欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教学反思>《零指数幂和负整指数幂》教学反思

《零指数幂和负整指数幂》教学反思

2022-06-07 08:18:07 收藏本文 下载本文

“白面鸠”通过精心收集,向本站投稿了14篇《零指数幂和负整指数幂》教学反思,下面是小编整理后的《零指数幂和负整指数幂》教学反思,希望能帮助到大家!

《零指数幂和负整指数幂》教学反思

篇1:《零指数幂和负整指数幂》教学反思

《零指数幂和负整指数幂》教学反思

《零指数幂和负整指数幂》本节内容在学过正整数幂及其运算的基础上展开学习的,特别是正整数指数幂的运算,我们已经学习了5条运算性质:同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法、商的乘方,其中对同底数幂的除法,要求被除式的指数要大于除式的指数。教材抓住这个条件,展开探索,从约分和同底数幂的除法两个角度“殊途同归”说明了定义负整数指数幂的合理性,这样,就在运算的需要之下,实现了指数的扩充。然后引导学生利用负指数幂以及零指数幂通过验证的方式,针对以前5条性质进行再探讨。

本课时主要是通过将指数扩充到全体整数的探索,重点培养学生抽象的数学思维能力;合理运用公式进行有关计算,培养学生的计算能力以及综合分析问题的能力,主要表现在:

一、以自主探索为主线

本节课给主要以自主探索,合作交流,教师不停的深入到学生的探索活动之中去,并多关注学困生,用激励成功的语言鼓励他们,是学生甘愿的探索,不断面对认知冲突而不断得到突破,使学生品尝到探索的`喜悦。

二、立足已有知识与经验

通过每一组学生力所能及的练习激活学生对正整数指数幂以及零指数幂意义的知能储备,帮助学生努力提取必需的经验和备用知识,然后通过类比实施对负整数指数幂的探究,其他的也得以一一探索。

课堂的有效性是当下教学的瞩目点,一堂有高效的课,不仅仅是要让学生获得知识与技能,更多的是学习动机被唤醒、学习习惯的养成和思维品质的提升。

通过这节课我有以下的几个体会:

一、课堂的问题设计要注重学生数学思想和方法的养成。

本节课的类比思想、迁移思想、逆向思维训练都得到了比较好的贯彻,从学生们得课上练习来看还是比较好的。

二、要重视知识的类比迁移。本课我在设计中注重知识的连贯性,从本节知识的生长点设计教学,很自然的从已知到新知的完成了过渡,对于学生知识结构体系的构建有一定的促进作用。这样从知识方法到解析能力立足知识生长点对比迁移可以加深学生的理解。

三、探究性学习在面临教学任务完成和学生有很大差异的现实面前如何找到平衡。

不可否认探究性的学习是我们面前课堂教学的灵魂,可是为什么在真正的平实上课中我们会重结果,轻探究?怎么把握这个度?我觉得这是在今后教学中好好要思考的一个问题。

四、高效课堂不是高速课堂,孩子的认知水平需要一个过程来慢慢吸收,由于不同的学生本身差异很大,怎么权衡做到面向全体,教师且不可心急,要耐得住性子慢慢来。

篇2:《负指数幂的运算》教学反思

《负指数幂的运算》教学反思

本节课的主要目标是理解正指数幂的运算公式扩充到负指数的依据,以及含有负整数指数幂的运算。本节课有以下几个问题值得反思:

1.备课不充分,对学生的能力估计不准确:先让孩子们阅读负指数幂和相应正指数幂的关系,然后让孩子们提出自己的问题,一方面很多孩子阅读能力不够,所以这几分钟可能没有任何作用,另一方面贝贝提出一个关于为何规定负指数幂等于正指数幂的倒数的问题,这个问题也是这节课的基础的核心的问题,可见贝贝真的很用心很聪明。但我在解释这个问题的'时候,没有很好的疏通中间的逻辑关系,我对自己的讲解不太满意。其实,这个规定是一个桥梁作用,它可以把正指数幂过渡到负指数幂。应当分别写出指数幂的除法运算分别按照分式除法和同底数幂的除法计算的结果,解释这个规定的合理性。这个环节最好老师直接来讲解。

2.本节课重点把握不够:重点应当在公式的应用,让孩子们很快接受负指数幂也按照公式来计算。而我让孩子们在规定的基础上去逐一举例去验证每一个公式,有部分孩子没有听懂要求,答非所问。这里我觉得我应当举一个例子作为示范,然后让孩子们选择一个公式来验证就足够了。在例题教学中,我能直接让孩子上台讲解,倒是应当让孩子们用文字语言来叙述,先相互复述交流,然后让四个孩子上台来讲评,最后老师进行点评。

3.课堂效果反馈:从最后的练习情况来看,效果还不错,虽然课堂气氛不是很活跃,但可以看到学习效果不错,相反八班课堂气氛很活跃,但当堂检测的效果却不如七班,这也就是求知欲和表现欲之间的关系处理问题。有时候,课堂的效果未必要从活跃程度这一个单一的指标来衡量,学生思考问题的深度,对一节课重点的理解程度是主要目的,在有了自己思考的基础上,来回答问题才能构成真正的实质性的交流。

篇3:初中数学零指数幂与负整指数幂的教案

初中数学零指数幂与负整指数幂的教案

教学目标:

1、 能较熟练地运用零指 数幂与负整指数幂的性质进行有关计算。

2、会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。

重点难点:

重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数

难点:理解和应用整数指数幂的性质。

教学过程:

一、 复习练习:

1、 ; =; =, =, =。

2、不用计算器计算: ÷(―2)2―2-1+

二、指数的'范围扩大到了全体整数.

1、探 索

现在,我们已经 引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数. 那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.

(1) ;(2)(ab)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。

3、例1计算(2mn2)-3(mn-2)-5 并且把结果化为只含有正整数指数幂的 形式。

解:原式=2-3m-3n-6×m-5n10= m-8n4=

4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:

(1)(a-3)2(ab2)-3;(2)(2mn 2)-2(m-2n-1)-3.

三、科学记数法

1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示 成a×10n的形式,其中n是正整数 ,1≤OaO<10.例如, 864000可以写成8.64×105.

2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表 示成a×10-n的形式,其中n是正 整数,1≤OaO<10.

3、探索:

10-1=0.1

10-2=

10-3=

10 -4=

10-5=

归纳:10-n=

例如,上面例2(2)中的0.000021 可以 表示成2.1×10-5.

4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.

分 析 我们知道:1纳米= 米.由 =10-9可知,1纳米=10-9米.

所以35纳米=35 ×10-9米.

而35×10-9=(3.5×10)×10-9

=35×101+(-9)=3.5×10-8,

所以 这个纳米粒子的直径为3.5×10-8米.

5、练习

①用科学记数法表 示:

(1)0.000 03;(2)-0.0000064;(3)0.0000314;(4)000.

②用科学记数法填空:

(1)1秒是1微秒的1000000倍,则1微秒=_________秒;

(2)1毫克=_____ ____千克;

(3)1微米=_________米;      (4)1纳米=_________微 米;

(5)1平方厘米=_________平方米; (6)1毫升=_________ 立方米.

本课小结 :

引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立。科学记数法不仅可以表示一个绝对值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足,1≤OaO<10.其中n是正整数

篇4:整数指数幂的教学反思

整数指数幂的教学反思

本节课教学的主要内容是整数指数幂,重点是掌握整数指数幂的运算性质,教学难点是会用科学计数法表示小于1的数。体验以前所学的正整数指数幂、0次幂和大于1的科学记数法的表示的有关知识的扩充过程,体验数学研究的`一般方法。从学生的掌握情况看效果还是比较好的。

1、在本节的教学设计上,重点挖掘学生的潜在能力,在课堂教学中不断渗透自主学习和研究性学习,让学生在课堂上通过观察、验证、探究等活动,有利于学生加深对新知识的理解,会用整数指数幂性质进行简单的整数指数幂的相关计算,提高数学语言的应用能力。

2、教学难点处理采用反复强调做题细节,科学计数法表示小于1的小数,a×10-n,a 是整数位只有一位的正数,n是正整数。在进行运算时,要步步有据。在处理这些问题时,力度加大,下了不少的功夫。学生学习反馈的效果较好。

3、点评时做到多表扬,少批评。学生回答问题,尤其是上黑板板演时,能用激励性的语言去鼓励学生。激发学生学习数学的兴趣,提高学生学习数学的积极性。

本课不足之处在于学生的分组探究环节,有的组没有真正的开展起来,流于形式,时间上也没有很好的把握。以后在教学上要注意帮助学生,培养学生的能力。

篇5:《实数指数幂及其运算》教学反思

本节课的教学设计,是在新课改理念指导下,根据本班学生的实际情况进行设计的。课后对本节课有如下反思:

成功之举

1、从实施情况来看,整堂课学生情绪高涨,充分参与教学全过程。由于课前有针对性地选取了例题和练习题,大部分同学都能自主完成,体会到成功的喜悦。同时,大多数同学能积极举手发言,主动到前面演示自己的解题过程。这些都充分体现了快乐课堂的宗旨,我觉得这节课,同学们是快乐的。

2、教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,

也培养了学生的合作意识。在学习过程中,及时给予评价,调动了学生学习的`兴趣和热情。

不足之处

1、时间安排上有些前松后紧,知识回顾部分由于学生回答举例所用时间较长,占用了练习部分的时间。

2、学生对分数指数幂与根式的互化运算是一个难点,对于稍微复杂一点的根式化简会转化为分数指数幂,然后利用指数的运算性质化简,在后面的教学中还要注意渗透相关的题目。

3、学生的课堂小结还不够成熟,总结的不到位,不准确。以后要逐渐培养学生的归纳总结能力。

新课改还在进行,每种课型的模式也都在摸索之中。我要对每节课及时反思,及时改正不足,总结经验。使教学过程更优化,从而取得更好的教学效果。

篇6:整数指数幂说课稿

教学过程

一。复习引入:

1.计算:28÷23=_____,510÷56=_____;

(由学生用数学式子表示上述同底数幂的除法法则,并指出其中字母的规定,强调指数是正整数,底数不等于零)

2.计算:25÷25=______;3÷32006=_____;

(由学生用数学式子表示零指数幂的性质,并指出底数的规定)

3.思考:如何计算24÷26、35÷38

[说明]在学生独立思考的基础上,组织学生进行相互之间的讨论,并请学生代表讲解计算的过程及依据,体验分数与除法的关系;然后进一步提出“如何用幂的形式表示计算结果”的问题。

4.如果用前面学过的同底数幂的除法性质来计算,我们可以得到什么结果?这两种计算结果应该是相等的,那么我们今天又可以得到什么结论?如何用数学式子表示?

[说明]以复习同底数幂的除法为基础,引领学生进行探究更为一般的同底数幂的运算,让学生能够充分体验数学知识的发生过程,理解新旧知识之间存在的内在联系,初步体会研究数学的一般方法。

二。学习新课:整数指数幂及其运算。

1.负整数指数幂的概念: (a≠0,p是自然数)

举例说明负整数指数幂的意义,如 、 、

、 (其中x≠0,y≠1)

2.同底数幂的除法法则:

3.整数指数幂:当a≠0时, 就是整数指数幂,n可以是正整数、负整数和零。

例题讲解:

例题1  计算:

(1)26÷28;

(2)10÷102006;

(3)715÷715.

例题2 将下列各式写成只含有正整数指数幂的形式:

(1)  x-3;

(2)  a-3b4;

(3)  (x+2y)-2;

(4)  .

[说明]两个例题均由学生思考后进行解答,教师讲评,明确解题的依据、步骤及表达上的规范;例题2的第(4)小题,还可以让学生体验 ,即当底数是分数形式时,还可以用这个方法把负整数指数幂化成正整数指数幂的形式,在具体的化简计算时显得简单。

4.整数指数幂的运算性质:

举例复习正整数指数幂的其它性质,同时思考、验证整数指数幂的相关运算法则:

23×25,(-3)4×(-3)6,25×2-3,(-3)-2×(-3)3;

(2×3)2,(2×3)-2;

(23)2,(22)-2,(2-3)-4;

篇7:整数指数幂说课稿

(1)同底数幂的乘法性质:aman=am+n;

(2)同底数幂的除法性质:am÷an=am-n;

(3)积的乘方性质:(ab)m=ambm;

(4)幂的乘方性质:(am)n=amn;

(上述性质中a、b都不为0,m、n都为整数)

例题3计算:

(1)a2÷a・a3;

(2)(-a)3÷a5;

(3)x-5・x2;

(4)(2-2)3;

(5)100÷3-3;

(6) .

四。练习与巩固:

学生独立完成练习10.6中的1、2、3、4、5、7,并相互交流,其中(3)、(4)口答,其它写出过程,体验整数指数幂的性质的具体内容。

五。课堂小结:今天我们学习了哪些数学知识?

六。布置作业:练习册:习题10.6

篇8:整数指数幂说课稿内容

整数指数幂说课稿内容

教学过程

一、复习引入:

1.计算:28÷23=_____,510÷56=_____;

(由学生用数学式子表示上述同底数幂的除法法则,并指出其中字母的规定,强调指数是正整数,底数不等于零)

2.计算:25÷25=______;3÷32006=_____;

(由学生用数学式子表示零指数幂的性质,并指出底数的规定)

3.思考:如何计算24÷26、35÷38

在学生独立思考的基础上,组织学生进行相互之间的讨论,并请学生代表讲解计算的过程及依据,体验分数与除法的关系;然后进一步提出“如何用幂的形式表示计算结果”的问题。

4.如果用前面学过的同底数幂的除法性质来计算,我们可以得到什么结果?这两种计算结果应该是相等的,那么我们今天又可以得到什么结论?如何用数学式子表示?

以复习同底数幂的除法为基础,引领学生进行探究更为一般的同底数幂的运算,让学生能够充分体验数学知识的发生过程,理解新旧知识之间存在的内在联系,初步体会研究数学的一般方法。

二、学习新课:整数指数幂及其运算。

1.负整数指数幂的概念: (a≠0,p是自然数)

举例说明负整数指数幂的意义,如 、 、、 (其中x≠0,y≠1)

2.同底数幂的除法法则:

3.整数指数幂:当a≠0时, 就是整数指数幂,n可以是正整数、负整数和零。

例题讲解:

例题1 计算:

(1)26÷28;

(2)10÷102006;

(3)715÷715.

例题2 将下列各式写成只含有正整数指数幂的形式:

(1) x-3;

(2) a-3b4;

(3) (x+2y)-2;

两个例题均由学生思考后进行解答,教师讲评,明确解题的依据、步骤及表达上的规范;例题2的第(4)小题,还可以让学生体验 ,即当底数是分数形式时,还可以用这个方法把负整数指数幂化成正整数指数幂的形式,在具体的化简计算时显得简单。

4.整数指数幂的'运算性质:

举例复习正整数指数幂的其它性质,同时思考、验证整数指数幂的相关运算法则:

23×25,(-3)4×(-3)6,25×2-3,(-3)-2×(-3)3;

(2×3)2,(2×3)-2;

(23)2,(22)-2,(2-3)-4;

归纳整数指数幂的运算性质:

(1)同底数幂的乘法性质:aman=am+n;

(2)同底数幂的除法性质:am÷an=am-n;

(3)积的乘方性质:(ab)m=ambm;

(4)幂的乘方性质:(am)n=amn;

(上述性质中a、b都不为0,m、n都为整数)

例题3计算:

(1)a2÷a·a3;

(2)(-a)3÷a5;

(3)x-5·x2;

(4)(2-2)3;

(5)100÷3-3;

(6) .

三、练习与巩固:

学生独立完成练习10.6中的1、2、3、4、5、7,并相互交流,其中(3)、(4)口答,其它写出过程,体验整数指数幂的性质的具体内容。

四、课堂小结:

今天我们学习了哪些数学知识?

五、布置作业:

练习册:习题10.6

篇9:课题 2.3.2 零次幂和负整数指数幂

课题 2.3.2   零次幂和负整数指数幂

教学目标1 通过探索掌握零次幂和负整数指数幂的意义。 2 会熟练进行零次幂和负整数指数幂的运算。 3 会用科学计数法表示绝对值较少的数。 4 让学生感受从特殊到一般是数学研究的一个重要方法。 教学重点、难点 重点:零次幂和负整数指数幂的公式推导和应用,科学计数法表示绝对值绝对值较少的数。 难点:零次幂和负整数指数幂的理解 教学过程一 创设情境,导入新课1 同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述? 2 这这个公式中,要求m>n,如果m=n,m

篇10:《整数指数幂》八年级数学说课稿

《整数指数幂》八年级数学说课稿

一、本节课的亮点

1、教学流程安排符合学生的认知规律:教学的几个环节紧紧围绕自主预学忆旧知,由旧引新感新知,合作探究探新知,精讲导学用新知,变式训练固新知,小结评学理新知,拓展延伸深化新知的思路展开,由浅入深,步步深入,体现了低起点,小坡度,密台阶,多层次,高落点的设计,由以前学过的正整数指数幂的运算性质引入,让学生思考“当a≠0时,a3÷a5=?为什么?”这个问题,从而引入新课,这个过渡自然,设计巧妙。让学生通过合作学习得出a―n与an互为倒数这个结论后,及时对指数的取值范围扩大到全体整数作了一个归纳,将所学新知及时纳入知识体系,使学生对旧知新知有一个整体把握,从而使学生对新知有一个更好的掌握和理解。

2、教学方法的'选择符合学生实际:整数指数幂是在学生以前学过的正整数指数幂基础上的进一步学习,所以本节课杨老师采用类比正整数指数幂的运算性质来学习整数指数幂运算性质就比较简单容易,可以说是水到渠成,顺理成章,同时让学生在合作互学中对新知的理解和把握也比较容易。特别是在对思考①的处理上,先让学生先利用同底数幂的除法算,然后再用分式的约分计算,通过比较两种方法计算的结果,让学生自己发现规律,得出结论,培养了学生善于观察、思考、归纳的习惯,这也充分体现了导学案的“导学”功能。

3、教学活动安排符合新课程理念要求:以生为本的理念贯彻课堂始终,同时按照“三学小组模式”要求组织教学,预学互学内容安排合理,本节课杨老师以七个活动为主线,以负整数指数幂的性质,整数指数幂的运算性质为核心展开,活动①让学生在动嘴说中有所想,活动②让学生在动脑想中有所思,活动③④让学生在对新知纳入知识系统中对新知有一个整体把握和升华,活动⑤让学生在动手算,观察思考中有所悟,活动⑥让学生在运用新知中有提高,让学生在练习反馈中有所巩固,活动⑦让学生在反思小结中对新知有所整理归纳。整节课通过活动让学生动手,动脑,动口,使学生在课堂中动起来,活起来,想起来,交流起来,学生突出“想,思,悟”,教师突出“引,诱,导”。

4、本节课提现了杨老师的教学基本功扎实:主要体现在板书规范,字体美观,语言亲切,教态自然,时间把握合理。

二、本节课的不足

1、导学案还有优化的空间:活动③让学生计算后,让学生通过观察比较分析活动③的计算结果,然后得出④的结论就比较容易,也可以说是水到渠成,让学生在练习中体会感悟,再归纳指数的取值范围扩大到全体实数这个结论让学生更容易接受,同时也体现了由特殊到一般的数学思想。

2、老师在课堂上还可以讲的或说的更少些:尤其在合作互学环节,一些关键的结论应该先让学生说,其他同学补充,再让另外学生评,最后老师来纠正、补充、归纳效果会更好一些。

3、课堂上要充分暴露学生的思维过程:如在计算时学生直接得出等于这个结果,老师还可以追问:“为什么?”让学生说出计算过程,此处实际上应用了本节课学的很重要的一个结论,如果忽略过去对于中下等学生就还是糊涂的。

总之,本节课杨老师以活动为主线,以教学内容为载体,以让学生类比正整数指数幂的运算性质的学习方法为指导,不仅让学生有所想,有所思,更让学生有所悟,实现让学生快乐学数学,轻松学数学的目标。课堂上数学知识得到了落实,学生能力得到了提升,数学思想方法得到了渗透,我认为是一节非常成功的数学课。

篇11:指数与指数幂的运算教案

指数与指数幂的运算教案

指数与指数幂的运算 第一课:根式 探究新知(一) 1.问题探究: (1)如果 ,那么 就是4的 ;如果 ,那么3就是27的 。 (2)如果 ,那么 叫做 的 ;如果 ,那么 叫做 的  ;    如果 ,那么 叫做 的  。 (3)类比以上结论,一般地,如果 ,那么 叫做 的  。   2.新知: 次方根的定义:           探究新知(二) 1.问题探究: 计算:1)64的3次方根;-32的.5次方根。     2)4的2次方根;16的4次方根;-81的4次方根。     3)0的 次方根。   2.新知:1 次方根的性质和表示:                   2根式的定义:             3.理解新知: 成立的条件是:       探究新知(三) 1.问题探究 (1)根式 表示什么含义?     (2)等式 是否成立?试举例说明。     2.新知:总结常用等式:           新知应用: 例1.必修1课本第50页例1 变式练习:1若将例1(4)中的条件( ) 改为( ),结果是 2若将例1(4)中的条件( )去掉,结果是  。   例2. 若 .     例3. 计算           课堂小结: 1.知识收获:  2.方法收获:  3.思维收获:  当堂检测: 1. (  ) 2. ( ) 3.116的4次方根是 ;2-128的7次方根是  . 4.求值:   ; 5.若 有意义,则 的取值范围是  

篇12:幂的运算教学反思

一、教育教学中的得:

(一)能制定正确教学目标:平时教学中,不仅根据教学大纲的要求,更注重八年级(3)班多数学生的学习基础、水平来制定教学目标。根据我校实际情况,我把平时的教学目标要求定在中等偏上水平,重点内容适当提高,使较尖的学生能取得优秀成绩,对于基础太差的学生,对他们的复习目标只要求达到教学大纲的最基本的要求,强调熟记重要的概念、定理、公式等基础知识,并能掌握基础题的基本解法。通过努力,使全班学生的数学成绩均有所提高。

(二)寓复习于平时教学过程中: 为了完成八年级的教学任务,又要减轻学生在集中复习时间的负担,我把复习内容有计划地分散在平时学习中。从八年级开始教学就有目的地回顾总结。复习了与八年级知识相关联的小学的重要数学知识,结合教材,平时在课堂复习、提问、小测验中有目的的检查复学过知识点。这样做能使第乘方,乘法等已学过的重要知识反复在学生头脑中出现,可以减少遗忘率。

(三)平时在备课中我注意重点备好学生的练习及复习训练题。布置作业做到了有布置就一定有批改,提高了学生的作业质量.自编习题要求中等偏下,多数题目是基本训练,重点题型反复训练,逐步提高,达到了预期的教学效果。

(四)注重课堂教学信息的及时反馈和矫正: 由于八年级学生之间思维的差异及基础知识掌握的差异特别大,给课堂教学带来了很大的难度,因此课堂教学必须从学生实际水平出发,分层次、有针对性地进行复习指导,最终使不同层次的学生通过复习学习达到不同水平。因此我在课堂教学中,注重了解学生的思维过程,对于学生回答的问题要进一步追问,对学生做的选择题和填空题的答案要进一步追问为什么。课堂教学中对学生的练习及时给予积极的评价,提高学生的内驱力,同时及时矫正学生中存在的问题,这样既加深了对知识的理解,同时又使学生及时纠正错误,达到复习的基本要求。

二、教学工作的.失: (一)错误的估计了八年级(3)班学生的学习情况,乐观的认为学生的学习过程及作业过程是正常化的,结果导致走了一段弯路。(二)在八年级数学教学过程中,为了赶教学进度,因此课堂教学中还是出现了讲的多、练的少的现象,结果导致课堂教学的巩固率仅为50%。(三)没有很好的把握教育管理与八年级数学教学的关系。平时在八年级数学教学中花的时间较少,特别是后进生的辅导工作没有真正落到实处。有时对存在问题讲道理多了,具体辅导工作少了. (四)测验及模拟考试注重了对学生的得分情况分析,对学生知识缺漏情况少了统计及分析,少了针对性的评讲,更少了针对性的进行跟踪训练及检查。(五)在平时的课堂教学中没有很好的运用多媒体教学手段,课堂教学的容量总是很小,教学效果不大。

三、今后的教学思路:

1、进一步发扬教学工作中的优点,改正过去工作的不足,虚心学习,不断提高运用多媒体辅助教学的能力,扩大课堂教学容量。

2、进一步激发学生的学习动机,培养学生良好的学习习惯

3、融洽师生情感,提供平等的学习机会,诚心实意的为学生提供优质的服务。

4、进一步巩固固定题型,让学生会做的能做对,不会做的能蒙一部分。

篇13:幂的运算教学反思

本周三公开教学,我授课的课题是《零指数幂与负整数指数幂》。

本节课的内容是在初一学过正整数幂及其运算的基础上展开的。在以前对于同底数幂的除法,要求被除式的指数要大于除式的指数。教材抓住这个条件,展开探索,从约分与同底数幂的除法两个角度“殊途同归”说明了定义零指数与负整数指数幂的合理性,这样,就在运算的需要之下,实现了指数的扩充,然后引导学生利用新的运算进行相关计算。

整节课的教学基本按照预设有条不紊地推进。但出现在主要问题是课前没有对以前学过的幂的运算进行复习,所以在后面指数扩展后进行相关计算时一部分学生因为对运算法则的混淆导致时间浪费较多。

在以后的课中要对学情进行充分的分析,想好各种可能发生的状况的处理。

篇14:幂的乘方教学反思

幂的乘方的设计意图是让学生以“观察D归纳D概括”为主要线索,在自主探索与合作交流中获得知识,使不同层次的学生都能有所收获与发展。从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察、计算、思考、交流、总结,思维能力和有条理的语言表达能力得到培养。在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的教学目标。

幂的乘方是单项式乘除运算的基础,必须让学生牢固掌握。我在教学中采用先复习乘方的意义和同底数幂相乘的性质,再引入幂的乘方的意义和性质,这样比较自然,易于学生理解。

把幂的`乘方的性质应用于计算,培养学生使用一般原理进行演绎推理的能力,教学中应予以重视。我在这个环节的处理力度还不够大,分析的还不够透彻。在这个方面应该让学生正确识别幂的“底”是什么,幂的指数是什么,乘方的指数是什么,然后正确运用幂的乘方的性质进行正确计算。

让学生探究幂的乘方的性质时,发现有少部分学生不能进行必要的推理,而是直接使用教材的结论[幂的乘方,底数不变,指数相乘;用字母表示:(am)n=amn]来解决做一做的内容练习。直接借用结论来使用的学习怕有这样几种情形:(1)学生懒得动脑,做一个实足的“拿来主义”更为合算,这种情况日久会养成一个不愿动脑的习惯,习以为常,学生的推理能力会得到“退化”。(2)学生的数学基础比较差,不知从何入手,也不知如何进行推理――说理为什么?。这种情况的学生应得到数学基础较好的学生或老师必要的帮助或指导。我在指导学生学习幂的乘方时,对学生易混淆的式子或错误从各种性质的本质入手进行必要的区别,从而明确错误的原因何在。学生练习时,并没有鼓励学生直接套用公式(法则)进行解题,而是让他们说明每一步的理由。这样做的目的是让学生进一步体会乘方的意义和幂的意义。

【《零指数幂和负整指数幂》教学反思】相关文章:

1.人教版整数指数幂教学设计

2.《幂的运算》教学反思

3.《幂的运算》复习教学反思

4.同底幂的乘法教学反思

5.Python中比较特别的除法运算和幂运算介绍

6.《整十数加减整十数》教学反思

7.大班认识整时教学反思

8.《商中间和末尾有零的笔算除法》的教学反思

9.《乘数末尾有零的乘法》教学反思

10.《两位数加整十数、一位数》教学反思

下载word文档
《《零指数幂和负整指数幂》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部