,点的轨迹是以为焦点的椭圆。)

图形计算器作图验证:以圆与定点所在直线为轴,中垂线为轴建立直角坐标系,设圆半径,,即圆,点,则点轨迹是以以为焦点的椭圆,椭圆方程为。

(2)单个动椭圆的形成

思考4:构造一种动椭圆的方式

(由于椭圆形状不变,即离心率不变,而长轴长为定值,则也要为定值,因此可将圆内点取在圆的同心圆上,当点在圆上动时,即可得到动椭圆。)

图形计算器作图验证:当圆内动点取在圆的同心圆上,运动点,即得到动椭圆。

(3)两个椭圆的形成

观察两个椭圆相互依偎旋转的几个画面,分析两椭圆的位置关系。判断两个椭圆关于对称轴对称,且直线过两椭圆公共点,所以直线为两椭圆的公切线。

因而找到公切线,作椭圆关于切线的对称椭圆即可。

探究2:卵之所依——切线的判断与证明

线段的垂直平分线与椭圆的位置关系

(1)利用图形计算器中的“图象分析”工具直观判断与椭圆的位置关系.设圆上动点,则线段的中垂线的方程为,将动点的横坐标保存为变量,纵坐标保存为变量,随着点的改变,在Graphs中画出相应的动直线.用图形计算器中的“图象分析”工具找出椭圆所在区域内的直线与椭圆的交点,拖动点,动态观测交点个数的变化,发现无论点在何处,动直线与椭圆只有一个交点,因此判断直线与椭圆相切,并可求出该切点的坐标.也可以将椭圆方程与直线方程联立,用“代数”工具中的solve求出方程组的解,从而判断根的情况.

(2)证明椭圆与直线相切.

不妨设直线:,其中,,与椭圆方程联立,得,因此

将,,代入上式,用“代数”工具中的expand()化简式子,得,所以椭圆与直线相切,切点为.

(3)证明由任意圆上的动点和圆内一点确定的椭圆与线段中垂线均相切(反证法)

因为椭圆是点的轨迹,而点是直线与线段中垂线的交点,所以点既在椭圆上,也在直线上。因此,直线与椭圆至少有一个公共点,即直线与椭圆相切或相交。

假设直线与椭圆相交,设另一个交点为(与不重合).因为,所以;又因为,

所以为定值,而,矛盾.因此直线与椭圆相切。

探究3:两卵相依——对称旋转椭圆的形成与动画

当圆内动点取在圆的同心圆上,作椭圆关于切线的对称椭圆,运动点,隐藏相关坐标系与辅助圆等图形,呈现两卵相互依偎旋转的有趣效果。

改变一些问题条件,进行深入探究与发现。

探究4:改变点位置,探究点轨迹

(1)曲线判断:利用TI图形计算器作图分析,拖动点,当点在定圆内且不与圆心重合时,交点的轨迹是椭圆;当点在定圆外时,则,交点的轨迹是双曲线;当点与圆心重合时,点的轨迹是圆的同心圆;当点在圆周上时,点的轨迹是是一点(圆心).

(2)方程证明:圆,设点,可解得点的轨迹方程为

当或时,点的轨迹为圆心;

当且时,点的轨迹方程为

当时,点的轨迹为圆:;

当且时,点的轨迹为椭圆;

当或时,点的轨迹为双曲线。

探究5:改变切线位置,探究由切线得到的包络图形

查阅有关参考书籍,了解圆锥曲线的包络线,并利用图形计算器作出椭圆、双曲线的包络图形,自主探究抛物线的包络线(将定圆改为定直线)。

结论:所谓包络图,就是指有一条曲线按照一定运动规律运动,保留其所有瞬间位置的影像,会有一条曲线能够和该运动曲线所有位置相切,这条曲线就成为该运动曲线的包络线。

探究6:拓展延伸:椭圆切线的几个性质及其应用

性质1:是椭圆的两个焦点,若点是椭圆上异于长轴两端点的任一点,则点的切线平分的外角。

性质1′:点处的法线(过点且垂直于切线)平分。(即为椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上。)

课后探究:阅读数学选修2-1P75阅读与思考——圆锥曲线的光学性质及其应用,了解双曲线、抛物线的光学性质。

练习1:已知为椭圆的左、右焦点,点为椭圆上任一点,过焦点向作垂线,垂足为,则点的轨迹是_____________,轨迹方程是_______________。

解:(1)直观判断:作轨迹

(2)严谨证明:圆的定义

由此得到:

性质2:是椭圆的两个焦点,是长轴的两个端点,过椭圆上异于的任一点的切线,过做切线的垂线,垂足分别为,则在以长轴为直径的圆上。

练习2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线与椭圆相切与点,且到的垂线长分别为,求证:为定值。

解:(1)直观判断:作图

(2)严谨证明:利用性质2及圆的相交弦性质,

由此得到:

性质3:已知椭圆为,则焦点到椭圆任一切线的垂线长乘积等于。

课后探究2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线过点,且到的垂线长分别为,则

①当时,直线与椭圆的位置关系;(相交)

②当时,直线与椭圆的位置关系。(相离)

(类比直线与圆位置关系的几何法,此为直线与椭圆位置关系的几何法)

课后探究:双曲线、抛物线的切线是否有类似性质?

篇3:高中数学概念教学设计

一、学习目标与任务

1、学习目标描述

知识目标

(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

能力目标

(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

(B)通过知识的再现培养学生的创新能力和创新意识。

(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

德育目标

让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

2、学习内容与学习任务说明

本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

学习重点:圆锥曲线的第一定义和统一定义。

学习难点:圆锥曲线第一定义和统一定义的应用。

明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

二、学习者特征分析

(说明学生的学习特点、学习习惯、学习交往特点等)

l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在

l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

三、学习环境选择与学习资源设计

1.学习环境选择(打√)

(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)

(6)其它

2、学习资源类型(打√)

(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库

(5)案例库(6)题库(7)网络课程(8)其它

3、学习资源内容简要说明

(说明名称、网址、主要内容等)

篇4:《函数的概念》教学设计

《函数的概念》教学设计

教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

教学目的.:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学过程:

一、引入课题

1. 复习初中所学函数的概念,强调函数的模型化思想;

2. 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

备用实例:

我国20xx年4月份非典疫情统计:

篇5:高中函数概念教学设计

一、内容和内容解析

1.内容

函数的概念.

2.内容解析

函数是现代数学最基本的概念,是描述客观世界中变量关系和规律的最为基本的数学语言和工具.在高中阶段,函数不仅贯穿数学课程的始终,而且也是学习方程、不等式、数列、导数等内容的工具和基础,在物理、化学、生物等其它学科中也有广泛应用;在高等数学中,函数是基本数学对象;在实际应用中,函数是数学建模的重要基础.

学生在初中学习了函数概念.函数定义采用“变量说”.高中阶段要建立函数的“对应关系说”,它比“变量说”更具一般性.与初中的“变量说”相比,高中用集合语言与对应关系表述函数概念;明确了定义域、值域;引入抽象符号f(x).

函数概念的核心是“对应关系”:两个非空数集A,B间有一种确定的对应关系f.即对于数集A中每一个x,数集B中都有唯一确定的y和它对应.这里的关键词是“每一个”,“唯一确定”.集合A,B及对应关系f是一个整体,是两个集合的元素间的一种对应关系,这种“整体观”很重要.

基于以上分析,确定本节课的教学重点:用集合语言与对应关系建立函数概念.

二、目标和目标解析

1.目标

(1)建立“对应关系说”观点下用集合语言表述的函数概念.

(2)理解 的含义,能用函数的定义刻画简单具体的函数.

(3)在具体函数实例到一般函数概念的概括过程中,培养学生的数学抽象素养.

2.目标解析

达成上述目标的标志是:

(1)学生从具体实例出发,能在初中“变量说”的基础上,进一步抽象对应关系、定义域与值域等三个要素,构建函数的一般概念.

(2)学生能在确定变量变化范围的基础上,通过解析式、图象、表格等形式表示对应关系,理解函数对应关系的本质,体会引入符号f表示对应关系的必要性.

(3)学生能在不同实例的比较、分析基础上,归纳共性进而抽象出函数概念,体验用数学的眼光看待事物,发展数学抽象素养.

三、教学问题诊断分析

学生在初中学习函数概念时,没有涉及自变量与函数值的取值范围,也不知道为何要研究变量的取值范围,这是教学中首先遇到的问题.教学中应结合教科书实例1与实例2的分析、比较,让学生认识到研究自变量、函数值取值范围的必要性.

如何认识函数的对应关系,就成为了第二个教学问题.教学中,要让学生通过四个实例建立解析式、图象、表格与函数对应关系的联系,通过具体的解析式、图象与表格去体会变量之间如何对应,由此抽象出函数的对应关系f的本质.

在对四个实例分析的基础上,学生认识到了函数自变量的取值范围、函数值的取值范围及对应关系对于函数的重要性,但如何在此基础上让学生进行归纳,抽象出函数概念,并以此培养学生数学抽象素养,成为第三个教学问题,也是本节课的教学难点.教学中可以将四个实例各自得到的三个要素表格化,让学生从表格中抽象出函数要素及其表示,并在此基础上给出一般的函数概念.

在得出函数概念后,如何用新的函数概念重新认识已经学习过的函数,建立知识之间的联系,是第四个教学问题.教学中,除让学生按函数定义,仿照四个实例的分析去具体表述一次函数、二次函数、反比例函数外,还必须重视让学生采用教科书中的练习题与习题进行练习,也可以根据学生的学习状态适当增加一些问题供他们练习.

四、教学支持条件分析

本节课的教学重点是认识函数要素并建立函数概念,会涉及函数值的计算、图象的运用及分析所得信息的综合,因此可以借助于信息技术解决以上问题,以让学生有更多的时间用于观察与思考函数的基本要素和概念的抽象上.

五、教学过程设计

引导语:在初中我们已经接触过函数的概念,知道函数是刻画变量之间对应关系的数学模型和工具. 例如,正方形的周长l与边长x的对应关系是l=4x,而且对于每一个确定的x都有唯一的l与之对应,所以l是x的函数.这个函数与正比例函数y=4x相同吗?又如,你能用已有的函数知识判断y=x与

是否相同吗?要解决这些问题,就需要进一步学习函数概念.

(一)函数概念的抽象

问题1:请同学们根据如下情境回答问题:

某“复兴号”高速列车加速到350 kmMh后保持匀速运行半小时.

(1)这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系如何表示?这是一个函数吗?为什么?

(2)如果有人说:“根据对应关系S=350 t,这趟列车加速到350 kmMh后,运行1 h就前进了350 km.”你认为这个说法正确吗?

(3)你认为如何表述S与t的对应关系才是精确的?

师生活动:教师给出问题后让学生先独立思考并写出回答要点,再小组交流,并提醒学生先不要看教科书.

让学生分组收集并归纳问题的回答要点,并将要点反馈给教师(有条件的学校可以利用信息技术平台收集与呈现学生的回答要点),教师在全班交流的基础上进行适当点评.

学生对问题(3)可能会有困难,教师可以在学生回答的基础上给出精确表述的示范.

设计意图:问题(1)是为了让学生回顾初中所学函数概念,用“是否满足定义要求”来回答问题;问题(2)是要激发认知冲突,发现其中的不严谨;问题(3)是为了让学生关注到t的变化范围,并尝试用精确的语言表述.

问题2:某电气维修公司要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么:

(1)你认为该怎样确定一个工人每周的工资?

(2)一个工人的工资w(单位:元)是他工作天数d的函数吗?

(3)你能仿照问题1中对S与t的.对应关系的精确表示,给出这个问题中w与d的对应关系的精确表示吗?

追问:问题1和2中的函数对应关系相同,你认为它们是同一个函数吗?为什么?

师生活动:学生阅读题目后,自主回答.

设计意图:问题(1)是引导学生使用不同方法,例如表格的形式:

解析式w=350d;等等.

问题(3)是让学生模仿问题1的方法给出描述,既让他们熟悉表述方法,同时训练抽象概括能力.

通过追问,使学生进一步关注到定义域、值域问题.

问题3:如图所示是北京市11月23日的空气质量指数(Air Quality Index,简称AQI)变化图.

(1)如何根据该图确定这一天内任一时刻t的空气质量指数(AQI)的值I?

(2)你认为这里的I是t的函数吗?如果是,你能仿照前面的方法描述I与t的对应关系吗?

师生活动:教师用PPT或其他方式呈现问题3,给学生适当时间阅读思考.

有些学生可能认为I不是时间t的函数,对此可进行如下追问.

追问:(1)你能根据图3.1-1找到中午12时的AQI的值吗?这个值是否唯一存在?

(2)对于数集A3={t|0≤t≤24}中的任意一个值t,你会用什么方法寻找此时对应的I值?

在追问的基础上,教师阐释:因为对于数集A3={t|0≤t≤24}中的任意一个值t,都有唯一确定的AQI的值与之对应,所以我们可以根据初中所学的函数定义,得出I是t的函数,而且还可以断定I的取值范围也是确定的,不过从图中我们不能确定这个范围.如果我们设I的取值范围为C,那么从图中可以确定,

对于数集A3中的任一时刻t,按照图3.1-1中曲线所给定的对应关系,在数集B3中都有唯一确定的AQI的值I与之对应,因此I是t的函数.

设计意图:学生根据图象描述对应关系有困难,特别是在值域不能完全确定时,通过引入一个较大范围的集合,使函数值“落入其中”,这是学生经验中不具备的.实际上,如果用映射的观点看,这时的映射就是非满射.为此,在问题(1)之后,先让学生认可图象表示一个函数,然后再通过教师讲解,给出对应关系的描述方法,从而化解难点.这里,只要学生能够理解I是t的函数,并能够接受这种描述方式就可以了.

(1)你认为按表3.1-1给出的对应关系,恩格尔系数r是年份y的函数吗?为什么?

(2)如果是,你能仿照前面的说法给出精确的语言刻画吗?

(3)如果我们引入B4={ r|0≤r≤1},将对应关系表述为“对于任意一个年份y,都有B4中唯一确定的r与之对应”,你认为有道理吗?

师生活动:教师用PPT呈现上述内容和问题,学生思考后,通过信息技术平台或其它方式对“恩格尔系数r是年份y的函数吗?”进行“是”与“不是”的选择性投票,教师根据投票情况进行点评,从而解决问题(1).

让学生不看教科书,分组练习用集合与对应的语言刻画函数,并让学生代表发言,教师给予点评,从而解决问题(2).

学生给出的函数值取值范围可能是表中r的10个值,教师在肯定的基础上进行引导:根据恩格尔系数的定义,r的取值范围是B4={ r|0≤r≤1},以B4为年份与所对应的r值所在的集合更具有一般性.

设计意图:与问题3的情况类似,学生对用表格表示的对应关系是否为函数关系的判断存在疑惑,通过问题引导学生思考,教师再作适当讲解,从而使学生接受之.另外,对于函数值所在的集合B4的合理性,以教师从恩格尔系数的定义的角度进行解释即可.

问题5:上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数的本质特征吗?

师生活动:给学生充分思考的时间,引导学生重新回顾用集合语言与对应关系刻画函数的过程.如果学生归纳、概括有困难,可以给出下表帮助学生思考:

教师引导学生得出:

(Ⅰ)都包含两个非空数集,用A,B来表示;

(Ⅱ)都有一个对应关系;

(Ⅲ)尽管对应关系的表示方法不同,但它们都有如下特性:对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确定的数y和它对应.

在上述归纳的基础上,教师讲解:事实上,除解析式、图象、表格外,还有其他表示对应关系的方法.为了表示方便,我们引进符号f统一表示对应关系.然后给出函数的一般性定义,并解释函数的记号y=f(x),x∈A.

设计意图:让学生通过归纳四个实例中函数的共同特征,体会数学抽象过程,概括出用集合与对应语言刻画的一般性函数概念.在此过程中,要突破“如何在四个实例基础上让学生进行归纳、概括、抽象出函数概念,并以此培养学生数学抽象素养”这一难点,突出“在学生初中已有函数认识基础上,通过实例归纳概括出函数的基本特征(要素),用集合与对应的语言建立函数的概念”这一教学重点.

(二)函数概念的初步应用

问题6:如果让你用函数的定义重新认识一次函数、二次函数与反比例函数,那么你会怎样表述这些函数?

师生活动:在学生思考后,教师用一次函数与二次函数进行示范,学生用反比例函数进行练习.

学生完成教科书中的练习第1题~第3题,教师对学生的练习进行点评.

设计意图:用函数定义重新认识已学函数,加深对函数定义的理解,进一步体会定义域、对应关系与值域是函数的三个要素.

问题7:你能构建一个问题情境,使其中函数的对应关系为y=x(10-x)吗?

师生活动:在学生思考后,教师以例1进行示范.

如果学生学习基础好,可以让他们完成教科书例1后的探究:“构建其它问题情景,并用解析式y=x(10-x)描述其中的变量关系”;对学习基础一般的同学,要求他们完成教科书练习第4题.

设计意图:让学生在完成例1的过程中,进一步体会函数模型应用的广泛性,加深对函数概念的理解.

(三)课堂小结、布置作业

教师引导学生回顾本节课的学习内容,并引导学生回答下列问题:

(1)什么是函数?其三要素是什么?

(2)对于对应关系f,你有哪些认识?

(3)与初中学习过的函数概念相比,你对函数又有什么新的认识?

(4)本节课我们是怎样得到函数概念的?结合本节课的学习,你对如何学习数学又有什么体会?

师生活动:教师出示问题后,先由学生思考后再进行全班交流,最后教师再进行总结.要强调如下几点:

(1)函数的定义是判断一个对应关系是不是函数的标准;

(2)要通过具体例子理解函数的对应关系f的特征,特别是对于“A中任意一个数”“B中都有唯一确定的数”等关键词的含义要认真体会;

(3)对应关系f的表示形式可以是解析式、图象、表格等多种形式,但它们的实质相同,在后续的学习中要注意积累用适当的方式表示函数的经验;等等.

设计意图:引导学生从函数概念的内涵、要素的归纳过程、关键词的理解等角度进行小结,进一步加深对函数概念的理解.

布置作业:教科书习题3.1第1,11,14题.

六、目标检测设计

1.近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图中的曲线显示了南极上空臭氧层空洞的面积从1979~的变化情况.

(1)臭氧层空洞的面积是时间的函数,这个函数的对应关系是

(2)上述函数的定义域是______________

值域是__________

设计意图:考查学生对函数三个要素的认识,巩固函数概念.

2.习题3.1第8题:如图,矩形的面积为10.如果矩形的长为x,宽为y,对角线为d,周长为l,那么你能获得关于这些量的哪些函数?

设计意图:考查学生运用函数概念刻画实际问题.

篇6:高中数学函数教学教案怎么设计

一、教学内容解析

1.教材内容及地位

本节课是北师大版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.

它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.

2.教学重点

函数单调性的概念,判断和证明简单函数的单调性.

3.教学难点

函数单调性概念的生成,证明单调性的代数推理论证.

二、学生学情分析

1.教学有利因素

学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“随的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.

2.教学不利因素

本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.

三、课堂教学目标

1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.

2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.

3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.

4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.

四、教学策略分析

在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.

为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:

1.指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.

2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.

3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.

4.在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.

五、教学过程

(一)创设情境,引入课题

实例 科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线.请你根据曲线图说说气温的变化情况?

预设:学生的关注点不同,如气温的最值,某时刻的气温,某时间段气温的升降变化(若学生没指明时间段,可追问)等.图象在某区间上(从左往右)“上升”或“下降”的趋势反映了函数的一个基本性质──单调性(板书课题).

设计说明:从科考情境导入新课,了解“早穿棉袄午穿纱,围着火炉吃西瓜”这一独特的沙漠气候,直观形象感知气温变化,自然引入函数的单调性.

函数是描述事物变化规律的数学模型.如果清楚了函数的变化规律,那么就基本把握了相应实物的变化规律.在事物变化过程中,保存不变的特征就是这个事物的性质.因此,研究函数的变化规律是非常有意义的.

问题1:观察下列函数图象,请你说说这些函数有什么变化趋势?

设计说明:学生回答时可能会漏掉“在某区间上”,规范表达“函数在哪个区间上具有怎样的单调性”.借此强调函数的单调性是相对某区间而言的,是函数的局部性质.

设函数的定义域为,区间.在区间上,若函数的图象(从左向右)总是上升的,即随的增大而增大,则称函数在区间上是递增的,区间称为函数的单调增区间(学生类比定义“递减”,接着推出下图,让学生准确回答单调性.)

设计说明:从图象直观感知到文字描述,完成对函数单调性的第一次认知.明确相关概念,准确表述单调性.学生认为单调性的知识似乎够用了,为下面的认知冲突做好铺垫.

(二)引导探索,生成概念

问题2:(1)下图是函数的图象(以为例),它在定义域R上是递增的吗?

(2)函数在区间上有何单调性?

预设:学生会不置可否,或者凭感觉猜测,可追问判定依据.

设计说明:函数图象虽然直观,但是缺乏精确性,必须结合函数解析式;但仅凭解析式常常也难以判断其单调性.借此认知冲突,让学生意识到学习符号化定义的必要性.自然开始探索.

问题3:(1)如何用数学符号描述函数图象的“上升”特征,即“随的增大而增大”?

以二次函数在区间上的单调性为例,用几何画板动画演示“随的增大而增大”,生成表格(每一秒生成一对数据).

设计说明:先借助图形、动画和表格等直观感受“随的增大而增大”,然后让学生思考、讨论得出,若,则必须有.

(2)已知,若有.能保证函数在区间上递增吗?

拖动“拖动点”改变函数在区间上的图象,可以递增,可以先增后减,也可以先减后增.

(3)已知,若有,能保证函数在区间上递增吗?

拖动“拖动点”,观察函数在区间上的图象变化.

设计说明:先让学生讨论交流、举反例,然后借助几何画板动态说明验证两个定点不能确定函数的单调性,三个点也不行,无数个点行不行呢?引导学生过渡到符号化表示,呈现知识的自然生成.

(4)已知,若有能保证函数在区间上递增吗?

设计说明:可先请持赞同观点的同学说明理由,再请持反对意见的学生画出反驳,然后追问:无数个也不能保证函数递增,那该怎么办呢?若学生回答全部取完或任取,追问“总不能一个一个验证吧?”

紧接着师生一起回顾子集的概念(PPT展示教材上子集的定义),再次体验对“任意一个”进行操作,实现“无限”目标的数学方法,体会用“任意”来处理“无限”的数学思想.

问题4:如何用数学语言准确刻画函数在区间上递增呢?

预设:请学生自愿尝试概括定义.板书“任意,当时,都有,则称函数在区间上递增”,则突出关键词“任意”和“都有”;若缺少关键词“任取”或“任意”,则追问“验证两个点就能保证函数在区间上递增吗?”.

问题5:请你试着用数学语言定义函数在区间上是递减的.

预设:为表达准确规范,要求学生先写下来,然后展示.并有意引导使用“任意,当时,都有,则称函数在区间上递减”,以此打破必须“”的思维定式.

(三)学以致用,理解感悟

判断题:你认为下列说法是否正确,请说明理由.(举例或者画图)

(1)设函数的定义域为,若对任意,都有,则在区间上递增;

(2)设函数的定义域为R,若对任意,且,都有,则是递增的;

(3)反比例函数的单调递减区间是.

设计说明:让学生分组讨论,然后进行展示性回答.若学生认为正确,则要求说明理由;若学生认为错误,则要求学生到黑板上画出反例(题(3)可追问怎么修改).通过构造反例,逐步完善和加深对函数单调性的理解.

例题:判断并证明函数的单调性.

设计说明:对照定义板书示范,指明变形的目的是变出因式等,并让学生提炼证明的基本步骤.

练习:证明函数的单调性:

(1)在上递减;

(2)在上递增.

设计说明:回答“问题2”悬而未决的问题.先请两位学生板演,然后由其他学生完善步骤.

思考题:物理学中的玻意耳定律(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大.试用函数的单调性证明.

设计说明:引导学生用数学知识解释其他学科的规律,培养学生应用数学的意识和能力.

(四)回顾反思,深化认识

课堂小结:通过本节课的学习,你的主要收获有哪些?

(关键词:三种语言,证明方法,数学思想,情感体验等.)

设计说明:先给出问题,要求学生自主小结,再推出引导性关键词,使得总结简明、到位、拔高.

(五)布置作业

课堂作业:(1)第38页习题2-3 A组:3,5;

(2)判断并证明函数的单调性.

探究题:向一杯水中加一定量的糖,糖加得越多糖水越甜.请你运用所学的数学知识解释这一现象.

设计说明:课堂作业是为及时巩固初学的知识和方法,完善对“对勾函数”的认识.探究题是为培养学生运用数学的意识(从地理情境开始,中间解答物理定律,最后以化学实验结束),感受数学的实用性和人文性.

(六)板书设计

函数的单调性

递增:(板书定义)

递减:(学生类比)

例题(提炼步骤,明确变形方向)

练习(学生板演)

六、教后反思

反思“三个理解”的理解程度、教学策略和落实情况等.

篇7:高中数学函数教学教案怎么设计

一、教材分析

集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.

函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.

二、学情分析

1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.

2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.

3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.

三、设计思路

本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.

四、教学目标分析

(一)知识与技能

1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.

A:能从集合间的运算分析出集合的基本关系.B:对于分类讨论问题,能区分取交还是取并.

2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.

A:会用定义证明函数的单调性、奇偶性.B:会分析函数的单调性、奇偶性、对称性的关系.

(二)过程与方法

1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.

2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.

(三)情感态度与价值观

在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.

五、重难点分析

重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.

难点:含参问题的讨论,函数性质之间的关系.

六.知识梳理(约10分钟)

篇8:高中数学函数教学

教学目标

1、通过对幂函数概念的学习以及对幂函数图像和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

2、使学生理解并掌握幂函数的图像与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

教学难点

幂函数图像和性质的发现过程

教学重点

幂函数的性质及运用

教学过程

一、 教学导入

数学和日常生活是密不可分的,观察下列问题中的函数个有什么共同特征?

(1)如果李斯在超市买了每支1元的水笔n(支),那么他应支付p=n元。这里p是n的函数。

(2)如果正方形的边长a,那么正方形的面积为S=a2 ,这里S是a的函数。

(3)如果立方体的边长a,那么立方体的体积为V=a3 ,这里V是a的函数。

(4)如果正方形的面积为S,那么这个正方形的边长为a=S ,这里a是S的函数。

(5)如果壮壮t(s)内骑车行进了1(km),那么他骑车的平均速度为v=t-1 ( ),这里v是t的函数。

由学生讨论,总结,即可得出:p=n,S=a2 ,V=a3 ,a=S ,v=t-1 都是自变量的若干次幂的形式。

这节课,我们将来共同学习另一种函数——幂函数(老师板书课题)

二、 讲授新课

1、定义:一般地,函数y=xa 叫做幂函数,其中x是自变量,a是实常数。

判断一个函数是否是幂函数?注意:①是否为幂的形式;②自变量是幂的底数,指数可以是任意实数。

例1、(1)y=xa 与y=ax 一样吗?

(2)在函数y=x+2,y=1,y=x2+x,y=2x2+3,y= 中,哪几个函数是幂函数?

(3)已知幂函数y=f(x)的图像过点(2, ),试求出这个函数的解析式。

三、 课外作业

P49习题2—5 A组 1、2

教学后记

本节课主要从五个具体幂函数中认识幂函数的一些性质,画五个幂函数的图像并由图像概括其性质是教学中可能遇到的困难,所以要注意引导学生亲自动手画图像、分组讨论等形式,让学生自己去探究,把主动权交给学生。

篇9:函数概念教学论文

[摘要]函数是中学数学教学中的一个重要内容,它与生活和学习联系紧密。

教师在组织高中学生学习函数内容时,一要帮助学生梳理函数概念,二要进行目标解析,三要帮学生诊断学习中遇到的问题。

[关键词]

初中阶段,学生已经学习过函数概念,但到了高中,函数概念发生了变化。

此时,数学教师要帮学生理清概念,解析问题。

一、对“函数”概念的理解

在初中,学生已经学习过函数概念,建立的函数概念是:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说y是x的函数。

其中x称为自变量。

这个定义从运动变化的观点出发,把函数看成是变量之间的依赖关系。

从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式。

进入高中,学生需要建立的函数概念是:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合 f(x)|x∈A叫做函数的值域。

这个概念与初中概念相比更具有一般性。

其实,高中的函数概念与初中的函数概念本质上是一致的。

不同点是表述方式不同──高中明确了集合、对应的方法;初中虽然没有明确定义域、值域这些集合,但这是客观存在的,也已经渗透了集合与对应的观点。

且高中引入了抽象的符号f(x),f(x)指集合B中与x对应的那个数,当x确定时,f(x)也唯一确定。

另外,初中并没有明确函数值域这个概念。

函数概念的核心是“对应”,理解函数概念要注意:1.两个数集间有一种确定的对应关系f,即对于数集A中每一个x,数集B中都有唯一确定的y和它对应。

2.涉及两个数集A、B,而且这两个数集都非空;这里的关键词是“每一个”“唯一确定”。

也就是,对于集合A中的数,不能有的在集合B中有数与之对应,有的没有。

而且,在集合B中只能有一个与之对应,不存在两个或者两个。

3.函数概念中涉及的集合A、B,对应关系f是一个整体,是集合A与集合B之间的一种对应关系,应该从整体的角度来认识函数。

二、目标解析

1.通过丰富实例,建立函数概念的背景,使学生体会函数是描述变量之间的依赖关系的重要数学模型。

能用集合与对应的语言来刻画函数,了解构成函数的三个要素。

2.会判断两个函数是否为同一函数,会求一些简单函数的定义域和值域。

3.通过从实例中抽象概括函数概念的活动,培养学生的抽象概括能力。

教学的重点是,在研究已有函数实例(学生举出的例子)的过程中,感受在两个数集A、B之间所存在的对应关系f,进而用集合、对应的语言刻画这一关系,获得函数概念。

然后再进一步理解它。

三、教学问题诊断分析

1.学生对函数概念中的“每一个”“唯一确定”等关键词关注不够,领会不深。

教学中,可以通过反例让学生加以认识。

如有学生的考试情况是这样的:集合A={1,2,3,4,5,6},B={90,93,98,92},f:每次考试成绩。

这里就不能表示一个函数。

因为对于集合A中的元素“4”,在集合B中就没有元素与它对应。

2.忽视“数集”二字,把一般的映射关系理解为函数。

如:高一(2)班的同学组成集合A,教室里的座椅组成集合B,每个学生都有唯一的一个座椅,班上还有空椅子。

这能否算作一个函数的例子,为什么?

3.对为什么集合B不是函数的值域不理解.让学生感受到,有时,为了研究方便或者确定一个函数的值域暂时有困难,使得B={f(x)|x∈A} 更加合理。

4.当函数关系具有解析式表示时,f(x)当然可以用x的解析式表示出来。

学生会因此而误以为对应关系f都可以用解析式表示。

可以通过所举实例的类型,引导学生,明确表示对应关系f并非解析表达式不可。

但这不是本节课的重点,应该放在下一节课“函数的表示”中解决。

只要注意所列举的例子不光是有解析式的即可。

5.本课的难点是:对抽象符号y= f(x)的理解。

可以通过具体函数让学生理解抽象的f(x)。

比如函数f(x)=x2,A=x|-2≤x<2 .f(-1)=1,f(1.5)=2.25,f(-2)=4,

f(2)无定义。

f(x)=x2,x∈A。

最终,让学生明白,f(x)是集合B中的一个数,是与集合A中的x对应的那个数.当x取具体数字时,f(x)也是一个具体的数。

篇10:函数概念教学论文

摘要:函数的概念及相关内容是高中和职业类教材中非常重要的'部分,许多学生认为这些内容比较抽象、难懂、图像多,方法灵活多样。

以致部分学生对函数知识产生恐惧感。

就教学过程中学生的反应和自己的反思,浅淡几点自己的看法。

关键词:函数;对应;映射;数形结合

1要把握函数的实质

篇11:初中函数概念的教学分析和教学设计

我们先了解一下函数形成的简要历史:

1、函数是从研究各种运动问题中产生的。

2、函数概念经历了这样几个阶段:①把研究的曲线当作函数;②把由一个变量和一些常量以任何方式形成的解析表达式作为函数;③用对应关系定义的函数;④用集合定义的函数。实际上函数概念到此还没有终结,还在发展。分析函数概念的形成历史,我们可以看出几点:

1、函数概念的形成是由研究静止现象到研究运动、变化现象的结果;

2、函数概念的形成是人类活动不断深化的结果,是人类思维能力和认识能力提高的结果。

基于函数形成的历史,使我们认识到要使学生形成清晰的函数概念,必须使学生经历由常量数学到变量数学的转变,而要使学生实现这种观念上的质的飞跃,必定要经历一个困难的过程。困难主要表现在:①长时间处理常量数学问题使学生形成了静止、孤立、片面看问题的固定思维方式;②思维能力水平的制约。初中学生的整体思维能力还不高,一方面,初中学生的思维从初一到初三由借助于具体形象,具体的事例进行思维活动向抽象思维发展;另一方面,在学生学习了推理后,学生的思维由杂乱向有序发展,随着概念的不断丰富,推理能力的不断提高,学生逐步形成了逻辑思维能力,但要使学生理解函数概念,只是具备这些条件是不行的,学生还必须具有辨证思维的能力。

函数概念由模糊到清晰经历了近3就说明了困难的程度。我们都知道,观念上的转变是非常困难的,所以要使学生实现观念上的转变,首要的任务是使学生接触运动现象,认识运动现象,思考运动现象,这样才能使学生认识变量的存在,然后逐步使学生理解变量的意义,实现由常量到变量的转变。然后使学生认识到运动变化过程中确实存在相互联系的量,实现由习惯于处理静止现象到处理运动现象的过渡,促进学生运动观的形成,这样才有可能使学生理解函数的意义;另外,还必须切实提高学生的思维水平。

在处理函数概念时,把函数概念分为两个阶段:初中阶段和高中阶段。对初中学生来说,只要使初中学生认识到:

(1)问题中所研究的两个变量是相互联系的。

(2)其中一个变量变化时,另一个变量也随着发生变化。

(3)对第一个变量在某一范围内的每一个确定的值,第二个变量都有唯一确定的值与它对应即可。初中阶段主要使学生能处理能用解析式表达的函数即可。要使学生掌握几类简单的函数:正比例函数、反比例函数、简单的二次函数,理解他们的定义,知道它们的图象和性质,会用它们的图形和性质解答一些生活和其他学科中的简单问题就行了。

研究函数既要用到代数的方法又要用到几何的方法,所以要使学生学好函数的知识,就必须使学生不仅熟练掌握代数和几何的方法,还要使学生理解代数和几何之间的关系,融合代数方法和几何方法,而这对于一般的学生来说难度是比较大的。

基于以上分析,我们作为一名初中教师,在实施函数教学时,要把握好初中函数教学的度,要根据初中学生的思维特点和知识结构进行教学过程设计。

下面笔者就谈谈自己对函数概念教学的处理方式。

一、渗透阶段,使学生逐渐认识变量及变量之间的相互关系

对字母表示数的认识,是学生体验、认识变量的开端,在这段内容的教学中教师要促使学生感受到变量的意义,体验变量的概念。在代数式的值的教学中再强化变量的意义,再让学生通过代数式的值与代数式中字母取值的之间的相互依赖关系,感受到变量之间的相互联系。再在方程特别是二元一次方程的学生中,进一步促进学生认识两个量之间是相互关联的,体会到两个变量之间的相互依存关系。

二、强化阶段,促进学生对变量之间的关系的认识,形成事物之间是相互联系的认识

到了初二开始学习几何,在几何教学中,函数关系的例子非常多。像中点的定义、角的平分线的定义就揭示两个量之间的关系;还有两个角互余、互补,揭示的都是两个变量之间的关系。像平行线四边形的性质,中位线定理等等都蕴涵着函数关系。作为教师,一方面要在学习这些知识的过程中有意识地不断渗透变量的意识——即在现实生活中存在着大量变量,且变量之间并不是独立的,而是相互联系的;另一方面,通过这些知识使学生熟悉把几何问题代数化的方法,为函数的代数和几何方法的结合打好基础,为后来函数的学习作好充分的准备。

函数概念的形成首先与物理学的发展是有关的。对运动的研究的不断深入,使人们逐渐认识到变量的存在和意义,对多种事物研究和思考,使人们认识事物之间是相互联系的,而不是独立的,这些思想的形成和深化是函数思想的形成的直接原因。所以用物理上的知识渗透变量意识、变量是相互联系的意识,是非常直观且有效的方法。像运动过程中的路程、速度和时间之间的关系就是典型的函数关系;力、压强和受力面积之间的关系也是典型的函数关系;等等,物理上很多知识都是促成学生函数概念形成的好素材。这就要求教师要熟悉函数的形成史,从多方面进行渗透,强化变量之间是存在相互联系的观念。

三、形成阶段,形成对函数概念的认识

在学生产生了变量意识、一些变量之间是存在相互联系的意识之后,学生对函数概念的理解的准备工作已经基本作好,就可以讲授函数的概念了。但教师在教授函数概念时,要在复习前面的相关知识的基础上重点强化上面的两种意识,让学生清醒的感受到这两种意识,然后在教给学生自变量、函数一些名称,并训练学生运用这些名词来叙述变量之间的关系,熟悉函数的相关概念,当然学生这时对函数的理解还并不清晰。

然后,教师在以后的具体函数的教学中不断使学生理解函数概念的内涵。像正比例函数,是一类最简单的函数,在实际生活中大量存在,例如,在相似三角形中,每一对对应边的数量关系就构成了正比例函数关系;在直角三角形中30角所对直角边与斜边之间也是正比例函数关系,等等。用这些具体例子使学生清楚的认识到两个变量之间的具体联系,认识到它们的共同特征,学生对函数概念就会逐渐理解,并且通过这些实例理解函数的性质更直观,在通过后面的反比例函数、二次函数的教学进一步促进学生理解函数概念的实质,这样可以加强学生对函数性质的'理解。再者,这时初三物理中也有很多各类函数的例子,教师只要能从整体上把握教学,就可以挖掘出各种具体的材料和方法,使学生能更深刻认识函数的内涵和外延。

四、逐渐适应函数的学习方法

学习函数的方法与以前学习代数和几何的方法有着明显的不同。如函数的表达方式就是多样化的,有列表法,图像法,解析式法等,学生在一开始会不适应,所以在教函数学时要使学生逐渐适应这种多样化,使学生逐渐认识到这些方法的作用,了解各种方法在不同情况下使用,会用不同的方法表示函数。

数形结合法是学习函数的重要方法,这和前面的代数方法和几何方法明显不同,对这种方法的适应需要一定的时间,因为学生对一个式子和一个几何图形之间的对应还不适应,在教学时要使学生逐渐认识到一个解析式和一个图形之间的对应关系,在正比例函数、反比例函数、二次函数的学习过程中使学生认识到具体的对应关系:一次函数与一条直线对应,反比例函数与双曲线对应,一个关于x的二次函数与抛物线对应。通过这几类特殊的函数的学习使学生不断认识到图像的作用,从而逐渐适应这种方法,体会到这种方法的优点:解析式准确简洁,图像形象直观,通过数形结合法使学生认识到代数方法和几何的方法各自的作用及相互结合的优点。

通过上面的分析可以看出:函数概念的学习既要有观念上的转变,又要具备更强的抽象思维能力,提高学生的抽象思维能力和学生的认识能力是使学生形成函数思想的基础,所以教师在代数和几何教学过程中要切实把提高学生的思维能力和认识能力作为一项重要任务,把知识传授和思维能力培养有机结合起来,既促进学生形成知识结构,又使学生形成相应的能力结构,实现观念的转变。这就要求教师要从整体上把握教材,有一个整体教学计划,使教学活动成为一个有机整体,这样才能在教学活动中真正有效的提高学生的素质。

篇12:高中数学新课程中函数设计思路及其教学

高中数学新课程中函数设计思路及其教学

狄敏

摘要:高中数学进行了新课程改革,对改革后的函数教学要整体全面地把握好函数的内容与要求。教师要从各个方面入手加深学生对函数的理解,引导学生自主地去学习函数,了解函数的内在本质。充分利用函数模型,让学生对函数产生兴趣,对函数有一个技巧的掌握。

篇13:高中数学新课程中函数设计思路及其教学

在新课程中的数学教学把函数作为非常重要的一个部分,可与说是贯穿我们整个高中数学学习的一条主线。我们对函数进行了新的、比较系统的处理,准确地掌握函数在数学中的定位,适应函数学习中的具体要求,和我们在处理函数问题上的创新的方法,对我们理解函数都起着重要的作用。

一、高中数学新课程中函数的设计思路

我们改变了传统的对函数的设计思路,不让学生去做题型,而是使函数成为一条主线,以函数为基本来学习数学。不死学函数,而是由简单到复杂地把函数引进课堂,让学生通过具体的函数模型对函数有一个全面、深刻的认识。

例如,我们对三角函数进行教学的时候,在设计课件的时候可以采取这样的授课方式:先对一般的三角函数如sin(2kπ+α)=sinα做必要、详尽的讲解,然后以此为基础,对sin的其他函数进行类

推,让学生自己动手,让他们对三角函数有一个自己的理解,然后我们再对课程进行详细具体的讲解。这样既达到了有效授课的目的,又有利于学生对三角函数的记忆和运用。有一个好的设计思路对高中函数来说是非常必要的。

二、高中数学新课程中函数的教学方法

在教学的过程中对函数进行全面的讲解,让学生对函数有一个整体的理解和把握,在教学过程中让学生逐渐地对函数进行解读。这样我们的教学效果就达到了一个程度,也让学生对函数有了很好的.掌控。下面我们将举例对函数的教学方法进行分析。

例如,我们对高中复合函数进行授课的时候,要对复合函数进行一个循序渐进的认识,不能直接把复合函数的定义等进行直接的解读,我们要以提问的方法从初中所学习过的函数进行分析,进而引出我们所要学习的复合函数,这样的讲授不仅不会显得突兀,而且会加深学生对复合函数的理解。有一个好的教学方法,对于高中函数的教学是非常重要、有利的。

高中函数的学习是高中学习过程中非常重要的一部分,它是一个重点也是一个难点,所以最重要的是要保证函数教学的有效性,让学生对函数能够全面的理解。因此,我们要绝对重视高中函数的教育,把握好函数的设计思路和教学方法,让函数成为高中数学教学过程中的点睛之笔。

参考文献:

[1]王祥。高中函数教学的创新思路与方法探讨[J]。社会科学期刊,(10)。

[2]陈新春。如何教好高中数学三角函数[J]。社会科学期刊,(02)。

(作者单位浙江省温岭市第二中学)

篇14:高中数学函数的单调性的教学设计

【教学目标】

1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。

2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。

3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。

【教学重点】函数单调性的概念、判断。

【教学难点】根据定义证明函数的单调性。

【教学方法】教师启发讲授,学生探究学习。

【教学工具】教学多媒体。

【教学过程】

一、创设情境,引入课题

师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。

生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。

师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的.位置显然是在下降的。

师:(阅读教材,人教版节首内容,引导学生看图)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。

观察图中的函数图象,随着函数自变量的增大(减小),你能得到什么信息?

二、归纳探索,形成概念

我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的专题研究之一──函数单调性的研究。

同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。

1.借助图象,直观感知

首先,我们来研究一次函数和二次函数的单调性。

师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,

师:根据图象,请同学们写出你对这两个函数单调性的描述。

生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。

2.抽象思维,形成概念

函数的性质离不开函数的定义域,在研究函数单调性时,我们也必须充分考虑到这一点,在函数的定义区间上描述随着自变量值的变化,函数值的变化情况。

师:思考,如何利用函数解析式来描述函数随着自变量值的变化,函数值的变化情况?(注意函数的定义区间)

生:在上,随着自变量值的增大,函数值逐渐减小;在上,随着自变量值的增大,函数值逐渐增大。

师:如果给出函数,你能用准确的数学符号语言表述出函数单调性的定义吗?

生:(师生共同探究,得出增函数严格的定义)一般地,设函数的定义域为:

①如果对于定义域上某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数;

②如果对于定义域上某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数。

三、掌握证法,适当延展

【例1】下图是定义在区间上的函数,根据图象说出函数的.单调区间,以及在每一单调区间上,它是增函数还是减函数?

【例2】物理学中的玻意耳定律(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大。试用函数的单调性证明之。

师:在解决完成这个例题后,根据解题步骤归纳总结用定义证明函数单调性的一般性算法步骤:设元、作差、变形、断号、定论。

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,共同完成小结。

(1) 利用图象判断函数单调性;

(2) 利用定义判断函数单调性;

(3) 证明方法和步骤:设元、作差、变形、断号、定论。

五、布置作业,拓展探究

课后探究:研究函数的单调性。

篇15:高中数学函数的单调性的教学设计

高中数学函数的单调性的教学设计

【教学目标】

1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。

2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。

3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。

【教学重点】函数单调性的概念、判断。

【教学难点】根据定义证明函数的单调性。

【教学方法】教师启发讲授,学生探究学习。

【教学工具】教学多媒体。

【教学过程】

一、创设情境,引入课题

师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字

,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。

生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。

师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的位置显然是在下降的。

师:(阅读教材,人教

节首内容,引导学生看图

)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。

观察图

中的函数图象,随着函数自变量

的增大(减小),你能得到什么信息?

二、归纳探索,形成概念

我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的专题研究之一──函数单调性的研究。

同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。

1.借助图象,直观感知

首先,我们来研究一次函数

和二次函数

的单调性。

师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,

师:根据图象,请同学们写出你对这两个函数单调性的描述。

生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。

2.抽象思维,形成概念

函数的性质离不开函数的定义域,在研究函数单调性时,我们也必须充分考虑到这一点,

在函数的定义区间上描述随着自变量

值的变化,函数值

的变化情况。

师:思考,如何利用函数解析式

来描述函数随着自变量

值的变化,函数值

的变化情况?(注意函数的定义区间)

生:在

上,随着自变量

值的增大,函数值

逐渐减小;在

上,随着自变量

值的增大,函数值

逐渐增大。

师:如果给出函数

,你能用准确的数学符号语言表述出函数单调性的定义吗?

生:(师生共同探究,得出增函数严格的定义)一般地,设函数

的定义域为

①如果对于定义域上某个区间

上的任意两个自变量的值

,当

时,都有

,那么就说函数

在区间

上是增函数;

②如果对于定义域上某个区间

上的任意两个自变量的值

,当

时,都有

,那么就说函数

在区间

上是减函数。

三、掌握证法,适当延展

【例1】下图是定义在区间

上的`函数

,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?

【例2】物理学中的玻意耳定律

(

为正常数)告诉我们,对于一定量的气体,当其体积

减小时,压强

将增大。试用函数的单调性证明之。

师:在解决完成这个例题后,根据解题步骤归纳总结用定义证明函数单调性的一般性算法步骤:设元、作差、变形、断号、定论。

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,共同完成小结。

(1) 利用图象判断函数单调性;

(2) 利用定义判断函数单调性;

(3) 证明方法和步骤:设元、作差、变形、断号、定论。

五、布置作业,拓展探究

课后探究:研究函数

的单调性。

六、板书设计

函数的单调性

一、创设情境,引入课题

二、归纳探索,形成概念

三、掌握证法,适当延展

四、归纳小结,提高认识

七、教学反思

在有限的课堂时间,使学生掌握利用数形结合的思想方法准确理解函数单调性的有关概念,加深对基本概念的认识。首先,展示一个学生都熟悉无比的情境,在这个情境中让学生直观地理解上升(递增)或下降(递减)的现象,然后针对课本所给的三个图象,结合情境中的直观现象,让学生描述这三个函数图象的特征。学生在描述函数图象特征(上升或下降)的时候较为顺利,但总觉得有错误,可又说不清理由。此时,教师指出:在叙述函数图像特征时要按照一定的标准,即观察的顺序应沿x轴正方向,自变量从左向右变化时,函数值(图像)的变化趋势,这样即可得到正确答案。学生在理解错误原因过程中亦得到了正确的研究方法。接下来,单刀直入地提出函数的单调性这个函数的性质。在直观上承认这一性质以后,由学生按学习小组,仿照刚才的分析去研究一次函数和二次函数的单调性。继而提出:图象特征如何转化为数学语言?经过学生探究思考,教师启发,学生归纳总结函数单调性的定义。结合图像,学生通过自主合作探索,自己给出了函数单调性的定义。然后让学生打开书本,与书上的表述比较,肯定他们的成果,并提示注意书本叙述的精确用语。本课学生印象深刻,理解深入,合作探究激发了学生的内驱力与自信心。

篇16:高中数学教学设计的概念案例分析

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4)学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

(2)过程与方法

引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度与价值观

在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

(二)重点难点

本节课的教学重点是________________________,教学难点是_____________________。

三、教法、学法分析

(一)教法

基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

(二)学法

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

四、教学过程分析

(一)教学过程设计

教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

(1)创设情境,提出问题。

新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。

(2)引导探究,建构概念。

数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程.

(3)自我尝试,初步应用。

有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

(4)当堂训练,巩固深化。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(5)小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

篇17:高中数学教学设计的概念案例分析

高中数学第一册(上)1.1集合(一)教学案例教学目标:1、理解集合、集合的元素的概念;2、了解集合的元素的三个特性;3、记忆常用数集的表示;4、会判断元素与集合的关系,

集合(一)教学案例

。教学重点:1、集合的概念;2、集合的元素的三个特征性质教学难点:1、集合的元素的三个特性;2、数集与数集的关系课前准备:1、教具准备:多媒体制作数学家康托介绍,包括头像、生平、对数学发展所作的贡献;本节课所需的例题、图形等。2、布置学生预习1.1集合.教学设计:一、[创设情境]多媒体展示激发兴趣:为科学而疯的人——康托托康(Contor,Georg)(1845-1918),俄罗斯—德国数学家、19世纪数学伟大成就之一—集合论的创立人。康托生於俄國聖彼得堡,父母親是丹_人,父親出生於丹_首都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術家血統,他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養出來的。康托自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。1874年康托的有关无穷的概念,震撼了知识界。康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质新的思想模式,建立了处理数学中的无限的基本技巧,从而极大地推动了分析与逻辑的发展。他研究数论和用三角函数地表示函数等问题,发现了惊人的结果:证明有理数是可列的,而全体实数是不可列的。由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学_们的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神_症,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个代所能夸耀的最巨大的工作。”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托在一家精神病院去世。今天,我们将学习高中数学第一章集合与简易逻辑的1.1集合(一),让我们回顾一下初中涉及到集合的有关知识。二、[复习旧知识]复习提问:1.在初中,我们学过哪些集合?实数集、二元一次方程的解集、不等式(组)的解集、点的集合等。2.在初中,我们用集合描述过什么?角平分线、线段的垂直平分线、圆、圆的内部、圆的外部等。

实数有理数无理数整数分数正无理数负无理数正分数负分数负整数自然数正整数零3.实数的分类3、实数的分类:

实数正实数负实数零

4、以下由学生完成:(1)、把下列各数填入相应的圈内

0、、2.5、、、-6、、8%、19

整数集合分数集合无理数集合

(2).把下列各数填入相应的大括号内1、-10、、、-2、3.6、、—0.1、8、负有理数集合:{}

整数集合:{}

正实数集:{}

无理数集:{}

3.解不等式组(1)2x-3〈5

4.绝对值小于3的整数是—————————————————三、[学习互动]1、观察下列对象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)与一个角的两边距离相等的点;(4)满足x-3>2的全体实数;(5)本班全体男生;(6)我国古代四大发明;(7)2007年本省高考考试科目;(8)2008年奥运会的球类项目,

《集合(一)教学案例》通过学生观察以上对象后,教师提问:[集合的概念](1)集合是什么?某些指定的对象集在一起就成为一个集合,简称集。(2)什么是集合的元素?集合中的每个对象叫做这个集合的元素。(3)集合、集合的元素怎样表示?一般用大括号表示集合且常用大写字母表示;集合中的元素用小写字母表示。(4)集合中的元素与集合的关系a是集合A的元素,称a属于A,记作a∈A;a不是集合A的元素,称a不属于A,记作aA。2、探讨下列问题(1){1,2,2,3}是含有1个1、2个2、1个3的集合吗?(2)的科学家能构成一个集合吗?(3){a,b,c,d}与{b,c,d,a}是否表同一个集合?通过师生共同探讨得出下面结论:通过师生共同探讨得出结论:[集合中的元素的性质]确定性:集合中的元素必须是确定的。集合的元素的特点互异性:集合中的元素必须是互异的。无序性:集合中的元素是无先后顺序的。组成集合的元素可以是:数、图、人、事物等。[常用数集的表示](1)自然数集:用N表示(2)正整数集:用N﹡或N+表示(3)整数集:用Z表示(4)有理数集:用Q表示(5)实数集:用R表示(正实数集用R_或R+表示)四、[四、[互动参与]例1下面的各组对象能否构成集合是()(A)所有的好人(B)小于2004的实数(C)和2004非常接近的数(D)方程x2-3x+2=0的根例2用符号填空(1)3.14Q(2)πQ(3)0N+(4)0N

32(5)(-2)0N_(6)Q

3232(7)Z(8)—R

五、[分层议练]1、选择题(1)下列不能形成集合的是()A、所有三角形B、《高一数学》中的所有难题C、大于π的整数D、所以的无理数2、判断正误(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,则xN()(3)若xQ,则xR()(4)若xN,则xN+()

常用数集属于a∈AN、N_(或N+)、Z、Q、R。集合集合的概念元素与集合的关系集合中元素的性质确定性互异性无序性不属于aA

本节课设计的目的:通过创设情境激发学生的学习兴趣,课前预习培养学生的自学能力;多媒体辅助教学提高课堂效益,使教学呈现方式多样化;探索现代教学手段与高中数学教学的整合。

【高中数学《与函数概念》教学设计】相关文章:

1.高中数学概念教学论文

2.高中数学函数教学论文

3.高中数学教学设计

4.函数的概念 说课稿

5.教学设计的概念

6.二次函数教学设计

7.高中数学概念课教学提升建议论文

8.高中数学教学设计题

9.高中数学教学设计案例

10.高中函数的概念说课稿

下载word文档
《高中数学《与函数概念》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部