欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>中心对称图形剪纸教程

中心对称图形剪纸教程

2022-09-04 08:18:19 收藏本文 下载本文

“是少女屿”通过精心收集,向本站投稿了7篇中心对称图形剪纸教程,下面是小编整理后的中心对称图形剪纸教程,欢迎大家阅读分享借鉴,希望对大家有所帮助。

中心对称图形剪纸教程

篇1:中心对称图形剪纸教程

中心对称图形剪纸教程

首先将纸张对折,至于纸张大小,可以自己斟酌,不能太大不能太小,合适才是王道。

然后在纸张上画出想要剪出来图形一半,注意该图形必须中心轴对称,而且要以对折纸张没开边一侧为轴来画。

画好线条之后,如果担心剪错,可以使用笔标示出一些需要剪掉区域,将其用阴影表示。

接下使用剪刀沿着线条剪开,如果是画在纸张中无法直接剪区域,可以先开一个小口子,再将剪刀伸进去剪。

剪完之后效果如下,展开之后效果也如下(由于我使用是废纸,所以另一边笔迹没有擦除,但不影响擦除一侧画线)。

篇2:中心对称和中心对称图形

教学建议

知识归纳

1.中心对称

把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.

中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.

判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.

篇3:中心对称和中心对称图形

把一个图形绕某一点旋转 ,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.

知识结构

重点、难点分析:

本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点.因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键.

本节课的难点是中心对称与中心对称图形之间的联系和区别.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区别.

教法建议

本节内容和生活结合较多,新课导入可考虑以下方法:

(1)从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,

(2)从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,

(3)从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,

(4)从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,

(5)从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,

(6)从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,

(7)从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。

教学设计示例

教学目标

1.知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。

2.会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。

此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的'观点观察和认识图形,渗透旋转变换的思想。

引导性材料

想一想:怎样的两个图形叫做关于某直线成轴对称?成轴对称的两个图形有什么性质?

(帮助学生复习轴对称的有关知识,为中心对称教学作准备)

画一画:如图4.7-1(1),已知点P和直线L,画出点P关于直线L的对称点P′;如图4.7-1(2),已知线段MN和直线a,画出线段MN关于直线a的对称线段M′N′。

(通过画图形进一步巩固和加深对轴对称的认识)

上述问题由学生回答,教师作必要的提示,并归纳总结成下表:

轴对称

定义三要点

1

2

3

有一条对称轴---直线

图形沿轴对折,即翻转180度

翻转后与另一图形重合

性质

1

2

3

两个图形是全等形

对称轴是对应点连线的垂直平分线

对应线段或延长线相交,交点在对称轴上

观察与思考:图4.7-2所示的图形关于某条直线成轴对称吗?如果是,画出对称轴,如果不是,说明理由。

(教师把图4.7-2的两个图形制成投影片或教具,学生仔细观察后,能发现这两个图形都不是轴对称。然后,教师适时提出问题:这两个图形能不能重合?怎样才能使这两个图形重合呢?让学生观察、探究、讨论,教师可以直观地演示中心对称变换的过程,让学生发现:把其中一个图形统一特殊点旋转180度后能与另一个图形重合。)

教学设计

问题1:你能举出1~2个实例或实物,说明它们也具有上面所说的特性吗?

说明:学生自己举例有助于他们感性地认识中心对称的意义。然后,教师指出:具有这种特性的图形叫做中心对称图形,并介绍对称中心,对称点等概念。

问题2:你能给“中心对称”下一个定义吗?

说明与建议:学生下定义会有困难,教师应及时修正,并给出明确的定义,然后指出定义中的三个要点:(l)有一个对称中心――点;(2)图形绕中心旋转180度;(3)旋转后与另一图形重合。把这三要点填入引导性材料中的空表内,在顶空格内写上“中心对称”字样,以利于写“轴对称”进行比较。

练一练:在图4.7-3中,已知△ABC和△EFG关于点O成中心对称,分别找出图中的对称点和对称线段。

说明与建议:教师可演示△ABC绕点O旋转180度后与△EFG重合的过程,让学生说出点E和点A,点B和点F,点C和点G是对称点;线段AB和EF、线段AC和EG,线段BC和FG都是对称线段。教师还可向学生指出,图4.7-3中,点A、O、E在一条直线上,点C、O、G在一条直线上,点B、O、F在一条直线上,且AO=EO,BO=FO,CO=GO。

问题3:从上面的练习及分析中,可以看出关于中心对称的两个图形具有哪些性质?

说明与建议:引导学生总结出关于中心对称的两个图形的性质:定理l---关于中心对称的两个图形是全等形;定理2――关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

问题4:定理2的题设和结论各是什么?试说出它的逆命题。

说明与建议:学生解答此题有困难,教师要及时引导。特别是叙述命题时,学生常常照搬“对称点”、“对称中心”这些词语,教师应指出:由于没有“两个图形关于中心对称”的前提,所以不能使用“对称点”、“对称中心”这样的词语,而要改为“对应如”、“某一点”。最后,教师应完整地叙述这个逆命题---如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于点对称。

问题5:怎样证明这个逆命题是正确的?

说明与建议:证明过程应在教师的引导下,师生共同完成。由已知条件――对应点的连线都经过某一点,并且被这一点平分,可以知道:若把其中一个图形绕着这点旋转180度,它必定于另一个图形重合,因此,根据定义可以判定这两个图形关于这一点对称。这个逆命题即为逆定理。根据这个逆定理,可以判定两个图形关于一点对称,也可以画出已知图形关于一点的对称图形。

练一练:访画出图4.7-4中,线段PQ关于点O的对称线段P′Q′。

(画法如下:(1)连结PO,延长PO到P′,使OP′=OP,点P′就是点P关于点O的对称点,(2)连结QO,延长QO到Q′,使Q′Q=OQ,点Q′就是点Q的对称点,则PQ′就是线段PQ关于O点的对称线段。教师应指出:画一个图形关于某点的中心对称图形,关键是画“对称点”。比如,画一个三角形关于某点的中心对称三角形,只要画出三角形三个顶点的对称点,就可以画出所要求的三角形。)

例题解析

课本例题

说明:(l)教师应让学生读题分析,给每个学生印发一张印有图4.7-5的纸,让学生动手画图。(2)画好图后让学生总结:画多边形的中心对称图形只要画出多边形各顶点的对称点,即能画出所求的对称图形。

课堂练习

课本例后练习第1、2题。

(对第2题,应先画出图形,然后按照中心对称的定义或逆定理来说明理由。第2题的第(1)小题可用定义说明,第2题的第(2)小题可根据逆定理来说明。这里把平行四边形的对角顶点和平行四边形的对边分别看成两个图形:分别是两个点和两条线段。)

1.

2.中心对称与轴对称有什么不同?

中心对称――图形绕点旋转180度。

轴对称――图形沿轴翻折180度。

作业

1.课本习题4.4A组第1题(1)。

2.课本习题4.4A组第3、4题。

篇4:轴对称图形剪纸教程

轴对称图形剪纸教程

首先将纸张对折,至于纸张大小,可以自己斟酌,不能太大不能太小,合适才是王道。

然后在纸张上画出想要剪出来图形一半,注意该图形必须中心轴对称,而且要以对折纸张没开边一侧为轴来画。

画好线条之后,如果担心剪错,可以使用笔标示出一些需要剪掉区域,将其用阴影表示。

接下使用剪刀沿线条剪开,如果是画在纸张中无法直接剪区域,可以先开一个小口子,再将剪刀伸进去剪。

剪完之后效果如下,展开之后效果也如下(由于我使用是废纸,所以另一边笔迹没有擦除,但不影响擦除一侧画线)。

篇5:数学教案-中心对称和中心对称图形

教学建议

知识归纳

1.中心对称

把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.

中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.

判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.

2.中心对称图形

把一个图形绕某一点旋转 ,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.

知识结构

重点、难点分析:

本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点.因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键.

本节课的难点是中心对称与中心对称图形之间的联系和区别.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区别.

教法建议

本节内容和生活结合较多,新课导入  可考虑以下方法:

(1)从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,

(2)从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,

(3)从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,

(4)从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,

(5)从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,

(6)从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,

(7)从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。

教学设计示例

教学目标

1.知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。

2.会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。

此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的观点观察和认识图形,渗透旋转变换的思想。

引导性材料

想一想:怎样的两个图形叫做关于某直线成轴对称?成轴对称的两个图形有什么性质?

(帮助学生复习轴对称的有关知识,为中心对称教学作准备)

画一画:如图4.7-1(1),已知点P和直线L,画出点P关于直线L的`对称点P′;如图4.7-1(2),已知线段MN和直线a,画出线段MN关于直线a的对称线段M′N′。

(通过画图形进一步巩固和加深对轴对称的认识)

上述问题由学生回答,教师作必要的提示,并归纳总结成下表:

轴对称

定义三要点

1

2

3

有一条对称轴---直线

图形沿轴对折,即翻转180度

翻转后与另一图形重合

性质

1

2

3

两个图形是全等形

对称轴是对应点连线的垂直平分线

对应线段或延长线相交,交点在对称轴上

观察与思考:图4.7-2所示的图形关于某条直线成轴对称吗?如果是,画出对称轴,如果不是,说明理由。

(教师把图4.7-2的两个图形制成投影片或教具,学生仔细观察后,能发现这两个图形都不是轴对称。然后,教师适时提出问题:这两个图形能不能重合?怎样才能使这两个图形重合呢?让学生观察、探究、讨论,教师可以直观地演示中心对称变换的过程,让学生发现:把其中一个图形统一特殊点旋转180度后能与另一个图形重合。)

教学设计

问题1:你能举出1~2个实例或实物,说明它们也具有上面所说的特性吗?

说明:学生自己举例有助于他们感性地认识中心对称的意义。然后,教师指出:具有这种特性的图形叫做中心对称图形,并介绍对称中心,对称点等概念。

问题2:你能给“中心对称”下一个定义吗?

说明与建议:学生下定义会有困难,教师应及时修正,并给出明确的定义,然后指出定义中的三个要点:(l)有一个对称中心――点;(2)图形绕中心旋转180度;(3)旋转后与另一图形重合。把这三要点填入引导性材料中的空表内,在顶空格内写上“中心对称”字样,以利于写“轴对称”进行比较。

练一练:在图4.7-3中,已知△ABC和△EFG关于点O成中心对称,分别找出图中的对称点和对称线段。

说明与建议:教师可演示△ABC绕点O旋转180度后与△EFG重合的过程,让学生说出点E和点A,点B和点F,点C和点G是对称点;线段AB和EF、线段AC和EG,线段BC和FG都是对称线段。教师还可向学生指出,图4.7-3中,点A、O、E在一条直线上,点C、O、G在一条直线上,点B、O、F在一条直线上,且AO=EO,BO=FO,CO=GO。

问题3:从上面的练习及分析中,可以看出关于中心对称的两个图形具有哪些性质?

说明与建议:引导学生总结出关于中心对称的两个图形的性质:定理l---关于中心对称的两个图形是全等形;定理2――关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

问题4:定理2的题设和结论各是什么?试说出它的逆命题。

说明与建议:学生解答此题有困难,教师要及时引导。特别是叙述命题时,学生常常照搬“对称点”、“对称中心”这些词语,教师应指出:由于没有“两个图形关于中心对称”的前提,所以不能使用“对称点”、“对称中心”这样的词语,而要改为“对应如”、“某一点”。最后,教师应完整地叙述这个逆命题---如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于点对称。

问题5:怎样证明这个逆命题是正确的?

说明与建议:证明过程应在教师的引导下,师生共同完成。由已知条件――对应点的连线都经过某一点,并且被这一点平分,可以知道:若把其中一个图形绕着这点旋转180度,它必定于另一个图形重合,因此,根据定义可以判定这两个图形关于这一点对称。这个逆命题即为逆定理。根据这个逆定理,可以判定两个图形关于一点对称,也可以画出已知图形关于一点的对称图形。

练一练:访画出图4.7-4中,线段PQ关于点O的对称线段P′Q′。

(画法如下:(1)连结PO,延长PO到P′,使OP′=OP,点P′就是点P关于点O的对称点,(2)连结QO,延长QO到Q′,使Q′Q=OQ,点Q′就是点Q的对称点,则PQ′就是线段PQ关于O点的对称线段。教师应指出:画一个图形关于某点的中心对称图形,关键是画“对称点”。比如,画一个三角形关于某点的中心对称三角形,只要画出三角形三个顶点的对称点,就可以画出所要求的三角形。)

例题解析

课本例题

说明:(l)教师应让学生读题分析,给每个学生印发一张印有图4.7-5的纸,让学生动手画图。(2)画好图后让学生总结:画多边形的中心对称图形只要画出多边形各顶点的对称点,即能画出所求的对称图形。

课堂练习

课本例后练习第1、2题。

(对第2题,应先画出图形,然后按照中心对称的定义或逆定理来说明理由。第2题的第(1)小题可用定义说明,第2题的第(2)小题可根据逆定理来说明。这里把平行四边形的对角顶点和平行四边形的对边分别看成两个图形:分别是两个点和两条线段。)

1.

2.中心对称与轴对称有什么不同?

中心对称――图形绕点旋转180度。

轴对称――图形沿轴翻折180度。

作业

1.课本习题4.4A组第1题(1)。

2.课本习题4.4A组第3、4题。

篇6:《中心对称图形》教案

《中心对称图形》教案

《中心对称图形》教案 【教学目标】 一、知识与技能 让学生经历观察、探究、发现、讨论、阅读的过程,学习中心对称图形的定义和性质。 二、过程与方法 1、 通过学生动手、合作和讨论,培养学生的参与意识,加强学生的合作与交流精神。 2、 同时使学生积累一定的审美体验。 三、情感态度与价值观 激发学生学习数学的兴趣,使学生更加喜欢数学。 【教学重点】中心对称图形的定义、性质。 【教学难点】探究、发现中心对称图形的定义。 【教学过程】 一、情景导入 师:同学们,你们看过魔术表演吗?喜不喜欢? 师:(魔术表演) 前几天我找了一位魔术大师学了个小魔术,现在给大家表演一下,我手中现在有几张扑克牌,下面请一位同学上台来,你任意抽出一张扑克牌,自己看一下,让其它同学看一下,然后把这张牌旋转180 后再插入,再把牌洗几下,展开扑克牌,我马上就能确定这位同学抽出的扑克牌。 好,再找一位同学试一下。我又马上就能确定这位同学抽出的扑克牌。 师:同学们感觉很神秘吧,你想知道其中的奥秘吗? 师:学习了这节课之后,我相信你一定会知道其中的奥密,带着这个问题,这节课我们就来学习中心对称图形。 二、新授过程 1、师:我们首先来看生活中的几个图片。(课件出示图片) 课件出示问题: (1)这些图形有什么共同的特征?(学生回答) (2)你能将风车或正六边形绕其中的一个点旋转180度,使旋转前后的图形完全重合吗?  (同桌合作旋转风车或正六边形.) 4、师:像刚才这类的图形我们给它个名称叫中心对称图形,那通过刚才的探究和演示,你能给中心对称图形下个定义吗?(课件出示中心对称图形的定义在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。我们把这个点叫做它的对称中心。 三、议一议 1、生活中,有许多图形都是中心对称图形。你举出生活中的.一些中心对称图形吗。 2、学生讨论后回答。(课件出示生活中的图形) 3、老师也搜集了很多的中心对称图形,我们一起来欣赏一下,看看有没有大家认识的图案。 四、探索性质 1、这些中心对称图形,都是生活中我们经常能见过的。如果具体到数学练习中,你还能迅速地判断出来吗?请大家看这些图形,找出哪些是中心对称图形?(学生做练习) 2、掌握了中心对称图形的定义,现在我们要来了解一下中心对称图形有哪些性质呢?同学们看,这就是我们前面观察过的风车,我们己经知道,它就是一幅中心对称图形,(课件上的一段话)现在就请你们拿出直尺测量一下,看看OA与OB的长度,看看他们有怎样的数量关系。(完成课件上习题) 3、现在谁能用文字来描述中心对称图形的性质。(学生说) 4、课件出示中心对称图形的性质,全班同学读一遍。 五、对比轴对称图形与中心对称图形。 现在我们回忆一下,到目前为止,我们学过了几种对称图形(轴对称和中心对称)出示课件二十。2、5不是中心对称图形,那它是不是轴对称图形呢?那1、3、4、6呢?那轴对称图形和中心对称图形到底有什么区别呢?小组合作,讨论后完成这张表格。 (学生完成表格,教师指导) 六、做一做。 1、同桌合作,验证平行四边形是不是中心对称图形,如果是,请找出它的对称中心。 2、通过上面的实验活动,你能验证平行四边形的哪些性质    3除了平行四边形,你还能找到哪些多边形是中心对称图形?  4、正方形是中心对称图形,那它绕两条对条线的交点旋转多少度能与原来的图形重合,能由此验证正方形的一些特殊性质吗 在26个英文大写正体字母中,哪些字母是中心对称图形?  5、中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?(日、王、一、申、中、) 七、魔术揭密 今天大家表现得非常好,现在就回到我们课前的小魔术,首先我要告诉大家的是,老师选得牌,牌面上的点数是很有特点的。然后我要说的是当你抽出一张牌交给我,我放回去的时候就把那张牌旋转了一百八十度。现在,有谁能揭出魔术的秘密。   解密: 老师在魔术表演前,把这些牌按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180 后,就可以马上在四张扑克牌中找出它。  4、这个小魔术的秘密我们已经揭开了,现在你也可以成为魔术师了,同桌合作,试着表演一下。 5、完成猜一猜。 七、课堂小结 通过本节课的学习请你谈谈有何收获?    

篇7:对称图形剪纸的教程

对称图形剪纸的教程

1、准备一些蜡光纸(或色纸、白纸),衬托色纸。

2、用一张薄的白纸或色纸,对准纸的中间,两边对称,对折。如下图:

3、在对折好的纸相连的一面画上你喜欢的动物,检查相连之处画得是否有相连。如下图:

4、把画好的动物剪出来,注意处理叠折边的连接,不要剪断。如下图:

5、把剪出来的动物揭开,小心不要弄坏了。如下图:

剪纸的刀法:

绘画注重笔墨,剪纸讲究刀法,是技巧,也是一种意趣。绘画有笔断意连、笔不到意到的意趣,剪纸有刀口刻露、行迹昭著的美感。艺术若没有正当的意趣,各不成了枯燥无味和概念化的东西么。

绘画落笔成点,拖点成线,一波三折产生韵律节奏感;剪纸运刀有曲有直,刚柔结合,也产生律动的美。而剪纸的刀触有别于绘画的笔墨行迹,与木刻虽同属刀笔,由于工具、材料和刻制方法不同,刀触效果又不同。显露刀味纸感的剪纸艺术,其刀法,刀味,也是构成剪纸形式美的一个重要因素。

从剪纸的装饰纹样中可看出锯齿纹、月牙纹等在剪纸中的'作用,沿传数百年不衰,且日益发展,其内在联系就是适应剪纸工具的性能,它们是剪纸刀笔的必然产物。锯齿纹貌似精工、复杂,若在绘画上用笔描绘那是很不得力的,但在剪纸刀笔的作用下,却得心应手而行刀灵便。月牙纹作为剪纸特有的线条,长长短短,曲曲直直,变化多端,能随刀笔的运动自然出现,甚随意。若剪刻两条粗细均匀的平行线,那是很费劲的,非得认真对付不可,但若刻月牙纹则骤然改变了窘境而不露破绽。

锯齿纹和月牙纹,有曲有直,概括出剪纸线条的两种基本性质,曲直相交又出现一种锐角形式,于是曲、直、锐在剪纸中广泛出现。朵花、云纹、水纹和涡纹等也在此基础上被概括出来。

分析剪纸的刀法,就得了解刀具的性能、特点及造成的效果。剪纸的刀具并不复杂,可一具多用,而用刀之法和出现的效果,以及如何表现,则因人而异,需认真研究和予以重视。

我国剪纸有剪的,有刻的,还有剪刻并施的。民间剪纸以剪居多,近几十年由于新剪纸表现以人物为主,需要准确和提高产量,大多转向了刻。剪纸的刀法中,有剪、刻、划、切、压和针刺等多种技法。切,即用刀向下一按,多切出短而直的刀口,如有的锯齿纹就是一左一右一刀刀切出的。滕凤谦的“游刀”属于一种划刻,线条在刀具的划动中出现;又有的作者在玻璃上刻制,也是一种划刻。刻,就是象拉锯似的上下抽动刻刀,徐徐移动,刻曲线很方便,刻精细之处也多用它,比较准确,灵便。压和针刺,就是用刀尖或针尖在形象的适当部位轻轻一压或一按,仅留下凹下的印痕,并未剔下纸屑,表面皮毛和花、叶的脉络式的细小点子时多用它,在间剪纸中多见。它作法细腻、含蓄,起着丰富的作用,有种特殊的装饰效果。总之,各有自己的特长。

一种刀法不限于刻一种性质的线条,曲线可以刻,也可以划;直线可以切,也可以划或刻,随作者的习惯手法。但刀法不同,造成的效果和流露的自然风韵不同。游刀给人泼辣、奔放之感;切给人刚健、直硬的印象;刻,走线均匀而准确;压和针刺又给人含蓄、细腻的美感,各有千秋。有时一根线条可以结合多种刀法,一端是切,另一端是划或刻。又如表现胳膊或腿的肌肉,内廓线是刻出的曲线刀迹,外轮廓线是切或划出直线或曲线。曲直变化在行刀的过程中,随起止、行顿、转向,在力量和速度的作用下,自然形成有节奏的变化,有方有圆,刚柔兼备,“寓刚健于舸娜之中,行遒劲于媚婉之内”,从而产生剪纸刀笔特有的节奏韵律感和装饰意趣:脆响、爽利、挺健而劲拔,给人洒脱、淋漓富于变化的美感。

剪出和刻出的刀趣不完全相同。剪,刀迹干净,线条爽洁,没有刻的顿挫行迹;而刻有时显得更拙朴些。

剪纸的工具虽简单,运用熟练和巧妙,意趣是无尽的。“巧手一具多用”。只有深刻理解它和牢牢把握它,才能完好地发挥它的作用。

一个剪纸艺术家,在构思过程中虽进行多方面的筹划、考虑,但一起稿就得联系到刀法的运用,在黑白稿的画面上和线条的归纳中为用刀作好准备。绝不能任意画完,与绘画没有区别,过完刀就算。

【中心对称图形剪纸教程】相关文章:

1.对称图形剪纸的教程

2.纸花剪纸教程

3.向日葵植物剪纸教程

4.剪纸对称图案教程

5.小雪花剪纸教程

6.儿童小兔子剪纸教程

7.四折团花剪纸教程

8.春节福字剪纸教程

9.儿童剪纸桃花图案教程

10.双喜的简单剪纸教程

下载word文档
《中心对称图形剪纸教程.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部