七年级一元一次方程
“顺强玉”通过精心收集,向本站投稿了6篇七年级一元一次方程,下面是小编精心整理后的七年级一元一次方程,希望能够帮助到大家。
篇1:七年级一元一次方程
七年级一元一次方程知识点
1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度?时间 ;
(2)工程问题:工作量=工效?工时 ;
工程问题常用等量关系:先做的+后做的=完成量
(3)顺水逆水问题:
顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)÷2
顺水逆水问题常用等量关系:顺水路程=逆水路程
(4)商品利润问题:售价=定价 , ;
利润问题常用等量关系:售价-进价=利润
(5)配套问题:
(6)分配问题:
七年级一元一次方程练习题及答案
一、选择题
1、方程3x+6=2x-8移项后,正确的是( )
A.3x+2x=6-8 B.3x-2x=-8+6
C.3x-2x=-6-8 D.3x-2x=8-6
2、方程7(2x-1)-3(4x-1)=11去括号后,正确的是( )
A.14x-7-12x+1=11 B. 14x-1-12x-3=11
C. 14x-7-12x+3=11 D. 14x-1-12x+3=11
3、如果代数式 与 的值互为相反数,则 的值等于( )
A. B. C. D.
4、如果 与 是同类项,则 是( )
A.2 B.1 C. D.0
5、已知矩形周长为20cm,设长为 cm,则宽为 ( )
A. B. C. D.
二、填空题
1、方程2x-0.3=1.2+3x移项得 .
2、方程12-(2x-4)= -(x-7)去括号得 .
3、若︱a﹣1︱+(b+2)2=0,则ab= .
4、若3x+2与﹣2x+1互为相反数,则x-2的值是 .
5、若2(4a﹣2)﹣6 = 3(4a﹣2),则代数式a2﹣3a + 4= .
三、解答题
1、解下列方程
(1)3(2x+5)=2(4x+3)-3
(2)4y﹣3(20﹣y)=6y﹣7(9﹣y) (3)7(2x-1)-3(4x-1)=4(3x+2)-1
1、观察方程 [ (x-4)-6]=2x+1的特点,你有好的解法吗?写出你的解法.
【知能升级】
1、已知a是整数,且a比0大,比10小.请你设法找出a的一些数值,使关于x的方程
1― ax=―5的解是偶数,看看你能找出几个.
2、解方程
(1)|4x-1|=7 (2)2|x-3|+5=13
七年级一元一次方程练习题及答案
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分
20.解方程: (x-1)- (3x+2)= - (x-1).
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
24.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
一元一次方程练习题及答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.
24.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
篇2:七年级一元一次方程教学实录及评析
七年级一元一次方程教学实录
七年级一元一次方程教学评析
1.在教材内容的安排上:执教教师从代数的角度安排了5个概念,四组练习,重点突出了一元一次方程的概念的教学。而将列方程这一核心内容姗除,未能突出“方程是刻画现实世界的一种有效的数学模型” 的重要意义和建立方程思想这一主题,这样做是否合理。虽然我们强调要对教材进行整合,但是整合教材不能失去教材的教育功能和数学价值,整合教材的目的是保证数学教学的科学性和有效性(或实效性)。
2.在问题的设置上,教师未能有效的设置和表述能反映本课数学内容本质、突出知识的发生、发展(过程与方法)的具有启发性的数学问题。要么学生不明白问题的含义,要么问题描述过于简单不能使学生产生认知冲突、激发求知欲、激活思维。使课堂教学表面上看似热闹但效果失真。
3.在练习题的编制上,一是题目数量多了一些,并且纯数学化的较多,没有与生活实际相联系。更没有让学生充分体会方程是刻画现实世界的一种有效的数学模型。难以保证课堂教学的生成质量和练习效益,促进学生全面发展。二是编制的题目要紧紧围绕本课的基本概念。如:判别一元一次方程中的(6)小题,虽然教师说了要先化简,再判定,但在这个地方只需要学生对一元一次方程的概念的理解就行。此时教师问学生:弄清楚了吗?生答:清楚了。(真的清楚了吗?)这个问题的提出值得思考。(7)小题的解答中教师提出指数是正1吗?在学生在没有学习负指数的情况下怎样说才合理?实际上,这里还是应回到前面的整式去思考合理些。事实上,不可能在一节课内将所有的内容面面俱到。
4.各个环节的教学时间安排不合理。执教教师在教学过程中没有围绕数学的本质和数学思想方法进行教学,使学生对数学的本质理解不深,课堂上教师多数时间纠缠于繁琐的细枝末节,简单问题复杂化,课堂上呈现出一定程度的随意性或无序性,就事论事现象普遍存在,缺乏有效的课堂发现。结果使教学预设不明确,教学时间不够,教学措施无的放矢,教学生成质量不高。由此看来,要想让广大教师正确、深刻理解和把握新课改下的数学课堂教学还有很长的路要走。
篇3:七年级《一元一次方程》评课稿
七年级《一元一次方程》评课稿
xx是我校的一名优秀青年教师,她今天讲课的题目是“一元一次方程”,这一节上的很成功。纵观这节课的教学过程,有以下几个特点:
1、创设问题情景 激发学习兴趣
在教学过程中,使学生体验数学的意义,经历数学知识的形成与应用过程。从实例中激发兴趣。在活动中回顾方程的概念,对比算术方法与方程方法,认识从算式到方程是数学的进步。
从现实生活中提炼问题,并且注意到数学应用的广泛性。新教材的一个特点是数学问题的生活化。通过比较、鉴别、归纳等数学活动,建立一元一次方程的概念。较好的体现了数学来源于生活、应用于生活的本质。
从知识的运用中提升兴趣。课堂上的三个练习,使知识从巩固落实到灵活运用逐步提升。练习1的配备旨在巩固一元一次方程的概念;练习2选用了九章算术的原题,通过实例渗透人文教育,使学生对我国古代的数学成就有直观的感性的认识.
2、营造探究氛围 引导合作交流
教师在课堂上努力营造学生自主探究和合作交流的氛围,有意识的给学生创造一个探究问题的平台。各小组学生展示,合作学习,强化人人参与,提高小组协作能力。不仅如此,还培养了学生自主学习的能力,一题多解,学生通过充分探讨提出了不同的答案,享受成功的喜悦。
3、巩固基础知识 训练基本技能
在问题解决的过程中,巩固基础知识和基本技能。本节内容是在列方程研究问题过程中,建立一元一次方程的概念,这也是新教材的特点。遵循这样一条主线,让学生学会将普通语言转化成数学符号语言的能力。强调问题中的基本数量关系,既把握通则通法,又鼓励思维的灵活多样。每个例题都让学生抓住问题的核心,不去死记硬背各种题型的解决招数。在概念建立后,让所有学生都掌握认识一元一次方程的方法,体现了人人都能获得必须的数学,让不同学生编出不同水平的问题,体现了不同人学习数学的不同感悟。
4、传承数学文化 渗透爱国教育
有意识的加强对数学文化的传承。在教学过程中自然传播了算式到方程、算术到代数等重大历史的发展变化。通过比较算术方法和方程方法、方程历史的介绍、九章算术中问题演练,体现了人类对客观世界中数量关系的'不断探索和取得的进步,激励学生不断进取的信念和培养爱国主义精神。
5、理解课程标准 用好用活教材
教案的编写体现了教师的教材观,作到了用好教材、用活教材。在实际问题的研究过程中建立了一元一次方程的概念。教学过程以问题为主线,层层推进,引导和组织学生的思维活动,使学生在问题解决过程中经历一元一次方程概念的形成过程。引发学生对用方程解决实际问题的兴趣。“列方程”在本章中占重要地位,也是本章的主线,教学过程中突出体现了这一点,体现新课标倡导的问题解决和数学思考的思想。根据这一观点,通过几个实际问题列方程的过程,展现一系列的一元一次方程,达到建立一元一次方程概念的目的。本节课中体现了教学过程活动化、情景展示生活化、学习方式多样化。
这节课的设计基于教材,又不拘泥于教材。教师通过丰富的不同层次的实例,使学生建立一元一次方程的概念,向学生展现方程是刻画现实生活的有效的数学模型。在教学过程中,充分利用青年教师的优势,结合初一学生的活泼的特征,对信息技术合理、适度的使用。课堂上让学生运用方程解决丰富多彩的、贴近学生生活实际的问题,使学生经历“建立方程模型”这一数学化的过程,培养学生的概括抽象能力。
篇4:七年级解一元一次方程教案设计
一、素质教育目标
(一)知识教学点
1.要求学生学会用移项解方程的方法.
2.使学生掌握移项变号的基本原则.
(二)能力训练点
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.
(三)德育渗透点
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.
(四)美育渗透点
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.
二、学法引导
1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.
2.学生学法:练习→移项法制→练习
三、重点、难点、疑点及解决办法
1.重点:移项法则的掌握.
2.难点:移项法解一元一次方程的步骤.
3.疑点:移项变号的掌握.
四、课时安排:3课时
五、教具学具准备
投影仪或电脑、自制胶片、复合胶片.
六、师生互动活动设计
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.
(出示投影1)
利用等式的性质解方程
(1) ;X-7=5 (2) ;7X=6X-4
解:方程的两边都加7, 解:方程的两边都减去 ,
得 ,X=5+7 得 ,7X-6X=-4
即 .X=12 合并同类项得 .X=-4
【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.
提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?
(二)探索新知,讲授新课
投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.
(出示投影2)
师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?
2.改变的项有什么变化?
学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.
师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的 项从右边移到了左边;②这些位置变化的项都改变了原来的符号.
【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.
师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
(三)尝试反馈,巩固练习
师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.
学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.
【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.
对比练习:(出示投影3)
解方程:(1) ;X+4=6 (2) ;3X=2X+1
(3) ;3-X=0 (4) .9X=8X-3
学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.
师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)
【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.
巩固练习:(出示投影4)
通过移项解下列方程,并写出检验.
(1) ;X+12=34 (2) ;X-15=74
(3) ;3X=2X+5 (4) .7X-3=6X
【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.
(四)变式训练,培养能力
(出示投影5)
口答:
1.下面的移项对不对?如果不对,错在哪里?应怎样改正?
(1)从 ,7+X=13 得到 ;X=13+7
(2)从 ,5X=4X+8 得到 ;5X-4X=8
(3)从 ,3X=2X+5 得到 ;3X-2X=5
2.小明在解方程 X-4=7 时,是这样写的解题过程:X-4=7→X=7+4→X=11;
(1)小明这样写对不对?为什么?
(2)应该怎样写?
【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式。
一元一次方程的解法并不困难,这类题型相对来说还是很简单的。希望教师能够备好解一元一次方程教案,教给同学们更多的知识点,取得一个好成绩。
[七年级解一元一次方程教案设计]
篇5:七年级数学一元一次方程提纲
七年级数学一元一次方程提纲
1.列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。
2.含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
3.分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
4.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
6.把等式一边的某项变号后移到另一边,叫做移项。
7.应用:行程问题:s=v×t
工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本 利率=利润÷成本×100%
售价=标价×折扣数×10%
储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
学习数学的方法
多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
必须要有错题本
说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。
错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。
初中数学基本函数的概念及性质
1.函数y=-8x是一次函数。
2.函数y=4x+1是正比例函数。
3.函数是反比例函数。
4.抛物线y=-3(x-2)2-5的开口向下。
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2)。
7.反比例函数的图象在第一、三象限。
篇6:七年级《一元一次方程》评课稿
我所要评的课是王老师上的《一元一次方程》,《一元一次方程》整节课教学思路层次分明,脉络清晰,始终以“一元一次方程”概念和“辩一辩”一元一次方程为主线,贯穿于整个教学过程。王老师语言精炼,富有亲和力与感染力;师生关系融洽,气氛和谐;重点突出,难点突破,教学目标基本达成。
整节课我认为 王老师有两个亮点:
一、王老师这节课从“蛟龙号”下潜海底的例子导入,能使学生产生对这节课学习的兴趣。
二、王老师做到了从一个知识传授者转变为学生发展的促进者;从课堂时间与空间支配者的权威地位,向数学学习活动的组织者、引导者和合作者的角色转换,如:在一元一次方程概念的巩固上,王老师让每个同学写出一个方程,让同桌来判别是否是一元一次方程,既激发了学生的学习兴趣,又使学生在学习能力上得到进一步的提高。
另外整节课王老师都是以提问、引导和学生讨论、实践、回答的方式贯穿于本节课,始终发挥学生的主体作用,这样的教学实践取得了良好的教学效果。
【七年级一元一次方程】相关文章:
4.一元一次方程教案






文档为doc格式