圆锥体体积公式
“青花椒卷卷堡”通过精心收集,向本站投稿了6篇圆锥体体积公式,下面是小编为大家整理后的圆锥体体积公式,仅供大家参考借鉴,希望大家喜欢,并能积极分享!
篇1:圆锥体表面积公式是什么?
在上《圆柱与圆锥》这单元中的圆锥时,蔡老师运用实物教学向我们详细地介绍了圆锥的特点,之后蔡老师问了一句:“你们还想知道有关圆锥的哪些内容呢?”
“表面积!”
“体积!”看来大多数同学竟和我的想法一样,真是英雄所见略同啊!
“圆锥的表面积等你们到初三再学,现在我们来看体积。”蔡老师只满足了我们的一个愿望。
“唉!为什么还要等三年呀!”见大家都无精打采了,蔡老师解释说“求圆锥体的表面积得用上母线l以及扇形圆心角的度数,这些对你们来说太深奥了,有兴趣的同学可以自己试着推算,遇到不懂的到办公室找我。”
我的兴趣被蔡老师的解释彻底吊起来了,好,非得把这难题攻克!回到家里,我苦思冥想,在多次检验之后,我终于推导出圆锥的表面积公式。推导过程如下:
如果用r来表示底面半径,l表示圆锥的母线,n°表示圆锥侧面扇形的圆心角的度数,则底面周长为2πr,所以扇形的弧线长度也为2πr,而弧线长度(扇形所占圆周长)就等于n°/360°.扇形所占圆是以以母线l为半径的,所以它的周长为2πr,得出
n/360 = 2πr/2πl = r/l
r/ l就是弧线长度与扇形所占圆周长之比,也就是扇形与扇形所占圆的面积之比,
所以,只需求出扇形所占圆的面积再乘以r/l便可以得出扇形的面积。而扇形所占圆的面积为πl2,即可得出:
S侧 = πl2×r/l
= πrl
向前再推一步,又得出扇形面积的计算公式:
S侧 =πrl
=1/2×2πr×l
= 1/2×底面弧线长× 母线长
由此推导出圆锥侧面扇形面积等于πrl ,等于3.14乘以底面半径再乘以母线即可。圆锥的表面积为侧面积加底面积,又为:
S表 = S侧+S底
=πrl+πr2
=πrl+πr×r
=πr(l+r)
由此得出圆锥表面积计算公式。这样,在制作圆锥时可以根据底面圆来确定侧面扇形圆心角的度数,也可以不剪开一个圆锥就知道它的表面积了。
中学数学教材中知识点的抽象性和隐含性比其它学科显得更为突出.数学中的知识点要通过想象思维和逻辑推理才能揭示,由于学生受思维和推理能力的限制,以及没有阅读数学课本的习惯,许多学生对数学教材看不懂,不理解.为了完成中学数学的教学目的和任务,首先教师要认真钻研和熟悉教材,把蕴藏在教材中那些隐含的知识点挖掘出来,帮助学生理解教材和掌握教材,以培养学生的研究能力.
篇2:圆锥体体积教学设计
迎江区长风乡新义小学 程方苗
【教学内容】
小学数学人教版第12册42页―43页
【教学目标】
1、经历回顾、猜想、验证的过程,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.引导学生动脑、动手,培养学生的理解数学思想、掌握数学方法、解决数学问题的能力。
3、培养学生个人的自主学习能力和小组合作学习的能力。 教学重点和难点:理解圆锥体体积公式的推导,掌握数学方法、解决数学问题。
【教具准备】
1、等底等高的圆柱体和圆锥体
2、多媒体课件设计。
【教学过程】
一、回顾推导过程,体悟数学思想。
请同学们想一想过去在学习周长、面积和体积时是怎样推导计算方法的?(引导学生回顾推导过程)
师生共同总结:
圆的周长:运用比较的方法,比较圆的周长和它的直径的关系,
发现圆的周长总是它的直径3倍多一点。
圆柱体体积:运用转化的方法,把圆柱体切开拼合成近似的长方体,圆柱体的`底面就是长方体的底面,圆柱体的高就是长方体的高。
板书:圆的周长:运用比较的方法。圆柱体体积:运用转化的方法。
二、引入课题:
1、多媒体演示:(1)以AB为轴旋转一周得到
的是一个圆柱体。
(2)连接AD截去ACD部分,以AB为轴转
一周得到的是一个圆锥体。
B D A C 2、学生观察思考:(1)上面得到的转一周得到的圆锥体和圆柱体有什么关系?(圆锥体和圆柱等底等高)(2)如何计算圆锥体的体积?
3、引入课题:今天我们所要研究的课题就是圆锥体的体积,板书课题。
三、引导学生猜想:
1、尝试运用转化的方法来探讨圆锥体体积计算方法:我们能借鉴上面的转化方法把圆锥体切开拼合成我们学过的图形吗?
教师:借鉴这种方法,是不能找到圆锥体体积计算方法的。
2、如果运用比较的方法,应该把圆锥体和什么形体比较? 从上面的多媒体演示,你有什么启发?你会猜想圆锥体体积和等底等高圆柱体体积有什么关系?
生1:我认为圆锥体体积是等底等高圆柱体体积的,因为…… 21
生2:我认为圆锥体体积是等底等高圆柱体体积的,因为…… 生3:我认为圆锥体体积是等底等高圆柱体体积的,因为…… 4311
四、验证猜想:
师:圆锥体体积到底是等底等高圆柱体体积的几分之几?你能什么方法来验证?
1、提供学具:
(1)透明的圆锥体量杯和等底等高的圆柱体量杯。
(2)圆柱体实物模型、若干个等底等高同材质的圆锥体模型和天平。指导学生分组进行操作实验。
2、学生分组实验:
(1)用圆锥体量杯装满水,倒入等底等高的圆柱体量杯里,倒入3次正好装满。
(2)在天平的一边放入圆柱体,另一边放入3个圆锥体,天平正好平衡。(当体积相等时它的质量也相等)
A、谁来汇报一下,你们组是怎样做实验的?
B、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(小组交流、学生代表发言:圆柱体的体积是等底等高圆锥体体积的3倍)
师:同学们得出这个结论非常重要,其他组也是这样的吗? (指名发言)
3、不是任何一个圆柱体的体积都是任何一个圆锥体体积的3
倍 。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个小圆锥体里装满了水,往这个大圆柱体里倒,倒三次能倒满吗?为什么?
4、全班共同总结:圆柱体的体积是等底等高圆锥体体积的3倍
5、我们学过用字母表示数,谁来把这个公式整理一下?指名发言、根据学生发言板书:
圆锥体的体积=底面面积×高÷3
五、应用拓展:
师:今后我们求圆锥体体积就用这种方法来计算。
1.出示例1:学生读题,理解题意,自己解决问题。
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
A 、学生完成后,进行小组交流。
B 、你是怎样想的和怎样解决问题。(提问学生多人)
C 、教师板书::×19×12=76(立方厘米) 31v?13sh
答:它的体积是76立方米。
2、出示例2:要求学生自己读题,理解题意思。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:
1?4?3.14????1.2?3?2?
2表示什么?为什么要先求圆锥的体积?得数保
留整千克数是什么意思?
3、比较:例1和例2有什么地方不同?
A、例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;
B、例1 是直接求体积,例2是求出体积后再求重量。我们已经学会了求圆锥体的体积,
4、现在我们来解决有关圆锥体体积的问题。
(1)、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
(2)、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
[把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米]
16立方米 ○23立方米 ○32立方米 ○
5、拓展题:要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)
指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。
六、总结全课:这节课你有什么收获?
篇3:圆锥体的体积说课稿
各位领导、各位同仁:
大家好!
今天我说课的内容是冀教版小学数学六年级下册第35-36页。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
一、说教材
1、教材分析
《圆锥的体积》教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积计算公式的过程,引导学生在装沙或装水的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验,经历数学化的过程,获得解决问题的方法。
2、学情分析
六年级的学生具备以下知识和技能:掌握了长方体、正方体的表面积和体积的含义及其计算方法,并掌握了圆柱的表面积和体积的计算方法,理解了圆柱和圆锥的特征。初步经历了“类比猜想——验证说明”的探索过程。能够小组合作、动手完成一些简单的实践活动。在教学中不光要让学生们知其然,还要让他们知其所以然,即深挖知识间的内在联系。
3、教学目标
知识与技能目标:引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。
过程与方法目标:通过实验推导圆锥体积公式的过程,培养学生的观察,猜测、操作能力,培养学生良好的合作探究意识,引导学生掌握正确的学习方法。
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点
教学重点:理解和掌握公式,能正确运用公式解决实际问题
教学难点:圆锥体积公式的推导过程
5、教具、学具准备
教具:一个圆柱、1个与圆柱等底、等高的圆锥、水;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺、沙子等
二、说教法
在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:
①、让学生测量比较自制圆柱、圆锥的高;
②、让学生用自制的等底等高、不等高等底圆柱与圆锥分别装沙实验入手。
通过学生自己动手测量、实验操作后总结实验规律。通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:V= Sh,然后通过让学生列举身边的实例,引入实际运用。这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
三、说学法
以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。
新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。
针对本节,在学法上主要采取:
1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。
2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。
3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课的教学,我安排了5个教学程序:
1、激趣导入,设疑自探:
通过与学生关于买冰激凌的的对话,引导学生回忆圆柱体积的计算方法,提出圆锥的体积这一概念。
2、探索新知,解疑合探
小组合作,用自制等底等高、不等底等高的圆柱圆锥装沙子进行实验,从而得出等底等高的情况下,圆柱的体积是圆锥的三倍,圆锥的体积是圆柱的三分之一。推导出圆锥的体积公式V = S·h
3、运用公式,质疑再探
引导学生回到导入环节,运用总结出的公式计算圆锥形冰激凌的体积,解决买冰激凌的方案。然后出示圆锥形图片,给出直径和高,有学生自主解答,将知识进一步延伸。
4、课堂练习,拓展运用
由学生回顾整理本节课的主要内容,即圆锥的体积计算方法,同时引导学生加深对乘三分之一的记忆。
5、全课小结,布置作业
通过一些具有一定难度的练习题,使学生能够较好地运用圆柱与圆锥的关系,体会圆柱与圆锥之间只有在等底等高的情况下才有三倍的关系,合理布置本节课的作业,课下加深巩固。
五、说板书
板书内容力求醒目,字母公式使用彩色大字标示:
圆锥的体积
圆柱的体积=底面积×高
V = S·h圆锥的体积=圆柱的体积=底面积×高
篇4:圆柱体和圆锥体体积的复习
教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;
教学准备:幻灯片、电脑制图
教学过程:
一. 出示课题,引人复习内容;
1.同学们,今天这节课,我们要进行“圆柱体和圆锥体体积的复习”;
板书课题
2.圆柱体的体积怎么求?
板书:V圆柱=Sh
3.圆锥体的体积怎么求?
板书:V圆锥=1/3 Sh
4.公式中的 s、h分别表示什么?1/3表示什么?
小结:求圆柱体和圆锥体的.体积,首先要正确应用公式。
板书:1.正确应用公式
当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?
二. 基础练习
根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)
计算这些形体的体积:
(1)S底=1.5平方米 h=5 米 求V圆柱
(2)S底=1.5平方米 h=5 米 求V圆锥
(3)r=10分米 h=2 米 求V圆柱
(4)C=6.28米 h=6 米 求V圆锥
(1)、(2)两题条件相同,所求不同;
板书:2. 圆锥体积一定要乘 1/3
(3)、(4)两题都要先求出底面积;
板书:3. 单位名称要统一
三. 实际应用练习:
我们还可应用到生活中去解决一些实际问题:(幻灯出示)
1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?
默读后问同学:做这道题前有没有准备工作要做?(单位要统一)
2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?
默读后问同学:要注意麦堆是什么形状?
请两位同学板演,其余在本子上自练;
3.小结:在解这两题时都用到了什么计算?
四. 提高练习:
(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?
(电脑出示图案)观察水面变化情况,求什么?
1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?
2. S可以通过哪个条件求?( r=10厘米)
3.体积是什么呢?(电脑屏幕逐步演示)
(1)当钢材放入时水面上升,取出时水面下降,和什么有关?
(2)放入时水面为什么会上升?
(3)圆锥体占据了水桶里哪一部分水的体积?
(4)上升的水的体积等于什么?
(5)求圆锥形钢材的体积就是求什么?
(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)
(7)板演,同学自练;
五. 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)
1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)
2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;
3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。
六、总结:
这节课我们复习了什么?
篇5:圆锥体的体积教学课件
圆锥体的体积教学课件
为了使学生理解和掌握圆锥体积的计算公式,会运用公式计算圆锥的体积并解决简单的实际问题,整理了圆锥体的体积的教学课件,欢迎欣赏!
教学目的:
1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。
2、让学生经历猜想——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。
3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。
教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题。
教学过程:
一、复习
1、圆锥有什么特征?
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、导人新课
我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的'体积
三、新课
1、教学圆锥体积的计算公式。
教师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
教师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
学生:3次。
教师:这说明了什么?
学生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
板书:圆锥的体积=1/3×圆柱体积
教师:圆柱的体积等于什么?
学生:等于“底面积×高”。
教师:那么,圆锥的体积可以怎样表示呢?
引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积=1/3×底面积×高
教师:用字母应该怎样表示?
然后板书字母公式:V=1/3SH
2、教学例1。
一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
教师:这道题已知什么?求什么?
指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算?
引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
3、做第50页“做一做”的第1题。
让学生独立做在练习本上,教师行间巡视。
做完后集体订正。
4、教学例2。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
教师:这道题已知什么?求什么?
学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量。
教师:要求小麦的重量,必须先求出什么?
学生:必须先求出这堆小麦的体积。
教师:要求这堆小麦的体积又该怎么办?
学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。
教师:但是题目的条件中不知道圆锥的底面积,应该怎么办。?
学生:先算出麦堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出麦堆的体积。
教师:求得小麦的体积后.应该怎样求小麦的重量?
学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。
分析完后,指定两名学生板演.其余学生将计算步骤写在教科书第50页上。做完后集体订正,注意学生最后得数的取舍方法是否正确。教师要说明小麦每立方米的重量随着含水量的不同而不同,要经过量才能确定,735千克并不是一个固定的常数
(2)组织学生讨论,怎样测量小麦堆的底面直径和高?
讨论后.先让学生说出自己的想法.然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在小麦堆两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围上一圈量得小麦堆的周长,再算出直径。测量小麦堆的高。可用两根竹竿.将一根竹竿过小麦堆的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。
5、做“做一做”的第2题。
教师:这道题应该先求什么?
学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。
做完后集体订正。
四、小结(略)
五、课堂练习
1、做练习九的第3题。
指定3名学生在黑板上板演,其余学生做在练习本上。
集体订正时.让学生说一说自己的计算方法。
2,做练习九的第4题。
教师可以让学生回答以下问题:
(1)这道题已知什么?求什么?
(2)求圆锥的体积必须知道什么?
(3)求出这堆煤的体积后,应该怎样计算这堆煤的重量?
然后让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习九的第5题。
教师指名学生先后回答下面问题:
(1)圆柱的侧面积等于多少?
(2)圆柱的表面积的含义是什么?怎样计算?
(3)圆柱体积的计算公式是什么?
(4)圆锥的体积公式是什么?
然后,让学生把计算结果填写在教科书第51页的表格中。做完后集体订正。
篇6:圆球体积公式
球体的相关定义
1、在空间中到定点的距离等于或小于定长的点的集合叫做球体,简称球。(从集合角度下的定义)
2、以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。(从旋转的角度下的定义)
3、以圆的直径所在直线为旋转轴,圆面旋转180°形成的'旋转体叫做球体,简称球。(从旋转的角度下的定义)
4、在空间中到定点的距离等于定长的点的集合叫做球面即球的表面。这个定点叫球的球心,定长叫球的半径。
【圆锥体体积公式】相关文章:
1.圆锥体的体积
2.长方体体积公式
4.圆柱的体积公式
6.棱台的体积公式
7.三角锥的体积公式
10.四棱台体积公式及推导过程






文档为doc格式