欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>八年级数学上册《勾股定理的应用》教学设计反思

八年级数学上册《勾股定理的应用》教学设计反思

2025-01-22 07:43:42 收藏本文 下载本文

“yingmuhuadao”通过精心收集,向本站投稿了15篇八年级数学上册《勾股定理的应用》教学设计反思,下面就是小编整理后的八年级数学上册《勾股定理的应用》教学设计反思,希望大家喜欢。

八年级数学上册《勾股定理的应用》教学设计反思

篇1:八年级数学上册《勾股定理的应用》教学设计反思

八年级数学上册《勾股定理的应用》教学设计反思

教学目标具体要求:

1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:

勾股定理的应用

难点:

勾股定理的应用

教案设计

一、知识点讲解

知识点1:(已知两边求第三边)

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC的长?

知识点2:

利用方程求线段长

1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E,

(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?

(2)DE与CE的位置关系

(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?

利用方程解决翻折问题

2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?

3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF的长是多少?

5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式.

知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系

1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。

(2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。

(3)在ABC中,a:b:c=1:1:,那么ABC的确切形状是_____________。

2.如图,正方形ABCD中,边长为4,F为DC的中点,E为BC上一点,CE=BC,你能说明∠AFE是直角吗?

变式:如图,正方形ABCD中,F为DC的中点,E为BC上一点,且CE=BC,你能说明∠AFE是直角吗?

3.一位同学向西南走40米后,又走了50米,再走30米回到原地。问这位同学又走了50米后向哪个方向走了

二、课堂小结

谈一谈你这节课都有哪些收获?

应用勾股定理解决实际问题

三、课堂练习以上习题。

四、课后作业卷子。

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:

一、复习引入

对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。

二、例题讲解,巩固练习,总结数学思想方法

活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。

活动二:解决例二梯子滑落的`问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

二、巩固练习,熟练新知

通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

在教学设计的实施中,也存在着一些问题:

1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

篇2:八年级数学下册《勾股定理的应用》教学设计

八年级数学下册《勾股定理的应用》教学设计

一、教学任务分析

勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:

1、在研究图形性质和运动等过程中,进一步发展空间观念;

2、在多种形式的数学活动中,发展合情推理能力;

3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、

本节课的教学目标是:

1、能正确运用勾股定理及其逆定理解决简单的实际问题。

2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、

教学重点和难点:

应用勾股定理及其逆定理解决实际问题是重点。

把实际问题化归成数学模型是难点。

二、教学设想

根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

三、教学过程分析

本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、

第一环节:情境引入

情景1:复习提 问:勾股定理的语言表述以及几何语言表达?

设计意图:温习旧知识,规范语言及数学表达,体现

数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?

设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

第二环节:合作探究(圆柱体表面路程最短问题)

情景3:课本引例(蚂蚁怎样走最近)

设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、

第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)

设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

第四环节:议一议

内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?

(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

设计意图:

运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、

第五环节:方程与勾股定理

在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的'中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、

第六环节:交流小结内容:师生相互交流总结:

1、解决实际问题的方法是建立数学模型求解、

2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、

3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:

第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。

篇3:八年级数学下册《勾股定理的应用》教学反思

人教版八年级数学下册《勾股定理的应用》教学反思

对于“勾股定理的应用”的反思和小结有以下几个方面:

1、课前准备不充分:

基础题中是一些由正方形和直角三角形拼合而成的图形(与希腊邮票设计原理相同),其中两个正方形的面积分别是14和18,求最大的正方形的面积。

分析:由勾股定理结论:直角三角形中两直角边的平方和等于斜边的平方。

其实质即以直角三角形两直角边为边长的两个正方形面积之和等于以斜边为边长的正方形的面积。但学生竟然不知道。其二是课件准备不充分,其中有一道例题的答案是跟着例题同时出现的,再去修改,又浪费了一点时间。其三,用面积法求直角三角形的高,我认为是一个非常简单的数学问题,但在实际教学中,发现很多学生仍然很难理解,说明我在备课时备学生不充分,没有站在学生的角度去考虑问题。

2、课堂上的语言应该简练。这是我上课的最大弱点,我不敢放手让学生去独立思考问题,会去重复题目意思,实际上不需要的,可以留时间让学生去独立思考。教师是无法代替学生自己的思考的,更不能代替几十个有差异的'学生的思维。课堂上老师放一放,学生得到的更多,老师放多少,学生就有多大的自主发展的空间。但这里的“放多少”是一门艺术,我要好好向老教师学习!

3、鼓励学生的艺术。教师要鼓励学生尝试并尊重他们不完善的甚至错误的意见,经常鼓励他们大胆说出自己的想法,大胆发表自己的见解,真正体现出学生是数学学习的主人。

4、启发学生的技巧有待提高。启发学生也是一门艺术,我的课堂上有点启而不发。课堂上应该多了解学生。

篇4:八年级数学教学设计勾股定理

1、知识目标:

(1)掌握勾股定理;

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的历史.

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关勾股定理的历史讲解,对学生进行德育教育.

教学重点:勾股定理及其应用

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

篇5:八年级数学教学设计勾股定理

一、教学任务分析

勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:

1、在研究图形性质和运动等过程中,进一步发展空间观念;

2、在多种形式的数学活动中,发展合情推理能力;

3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、

本节课的教学目标是:

1、能正确运用勾股定理及其逆定理解决简单的实际问题。

2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、

教学重点和难点:

应用勾股定理及其逆定理解决实际问题是重点。

把实际问题化归成数学模型是难点。

二、教学设想

根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的.同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

三、教学过程分析

本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、

第一环节:情境引入

情景1:复习提 问:勾股定理的语言表述以及几何语言表达?

设计意图:温习旧知识,规范语言及数学表达,体现

数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?

设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

第二环节:合作探究(圆柱体表面路程最短问题)

情景3:课本引例(蚂蚁怎样走最近)

设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、

第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)

设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

第四环节:议一议

内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?

(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

设计意图:

运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、

第五环节:方程与勾股定理

在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、

第六环节:交流小结内容:师生相互交流总结:

1、解决实际问题的方法是建立数学模型求解、

2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、

3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:

第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。

篇6:八年级数学勾股定理教学设计

知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程.

数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想. 解决问题:1.通过拼图活动,体验数学思维的严谨性,发展形象思维.

2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.

情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.

2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.

篇7:八年级数学勾股定理教学设计

1、重点是探索和证明勾股定理.

2、难点是用拼图的方法证明勾股定理.

篇8:八年级数学勾股定理教学设计

[活动1]引课

教师活动:以中国最早的一部数学著作——《周髀算经》的开头为引,介绍

周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔.周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五.既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩.故禹之所以治天下者,此数之所由生也.”提问:你听说过“勾股定理”吗?

教师展示图片并介绍第二情景

毕达哥拉斯是古希腊著名的数学家.相传在25以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.

(1)现在请你也观察一下,你能有什么发现吗?

(2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

(3)你有新的结论吗?

[活动2]教师引导学生总结:

等腰直角三角形的两条直角边平方的和等于斜边的平方.在独立探究的基础上,学生分组交流.教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积.

学生活动:每组派代表分别自己总结的观点,在教师的引导下,慢慢发现能否将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来;用弯曲的手臂形象地表示勾、股、弦的概念,板书勾股定理,进而给出字母表达式.

[活动3]教师多媒体展示

在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.你见过这个图案吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”

篇9:八年级勾股定理的应用教学设计

八年级勾股定理的应用教学设计

八年级勾股定理的应用教学设计

目标

重点

难点

1、知识与方法目标:通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关计算,深入对勾股定理的理解。

2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。

3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。

勾股定理的应用

勾股定理的灵活应用。

内容

方法

八年级下(人教版)§18.1勾股定理的应用之一

讲练结合

课前复习

师:勾股定理的内容是什么?

生:勾股定理 直角三角形两直角边的平方和等于斜边的平方.

师:这个定理为什么是两直角边的`平方和呢?

生:斜边是最长边,肯定是两个直角边的平方和等于斜边的平方,否则不正确的。

师:是这样的。在RtΔABC中,∠C=90°,有:AC2+BC2=AB2,勾股定理揭示了直角三角形三边之间的关系。

今天我们来看看这个定理的应用。

新课过程

分析:

师:上面的探究,先请大家思考如何做?

(留几分钟的时间给学生思考)

师:看到这个题让我们想起古代一个笑话,说有一个人拿一根杆子进城,横着拿,不能进,竖着拿,也不能进,干脆将其折断,才解决了问题,相信同学们不会这样做。

(我略带夸张的比划、语气,学生笑声一片,有知道这个故事的,抢在我的前面说,学生欣欣然,我观察课堂气氛比较轻松,这也正是我所希望氛围,在这样的情况下,学生更容易掌握知识)

师:这里木板横着不能进,竖着不能进,只能试试将木板斜着顺进去。

师:应该比较什么?

李冬:这是一块薄木板,比较AC的长度,是否大于2.2就可以了。

师:李冬说的是正确的。请大家算出来,可以使用计算器。

解:在RtΔABC中,由题意有:

AC==≈2.236

∵AC大于木板的宽

∴薄木板能从门框通过。

学生进行练习:

1、在Rt△ABC中,AB=c,BC=a,AC=b, ∠B=90゜.

①已知a=5,b=12,求c;

②已知a=20,c=29,求b

(请大家画出图来,注意不要简单机械的套a2+b2=c2,要根据本质来看问题)

2、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?

师:对第二问有什么想法?

生:分情况进行讨论。

师:具体说说分几种情况讨论?

生:①3cm和4cm分别是直角边;②4cm是斜边,3cm是直角边。

师:呵呵,你们漏了一种情况,还有3cm是斜边,4cm是直角边的这种情况。

众生(顿感机会难得,能有一次战胜老师的机会哪能放过):啊!斜边应该大于直角边的。这种情况是不可能的。

师:你们是对的,请把这题计算出来。

(学生情绪高涨,为自己的胜利而高兴)

(这样处理对有的学生来说,印象深刻,让每一个地方都明白无误)

解:①当6cm和8cm分别为两直角边时;

斜边==10

∴周长为:6+8+10=24cm

②当6cm为一直角边,8cm是斜边时,

另一直角边= =2

周长为:6+8+2=14+2

师:如图,看上面的探究2。

篇10:八年级数学下册《勾股定理》教学反思

八年级数学下册《勾股定理》教学反思

《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△ABC中,AC=3,BC=4,有的同学直接根据勾股定理得:AB=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。

二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边.

三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。

四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。

五是缺少方程思想和转化思想,使综合类试题痛失分数。

六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。

针对上述问题,痛定思痛,感悟颇多:

第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生独立完成,并进行一定量的训练,才能实现教学的有效性。

第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。

第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。 学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的'同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的实际问题,以便增强学生探究新知识、新方法的创造能力。

第四,教学应加大综合训练的力度。目前的综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:(1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的突破口。

第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观性。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。

相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。

篇11:八年级数学下册《勾股定理》的教学反思

八年级数学下册《勾股定理》的教学反思

在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师再利用电脑演示直角三角形中勾股定理的探索过程。反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的解决问题的能力和创新能力。学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。

在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。

最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的`资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

数学有与其他学科不同的特点,自然科学常发生新理论代替旧理论的情形,但数学不会如此。数学学习是数学发展史的缩影,是一个累进过程。勾股定理是人类几千年的文化遗产,是经典的定理,拥有科学简洁的数学语言。而数学教学的核心不是知识本身,而是数学的思维方式。认识是个人独特的构造结果,人的思维活动有强烈的个性特征。每个学生都有自己的生活背景、家庭环境,这种特定的文化氛围,导致不同的学生有不同的思维方式和解决问题的策略。学生已有丰富的数学活动经验,特别是运用数学解决问题的策略。学生只有用自己创造与体验的方法来学习数学,才能真正地掌握数学。因而数学教学要展现数学的思维过程,要学生领会和实现数学化,自己去“发现”结果。这一课的学习就主要通过让学生自主地探索知识,从而将其转化为自己的,真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。

篇12:八年级上册数学教学反思

听课是学生取知识,发展力的重要途经,是学习的中心环节,作为一名中学生,他的大部分时间都是在课堂上度过的。所以教家呼吁,向课堂40分钟要质量,就是个原因。如果我们忽视了听课这个环节,就是检了芝麻,丢了西瓜,得不偿失。

培养审题的好习惯--建立错题本

审题是解题的基础,完全明确问题的文字陈述和符号的含义,准确把握问题的条件和结论,必要时还要适当画出图表,列举、提炼出问题的关键,形成题目脉络。解题中的反思是指学习者对自身解题活动的深层次的反向思考,不仅仅是对数学解题学习的一般性回顾或重复,而是深究数学解题活动中所涉及的知识、方法、思路、策略等,从中达到解决一类问题。所谓:“数学问题的解决仅仅只是一半,更重要的是解题之后的回顾”。建议学生在复习过程中准备一本专门的解题反思本,把一些典型的例题尤其是典型的错误摘录下来,并对每一题批注在解题过程中,自己都用了哪些基础知识、基本方法以及数学思想方法,解该题时哪些步骤容易出错,是否还有其他的方法,该问题的难点何在,应该如何突破,问题能否推广,在解题时自己有哪些缺点为解题设置了障碍等。等到临近中考时再把这本子拿出来好好复习,会比看书本或其他资料更有针对性,复习效果自然也会更好。

篇13:八年级上册数学教学反思

随着时间的推移,十月份已进入尾声,十月份我完成了第五单元、第二单元的教学,为此我也做了如下反思:

一、教学的方面

农村的学生听,说的能力相对较弱,另一方面,中等生、差生占较大多数,尖子生相对较少。因此,讲得太深,没有照顾到整体,我备课时也没有注意到这点,因此教学效果不如理想。从此可以看出,了解及分析学生实际情况,实事求是,具体问题具体分析,做到因材施教,对授课效果有直接影响。

二、备课、上课方面

教学中,备课是一个必不可少,十分重要的环节,备学生,又要备教法。备课不充分或者备得不好,会严重影响课堂气氛和积极性,我明白到备课的重要性,因此,每天我都花费大量的时间在备课之上,认认真真钻研教材和教法。虽然辛苦,但事实证明是值得的。一堂准备充分的课,会令学生和老师都获益不浅。我注意课堂的艺术性,如果照本宣科地讲授,学生会感到困难和沉闷。为了上好课,我认真研究了课文,找出了重点,难点,准备有针对性地讲。为了令教学生动,不沉闷,我还为此准备了大量的教具,授课时就胸有成竹了。备课充分,能调动学生的积极性,上课效果就好。但同时又要有驾驭课堂的能力,因为学生在课堂上的一举一动都会直接影响课堂教学。因此上课一定要设法令学生投入,不让其分心,这就很讲究方法了。所以,老师每天都要有充足的精神,让学生感受到一种自然气氛。这样,授课就事半功倍。回看自己的授课,我感到有点愧疚,因为有时我并不能很好地做到这点。当学生在课堂上无心向学,违反纪律时,我的情绪就受到影响,并且把这带到教学中,让原本正常的讲课受到冲击,发挥不到应有的水平,以致影响教学效果。我以后必须努力克服,研究方法,采取有利方法解决当中困难。

三、学生方面

因为语文的特殊情况,学生在不断学习中,会出现好差分化现象,差生面扩大,会严重影响班内的学习风气。因此,绝对不能忽视。为此,我制定了具体的计划和目标。对这部分同学进行有计划的辅导。我把这批同学分为三个组。第一组是有能力提高,但平时懒动脑筋不学的同学,对这些同学,我采取集体辅导,给他们分配固定任务,不让他们有偷懒的机会,让他们发挥应有水平;第二组是肯学,但由于能力不强的同学。对这部分同学要适当引导,耐心教导,慢慢提高他们的成绩,不能操之过急,且要多鼓励。只要他们肯努力,成绩有望提高;第三组是纪律松散,学习不认真,基础又不好的同学。对这部分人要进行课余时间个别辅导。因为这部分同学需要一个安静而又不受干扰的环境,才会立下心来学习。只要坚持辅导,这些同学基础重新建立起来,以后授课的效果就会更好。

总之,十月份我虽然做了一些努力,但存在的问题实在还有很多。教学有待改进,上课力求面面俱到,学生的思维能力没有得到发展,这些问题都是亟待解决的。所以在今后的教学中不断完善自己,做到更好。

篇14:八年级上册数学教学反思

整个新课讲解分为实例引入—讨论分析—归纳概括—巩固概念等四个小环节来进行。其中的实例引入部分,分别用了弹簧拉力器、吃大锅饭以及我的手机话费等贴近学生生活的实例入手,让学生明白、理解数学来源于生活应用于生活。特别是弹簧拉力器的引入,即活跃了课堂气氛也增加了学生学习的趣味性,得到了听课老师的一致好评。整节课的`量适当,表达流利,跟学生的互动性好,学生的参与更加生动地体现了问题的情景,促使每一位学生都积极的参与解决问题,从而培养了学生“乐学”、“爱学”的学习态度。

然而,作为新老师的第一次公开课,难免存在着不足之处。比如在实例引入之后,过快的建立了数学模型,没有留给学生足够的思考时间。对于概念的阐述,也没有用其他的文字等形式去补充过渡,让学生有突兀的感觉,略显单调,沉闷。板书的书写也不是很完善,字体稍微潦草。虽然学生的基础不错,但整节课的课堂节奏过快,没有足够的时间留给学生去思考,联系。一部分学生还是没能跟的上我的思维,这方面以后一定要加强改进。

对于这节课所暴露的问题,我一定会认真去对待,多花时间在备课上,多听听其他老师的课,吸取他们的课堂经验,为自己以后成为一名优秀的教师而努力。

篇15:八年级上册数学教学反思

要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培学生的参与能力。

一、改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。就学习数学而言,学生一旦“学会”,享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。

二、重视学习动机在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识。用贴近学生生活的实例引入新知,既能化难为易,又使学生倍感亲切;提出问题,设置悬念,能激励学生积极投入探求新知识的活动;对学生的'学习效果及时肯定;组织竞赛;设置愉快情景等,使学生充分展示自己的才华,不断体验解决问题的愉悦。坚持这佯做,可以逐步强化学生的参与热情。

三、重视实践活动在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生参与知识形成发展的全过程,尽可能增加学生的参与机会。

在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。

四、重视学习环境在教学过程中的作用

通过创设良好的人际关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量。和谐的师生关系便于发挥学生学习的主动性、积极性。

五、重视学习方法在教学过程中的推动作用

在教学中,教师不但要教知识,还要教学生如何“学”。教学中教师不能忽视,更不能代替学生的思维,而是要尽可能地使教学内容的设计贴近学生的“最近发展区”。通过设计适当的教学程序,引导学生从中悟出一定的方法。例如:学生学会一个内容后,教师就组织学生进行小结,让学生相互交流,鼓励并指导学生结合自己的实际情况。总结出个人行之有效的学习方法,对自己的学习过程进行反思,学生可以适当调整自己的学习行为,进而提高学生的参与能力。

六、培养学生反思是作业之后的一个重要环节

实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行

【八年级数学上册《勾股定理的应用》教学设计反思】相关文章:

1.八年级数学勾股定理教学计划

2.八年级上册数学教学设计人教版

3.八年级数学上册《三角形》教学反思

4.勾股定理教学设计

5.勾股定理教学反思

6.八年级数学下学期《勾股定理》说课稿

7.八年级数学教学设计

8.八年级数学教学反思

9.八年级上册Unit7SectionB1a-1e教学设计与反思

10.八年级数学下册《分式方程的应用》的教学反思

下载word文档
《八年级数学上册《勾股定理的应用》教学设计反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部