欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>分式方程教案

分式方程教案

2022-08-23 08:29:41 收藏本文 下载本文

“franklin”通过精心收集,向本站投稿了18篇分式方程教案,以下是小编帮大家整理后的分式方程教案,欢迎大家收藏分享。

分式方程教案

篇1:初二数学分式方程教案

一,内容综述:

1.解分式方程的基本思想

在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程.即

分式方程 整式方程

2.解分式方程的基本方法

(1)去分母法

去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根.

产生增根的原因:

当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解.

检验根的方法:

将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等.

为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去.

注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公

分母为0.

用去分母法解分式方程的一般步骤:

(i)去分母,将分式方程转化为整式方程;

(ii)解所得的整式方程;

(iii)验根做答

(2)换元法

为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程.

用换元法解分式方程的一般步骤:

(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数

式;

(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;

(iii)把辅助未知数的值代回原设中,求出原未知数的值;

(iv)检验做答.

注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法.它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程.

(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法.

(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤.

篇2:初二数学分式方程教案

一,内容综述:

1、解分式方程的基本思想

在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程。即

分式方程整式方程

2、解分式方程的基本方法

(1)去分母法

去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。但要注意,可能会产生增根。所以,必须验根。

产生增根的原因:

当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。

检验根的方法:

将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。

为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去。

注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公

分母为0。

用去分母法解分式方程的一般步骤:

(i)去分母,将分式方程转化为整式方程;

(ii)解所得的整式方程;

(iii)验根做答

(2)换元法

为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法。换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。

用换元法解分式方程的一般步骤:

(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;

(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的.值;

(iii)把辅助未知数的值代回原设中,求出原未知数的值;

(iv)检验做答。

注意:

(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。

(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。

(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。

篇3:初二数学分式方程教案

一、教学目标

1。使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

2。通过本节课的教学,向学生渗透“转化”的数学思想方法;

3。通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。

二、重点、难点、疑点及解决办法

1。教学重点:可化为一元二次方程的分式方程的解法。

2。教学难点:解分式方程,学生不容易理解为什么必须进行检验。

3。教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性。

4。解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解。(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤。(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。

三、教学步骤

(一)教学过程

1。复习提问

(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

(3)解方程,并由此方程说明解方程过程中产生增根的原因。

通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同。

在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。

在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。

2。例题讲解

例1解方程。

分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正。

解:两边都乘以,得

去括号,得

整理,得

解这个方程,得

检验:把代入,所以是原方程的根。

∴原方程的根是。

虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学生容易犯的类型错误应加以强调,如在第一步中。需强调方程两边同时乘以最简公分母。另外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调。

例2解方程

分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所以将方程的分母作一转化,化为按字母终行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母。

解:方程两边都乘以,约去分母,得

整理后,得

解这个方程,得

检验:把代入,它不等于0,所以是原方程的根,把

代入它等于0,所以是增根。

∴原方程的根是

师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较。

例3解方程。

分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分和互为倒数,由此可设,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值。

解:设,那么,于是原方程变形为

两边都乘以y,得

解得

当时,,去分母,得

解得;

当时,,去分母整理,得,

检验:把分别代入原方程的分母,各分母均不等于0。

∴原方程的根是,

此题在解题过程中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验。

巩固练习:教材P49中1、2引导学笔答。

(二)总结、扩展

对于小结,教师应引导学生做出。

本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行。

本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法。

此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握。

四、布置作业

1。教材P50中A1、2、3。

2。教材P51中B1、2

五、板书设计

探究活动1

解方程:

分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次

设,则原方程变为

∴或无解

经检验:是原方程的解

探究活动2

有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积。

解:设桶的容积为升,第一次用水补满后,浓度为,第二次倒出的农药数为4。升,两次共倒出的农药总量(8+4· )占原来农药,故

整理,

(舍去)

答:桶的容积为40升。

篇4:分式方程说课稿

(1) = ;

(2) = (a,h常数)

[分析]强调解分式方程的三个步骤:一去分母;二解整式方程;三验根。

解:(1)去分母,方程两边同时乘以x(x+3000),得9000(x+3000)=15000x

解这个整式方程,得x=4500

检验:把x=4500代入x(x+3000)≠0.

所以原方程的根为4500

(2) = (a,h是常数且都大于零)

去分母,方程两边同乘以2x(a-x),得

h(a-x)=2ax

解整式方程,得x= (2a+h≠0)

检验:把x= 代入原方程中,最简公分母2x(a-x)≠0,所以原方程的根为

x= .

Ⅳ。课时小结

[师]同学们这节课的表现很活跃,一定收获不小。

[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可。

[生]我明白了分式方程转化为整式方程为什么会产生增根。

[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程。

……

Ⅴ。课后作业

习题3.7

篇5:分式方程应用题

分式方程应用题

1、甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等,求甲乙两班每小时各种多少棵树?

2、某市为了缓解交通拥堵现象,决定修建一条市中心到飞机场的轻轨铁路,为使工程提前3个月完成,需要将原定的工作效率提高12℅,问原计划完成这项工程需用多个月?

3、某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:

(1)甲队单独完成这项工程刚好如期成完成;

(2)乙队单独完成这项工程要比规定的日期多用6天;

(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.

那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款?请说明理由.

4、据林业专家分析,树叶在光合作用下产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用,已知一片银杏树叶一年的平均滞尘量比一片国槐叶一年的平均滞尘量的2倍少4毫克,若每年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年平均滞尘量。

5、八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是快车的速度的1.5倍,求快车的速度.

6、小明7:20分离家上学去,走到距离家500米的商店时,买学习用品用了5分钟从商店出来,小明发现按原来的速度还要30分钟才能到学校,为了8:00之前赶到学校,小明加快了速度每分钟比原来多走25 米,求小明从商店到学校的速度。

7、甲、乙两车从A、B两地相向而行,甲车比乙车早开出15分钟,甲、乙两车的速度之比为2:3,相遇时,甲比乙少走6千米,已知乙走这条路要1.5小时,求甲乙两车的速度及A、B的距离。

8、某文化用品商店用元购进一批学生书包,面市后发现供不应求,商又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元

(1)求第一批购进书包的单价是多少元?

(2)若商店销售这两批书包时,每个售价都 是120元,全部售完后,商店共盈利多少元?

9、某商店经销一种商品,由于进货价降低了6.4℅,使得利润率提高了8℅,那么原来经销这种商品的'利润率是多少?

10、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降,今年三月份的电脑售价比去年同期每台降1000元,如果卖出相同的数量的电脑,去年售销额为10万元,今年的销售额只有8万元

(1)今年三月份甲种电脑每台售价为多少元?

(2)为了增加收入,电脑分司决定再经销乙种型号电脑,已知甲种型号的电脑每台的进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?

(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定售出一台乙种电脑,返还顾客现金a元,要使(2)中所有的方案获利相同,a值应该是多少?此时,那种方案对公司更有利?

篇6:分式方程说课稿

一 教材的地位和作用:

本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。

跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。

二、教学目标

1.使学生理解分式方程的意义.

2.使学生掌握可化为一元一次方程的分式方程的一般解法.

3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.

4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。

三、重点分析:本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。

难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于八年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。

四、教学方法:

本 节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重“精讲多练 ”,真正体现以学生为主体。上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。

五、教学过程

(一)复习:

(1) 什么叫分式方程?

设计意图:主要让学生继续区分整式方程与分式方程的区别,为新授做铺垫,使学生能积极投入到下面环节的学习。

(二)新授:

(1)学生学习例题交流讨论,找两组同学到黑板上尝试解题。

设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法有一个初步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。

(2)、讲解例题:

解:方程两边同乘x(x-2),约去分母,得

5(x-2)=7x解这个整式方程,得

x=5.

检验:把x=-5代入最简公分母

x(x-2)=35≠0,

∴x=-5是原方程的解。

设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。

(3)议一议

在解方程—— = —— - 2时,小亮的解法如下:

方程两边都乘以X -2,得

1 - X = -1 -2(X -2)

解这个方程,得

X = 2

你认为X = 2是原方程的根吗?与同伴交流。

教师小结:

在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根

验根的方法有:代入原方程检验法和代入最简公分母检验法.

(1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根。

(2)代入最简公分母检验时,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根。

前一种方法虽然计算量大,但能检查解方程的过程中有无计算错误,后一种方法,虽然计算简单,但不能检查解方程的过程中有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。

想一想:解分式方程一般需要经过哪几个步骤?由学生回答。

(4)教师归纳小结:

解分式方程的步骤:

1 在方程的两边都乘以最简公分母,约去分母,化为整式方程

2 解这个整式方程

3 把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程 的增根,必须舍去。

(5)轻松完成:课堂练习:82页1、2

(6)归纳总结、整理反思

学生自己总结本节课的收获。教师引导学生不但总结知识上的收获,也要总结合作交流上,反思整堂课的学习体验。

设计目的:引导学生从多角度对本节课归纳总结,感悟知识上的点滴收获,体验合作交流的快乐,反思自己。

篇7:分式方程说课稿

各位领导、各位老师:

大家好!

今天我说课的内容是人教八年级数学下册第十六章《分式》第三节第一课时——分式方程.下面我分说教材、说学情、说教法学法、教学过程、教学效果预想五个方面谈谈我对本节课的看法.

一、说教材

1、教材的地位和作用

可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法、分式四则运算等有关知识的基础进行学习的.它既可看成是分式有关知识在解方程中的应用;也可看成是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程),因此它有着承前启后的作用.同时学习了分式方程后也为解决实际问题拓宽了路子.

2、教学目标:

根据教材的地位、作用,考虑到学生已有的认知结构心理特征,本着学习知识,培养能力,进行教育,养成好的学习习惯的原则,我确定了如下教学目标:

知识和技能目标:

①、理解分式方程的概念、会解分式方程.

②、掌握解分式方程的验根方法.

过程和方法目标:

经历“实际问题—分式方程—整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.

情感、态度和价值观目标:

①、培养学生乐于探究、合作学习的好习惯.

②、体会探索发现的乐趣,增强学习数学的自信心.

3、教学重点、教学难点

本着新课程标准,在钻研教材的基础上,我确定本节课的重点、难点为:

教学重点:分式方程的解法

教学难点:解分式方程过程中产生增根的原因及如何验根.

二、学情分析

学生是在前面学习分式的意义、分式的混合运算和熟练解一元一次方程的基础上学习本节内容的,同时八年级学生具有丰富的想象力、好奇心和好胜心理.容易开发他们的主观能动性.但对于解分式方程过程中会出现增根,部分同学理解起来较为困难,因此在教学过程中应重点强调如何把分式方程转化为整式方程和解分式方程过程中产生增根的原因及如何验根.

三、教法学法

1、说教法

常言道:教必有法,教无定法.本节内容从实际问题出发引了出分式方程的概念,介绍分式方程的求解方法.再加上数学学科的特点,所以本节课充分利用“教学案”、采用了启发式、引导式教学方法.特别注重“精讲多练 ”,真正体现以学生为主体.上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生板演以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决.

2、说学法

“授人以鱼,不如授人以渔”.本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,使学生积极主动得参与到教学过程,通过合作交流,激发学生的学习兴趣,体现探索的快乐,使学生的主体地位得到充分的发挥.

四、说教学过程

1、回顾旧知

师生在和谐的气愤之下共同回忆以下内容:

(1)大家还记得我们以前学过什么方程吗?

(2)你会解一元一次方程吗?例如:

(3)解二元一次方程组的.主要思想是什么?

设计意图:通过以上三个问题让学生投入到方程的世界,也为学生能够自己通过知识的迁移突破本节课的重点做一个铺垫.

2、创设情景、导入新课

出示引言中的问题:

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?

师生活动:教师提出问题,学生依照第26页的分析,完成填空,根据“两次航行所用时间相等”这一等量关系列出方程.

设计意图:先通过本章引言中的一个行程问题,引导学生从分析入手,列出含未知数的式子表示有关的量,并进一步根据相等关系列出方程,为探索分式方程及分式方程的解法作准备.

3、小组合作、探究新知

(1)方程 与以前所学的方程有何不同?什么叫分式方程?

师生活动:教师提出问题,学生思考、议论后在全班交流.

学生归纳出:该方程的特征是分母中含有未知数.

设计意图:通过观察、比较,培养学生的观察问题和语言表达能力.

(2)如何解分式方程?

师生活动:鼓励学生寻求解决问题的办法,引导学生将分式方程转化为整式方程,学生在解刚才的一元一次方程的基础上自然会想到“去分母”来实现这种转变,求出方程的解,并要求学生验根.

设计意图:怎样解分式方程,这是本节的核心问题,也是本节课的重点,本次活动中用“转化”和“类比”的思想,把待解决的问题,通过转化,化归到已经解决或比较容易的问题中去,最终使问题得到解决.从而突破本节课的重点.

(3)解分式方程 :

(4)思考:

①上面两个方程中,为什么第一个分式方程去分母后所得整式方程的解就是它的解,而第二个不是呢?

②解分式方程时,去分母后所得整式方程的解是原分式方程的解,也可能不是,这是为什么呢?

③如何进行检验呢?有更简单的方法吗?

师生活动:学生独立解决问题,然后提出自己的看法在小组讨论,在学生讨论期间,教师应参与到学生的数学活动中,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行验根.

设计意图:这一环节是本节课的难点,此时我设置了一个问题串,降低难度,并且此环节的内容可以说是适度.考虑学生的认知水平,关于增根的过多知识点我大胆舍去,只把目标定于了解解分式方程产生增根的原因和掌握验根的方法,再者通过引导学生进行比较、探究,并进行充分的讨论,最后统一认识,用分式的意义及分式的基本性质解释分式方程可能无解的原因,以及验根的方法,从而突破本节课的难点.

(4)精析例题

出示P28例题

师生活动:教师出示题目,学生独立完成,指名2名学生板演.

设计意图:①例题的作用可以培养学生学以致用的能力、严格的解题规范格式,从而养成良好的学习习惯.

②评价时采用生生评价的方式可以提高学生学习的兴趣,活跃课堂气氛,培养学生严谨的数学思维习惯.

(5)归纳总结解分式方程的步骤

师生活动:学生总结,老师补充点评

设计意图:让学生明确解题步骤,有一个清晰的解题思路,并强调转化思想.

4、练习巩固、深化提高

P29的练习

师生活动:教师出示题目,学生独立完成,指4名学生板演,教师强调步骤,特别是检验.

设计意图:及时巩固所学知识,了解学生学习效果,增强学生应用知识的能力.

5、总结反思、纳入系统

(1)通过本节课的学习,

你学会了哪些知识?

(2)通过本节课的学习,

你想告诉同学们注意什么?

(3)通过本节课的学习,

你获得了哪些学习数学的方法?

师生活动:学生个体小结,小组归纳,集体补充.

设计意图:①让学生以反思的形式回忆本节的学习内容与方法,更有利于学生加深对所学知识的印象,有利于培养学生养成良好的数学学习习惯.

②注重学生间的相互合作,培养学生的合作意识、竞争意识,养成“爱提问、敢质疑、富联想、善总结”的好习惯.

6、作业布置

(1)、必做题:P32第1题

(2)、选做题:P32第2题.

设计意图:考虑学生的个别差异,分层次布置作业,让基础差的学生能够吃饱,基础好的学生吃好,使每位学生都感到学有所获.

7、板书设计

16.3分式方程 三、创设情境 解分式方程二 例一

一、回顾旧知 四、探究新知

二、分式方程概念 解分式方程一 归纳 例二

设计意图:清晰明朗,利于两个分式方程的对比从而分析出现增根的原因.

五、效果预想

数学课程标准指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,而动手实践、自主探究与合作交流是学生学习数学的重要方式.本着这一理念,在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力.在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅能够注重学生的参与意识,而且注重学生对待学习的态度是否积极.课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣.使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程.

以上就是我对本节课的设想,请各位老师提出宝贵意见.

篇8:分式方程说课稿

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。

教师作为数学教学主导,在设计数学活动时要遵循以下原则:

一、根据学生的年龄特征和认知特点组织教学。

二、重视培养学生的应用意识和实践能力。

1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。

2、培养学生应用数学的意识和提高解决问题的能力。

三、重视引导学生自主探索,培养学生的创新精神。

1、引导学生动手实践、自主探索和合作交流。

2、鼓励学生解决问题策略的多样化。

四、教师对教学目标,难点,重点把握要恰当、具体。

数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。

一、设计思想:初中数学说课稿

数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动 。

根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。

网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习总结提高

二、背景分析:

(一)学情分析:

内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》

学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。

本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。

(二)内容分析:

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。

通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意

识,渗透类比转化思想。

(三)教学方式:自学导读—同伴互助—精讲精练

(四)教学媒体:Midea---Class纯软多媒体教学网 几何画板

三、教学目标:初中数学说课稿

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。

四、板书设计:

a不是分式方程的解

(二)学习方法:类比与转化

教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。

五、教学过程:

活动1:创设情境,列出方程

设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。

设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。

活动2:总结定义,探究解法初中数学说课稿

使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。

教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。

活动3:讲练结合,分析增根

活动5:布置作业,深化巩固(略)

篇9:分式方程说课稿

一、教材分析:

1、本章与本节的地位与作用: 本章是在学生已掌握了整式的四则运算,多项式的因式分解的基础上,通过对比分数的知识来学习的,包括分式的概念、分式的基本性质、分式的四则运算,这一章的内容对于今后进一步学习函数和方程等知识有着重要的作用。可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法、分式四则运算等有关知识的基础进行学习的。它既可看着是分式有关知识在解方程中的应用;也可看着是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程)。同时学习了分式方程后也为解决实际问题拓宽了路子,打破了列方程解应用题时代数式必须是整式这一限制。 解分式方程的基本思想是:“把分式方程转化为整式方程”,基本方法是:“去分母”。让学生进一步体会“转化”这一数学思想,对提高学生的数学素质是非常重要的。 2、教学目标:根据学生已有的知识基础及本节在教材中的地位与作用,依据大纲的要求确定本课时的教学目标为:

(1)了解分式方程的概念,会识别分式方程与整式方程。

(2)理解分式方程的解法,会熟练地解分式方程。

(3)体会解分式方程的“转化”思想。

3、教学重点、难点、关键:根据大纲要求及学生的认知水平,确定本节课的教学重点为:分式方程的解法。重中之重是去分母实现分式方程到整式方程的转化与验根。 由于学生去分母时涉及等式的基本性质、整式运算、分式运算等知识,学生容易出错,而一旦顺利地实现了去分母,即实现了分式方程到整式方程的转化,解整式方程是学生早已熟悉的知识。因此确定正确去分母既是教学的难点,也是教学的关键。由于解分式方程可能产生增根,学生第一次遇到,所以分式方程的验根也是难点,

二、教学方法:

(一)学生分析: 根据七年级学生的知识水平和年龄特征,考虑到素质教育的要求,结合本节课的特点,主要采用启导式教学法、讲练法,引导学生去观察、去思考、去探索,尽量让学生自己寻找、归纳出解分式方程的一般步骤。

(二)新课教学:

1、分式方程的定义。

(1)分母里含有未知数的方程叫做分式方程。

(2)提问:前面学习过的一元一次方程的分母里含有未知数吗?前面学习过的方程都是整式方程,一元一次方程是最简单的整式方程。

(3)下列方程中哪些是整式方程?哪些是分式方程? (共6个识别题,1.x+3y=1/12 2、x+1/x=5 ,3、2/3x,4、3/(x-2)-1=5/(2x+1) 5、5/(3x-2)+(x+1)/3=16、(2-7)/5+x/3=1/2

) 注意:区分整式方程与分式方程的关键是什么?分母中是否含有字母)。先学习分式方程的定义,再与已有知识进行对比,进一步强化学生对分式方程概念的本质的认识,紧接着利用几道识别题训练学生正确地区分分式方程与整式方程及分式的区别,这部分教学要求达到“了解”层次即可。)

2、解方程:回忆解方程的一般步骤中的第一步?如何去掉分母?方程的两边都乘以一个什么样的式子?这是解分式方程的关键步骤,只有通过去分母才能实现我们的转化,而这个步骤由于涉及的知识多,学生容易出错。这里应是教学的重点之一。解这个整式方程。(由学生完成)。(学生已有这部分知识,由学生独立完成,新课的教学不能教师一讲到底,凡学生能做的应由学生做,因为学生才是学习的主体。) 把解得的未知数的值代入原方程进行检验。必须强调原方程,因为有学生往往代入去了分母的整式方程中。应引导学生进行检验,得出未知数的值是否使方程两边相等,确定方程的解的正确性,得出原分式方程的解的结论。

(三)课堂练习:

通过练习强化学生对解分式方程的步骤的理解,使学生熟练地解分式方程,通过练习,及时掌握学生对所学知识的掌握情况,根据练习中反馈的信息进行教学的查缺补漏,纠正练习中出现的问题,在练习中形成解题的能力。

拓展题:

小明说:x=2是方程2/(x-2)-1=5/(2x+1)的增根?你是否赞成他的说法?

对这堂课的增根的进一步理解与巩固,说明增根是在解方程后,让公分母为零的未知数的值才叫方程的增根。

(四)课堂小结:

1、分式方程的定义。

2、解分式方程的一般步骤。

3、解分式方程应注意:(1)正确去分母,化分式方程为整式方程。(2)解分式方程必须检验。通过小结使学生学习的知识形成体系、网络。帮助学生全面地理解掌握所学知识。小结也应由学生试着完成,教师补充,有利于培养学生归纳整理知识的能力,也是学生参与学习的体现。

(五)、作业布置:练习册第52页10.5 1、2、3题。

课外作业的布置是必须的,它有利于学生巩固所学的知识,作业应精选,应适量。

1、观察以下两个题目:

(1)计算: 2/(x-1)-1

(2)解方程:2/(x-1)-1=0

这两个题目分别要求我们做什么?解题的第一步有什么不同?

五、几点说明: 1、板书设计:将黑板分成四个部分。 (1)课题、引例1、引例2。 (2)例1。 (3)例2。(学生板书的课堂练习写在例1、例2的下面) (4)小结与作业布置。 2、教学时间安排: 复习引入约3分钟;新课教学约30分钟;课堂练习约5分钟;小结约2分钟;作业布置约1分钟。 3、整堂课要体现的设计思想: 根据学生已有的知识结构和年龄特征,结合教材的特点,选择启导式教学法、讲练法,培养学生的学习兴趣,让每个学生都达到大纲的要求。注重“学生是学习的主体”这一教学思想的体现,教学中通过富有启发性的提问让学生思考、让学生试着总结、让学生试着做一做等方式尽量让学生去参与,去发现,去尝试,去总结。使学生由被动地接受知识变为主动地去获得知识。

在讨论增根问题时,通过具体例子展现了解分式方程时可能出现增根的现象,并结合例子分析了什么情况下产生增根,然后归纳出验根的方法。

篇10:分式方程说课稿

一.教学内容分析:

列分式方程解决应用问题比列一次方程(组)要稍微复杂一点,教学时候要引导学生抓住寻找等量关系,恰当选择设未知数,确定主要等量关系,用含未知数的分式或者整式表示未知量等关键环节,细心分析问题中的数量关系。对于常用的数量关系,虽然学生以前大都接触过,但是在本章的教学中仍然要注意复习、总结,并且抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。此外,教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,注意检验,解释所获得结果的合理性。

本章教科书呈现了大量由具体问题抽象出数量关系的实例,目的是让学生经历观察、归纳、类比、猜想等思维过程,所以,评价应该首先关注学生在这些具体活动中的投入程度-----能否积极主动地参与各种活动;其次看学生在这些活动中的思维发展水平-----能否独立思考,能否用数学(语言分式分式方程)表达自己的想法,能否反思自己的思维过程,进而发现新的问题。

教科书设置了丰富的实际例子,这些涉及工业、农业、环保、学生实际、教学本身等方面,评价中应该关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中的数量关系,并且用分式、分式方程表示,能否表达自己解决问题的过程,能否获得问题的答案,并且检验、解释结果的合理性。

二.重点和难点

教学重点:引导学生从不同角度寻求等量关系是解决实际问题的关键。

难点:引导学生将实际问题转化为数学模型,并且进行解答,解释解的合理性。增强学生应用数学的意识。

三.教学方法

本节课采用:课前预习、课中引导分析、合作探究、自我展示等教学方法。这样可以培养学生的良好学习习惯、语言表达与分析问题的能力、思维的缜密性。

四.教学过程

本节课分四部分进行:情境导入、探究新知、应用、小结

(一)情境导入。首先,我让学生回顾了分式方程及分式方程的解法、步骤,目的是让学生进一步认识分式方程与整式方程的区别、解法的不同,为后面的学习打下基础。其次,应用几幅图片对学生进行思想教育同时顺利引出新课,目的是让学生了解水资源危机培养他们的良好品质。

(二)新知探究。例1、某市为治理水污染。这一例题只给出了情境没有具体的问题,进而让学生去分析题意及各个量间的关系找出等量关系式。然后提出自己想知道的问题,最后我在学生所提问题中选一问题进行解决。(实际功效是多少?)这样给学生的思考留下了很大的空间,也培养了学生的分析问题解决问题的能力,同时也促进了每个学生的发展。在解决问题过程中多采用了学生间的交流合作、独立完成、互帮互助、上板展示的学习方法。教学时我重点引导学生将实际问题转化为数学模型,并且进行解答,解释解的合理性,这样有利于学生养成良好的学习品质。

(三)知识应用。对例一分析解决后选择课本上的例3作为习题这样不仅巩固了新知应用,而且进一步检测了学生的分析、表达、书写等各个方面的能力,增强他们的应用意识。

(四)小结:让学生在组内交流和在班内交流,畅所欲言,这样每个学生都有回顾知识、表现自我的机会;教师补充小结使学生分析、归纳、总结的良好习惯。

五、课堂练习和课后作业

92页做一做作为学生的作业;P94问题解决的EX1-3作为学生课后习题,要求的难度适中,符合学生接受知识的能力和认知能力,可以即使反馈学生对所学知识的理解和把握程度。

六、说板书

我板书了几个等量关系式,让学生板书解题过程,这样有利于把握重点、掌握新知。

篇11:分式方程说课稿

(一)教学知识点

1.解分式方程的一般步骤。

2.了解解分式方程验根的必要性。

(二)能力训练要求

1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤。

2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。

(三)情感与价值观要求

1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信。

教学重点

1.解分式方程的一般步骤,熟练掌握分式方程的解决。

2.明确解分式方程验根的必要性。

教学难点

明确分式方程验根的必要性。

教学方法

探索发现法

学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性。

教具准备

投影片四张

第一张:例1、例2,(记作§3.4.2 A)

第二张:议一议,(记作§3.4.2 B)

第三张:想一想,(记作§3.4.2 C)

第四张:补充练习,(记作§3.4.2 D)。

教学过程

Ⅰ。提出问题,引入新课

在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型--分式方程。但要使问题得到真正的解决,则必须设法解出所列的分式方程。

这节课,我们就来学习分式方程的解法。我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法。

解方程 + =2-

(1)去分母,方程两边同乘以分母的最小公倍数6,得3(3x-1)+2(5x+2)=6×2-(4x-2)。

(2)去括号,得9x-3+10x+4=12-4x+2,

(3)移项,得9x+10x+4x=12+2+3-4,

(4)合并同类项,得23x=13,

(5)使x的系数化为1,两边同除以23,x= .

Ⅱ。讲解新课,探索分式方程的解法

刚才我们一同回忆了一元一次方程的解法步骤。下面我们来看一个分式方程。(出示投影片§3.4.2 A)

解方程: = . (1)

解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?

同学们说他的想法可取吗?

可取。

同学们可以接着讨论,方程两边同乘以什么样的整式(或数),可以去掉分母呢?

乘以分式方程中所有分母的公分母。

解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单。解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母也比较简单。

我觉得这两位同学的想法都非常好。那么这个分式方程的最简公分母是什么呢?

x(x-2)。

方程两边同乘以x(x-2),得x(x-2)· =x(x-2)· ,

化简,得x=3(x-2)。 (2)

我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程。

再往下解,我们就可以像解一元一次方程一样,解出x.即x=3x-6(去括号)

2x=6(移项,合并同类项)。

x=3(x的系数化为1)。

x=3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论。

(教师可参与到学生的讨论中,倾听学生的说法)

x=3是由一元一次方程x=3(x-2) (2)解出来的,x=3一定是方程(2)的解。但是不是原分式方程(1)的解,需要检验。把x=3代入方程(1)的左边= =1,右边= =1,左边=右边,所以x=3是方程(1)的解。

同学们表现得都很棒!相信同学们也能用同样的方法解出例2.

解方程: - =4

(由学生在练习本上试着完成,然后再共同解答)

解:方程两边同乘以2x,得

600-480=8x

解这个方程,得x=15

检验:将x=15代入原方程,得

左边=4,右边=4,左边=右边,所以x=15是原方程的根。

很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯。

我这里还有一个题,我们再来一起解决一下(出示投影片 §3.4.2 B)(先隐藏小亮的解法)

议一议

解方程 = -2.

(可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并一块分析)

我们来看小亮同学的解法: = -2

解:方程两边同乘以x-3,得2-x=-1-2(x-3)

解这个方程,得x=3.

小亮解完没检验x=3是不是原方程的解。

检验的结果如何呢?

把x=3代入原方程中,使方程的分母x-3和3-x都为零,即x=3时,方程中的分式无意义,因此x=3不是原方程的根。

它是去分母后得到的整式方程的根吗?

x=3是去分母后的整式方程的根。

为什么x=3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论。

(教师可参与到学生的讨论中,倾听同学们的想法)

在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程。如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了。

很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根。

在把分式方程转化为整式方程的过程中会产生增根。那么,是不是就不要这样解?或采用什么方法补救?

还是要把分式方程转化成整式方程来解。解出整式方程的解后可用检验的方法看是不是原方程的解。

怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的。因此最简单的检验方法是:把整式方程的根代入最简公分母。若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根。是增根,必舍去。

在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根。但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验。小亮就犯了没有检验的错误。

Ⅲ。应用,升华

1.解方程:

(1) = ;(2) + =2.

先总结解分式方程的几个步骤,然后解题。

解:(1) =

去分母,方程两边同乘以x(x-1),得

3x=4(x-1)

解这个方程,得x=4

检验:把x=4代入x(x-1)=4×3=12≠0,

所以原方程的根为x=4.

(2) + =2

去分母,方程两边同乘以(2x-1),得

10-5=2(2x-1)

解这个方程,得x=

检验:把x= 代入原方程分母2x-1=2× -1= ≠0.

所以原方程的根为x= .

2.回顾,总结

出示投影片(§3.4.2 C)

想一想

解分式方程一般需要经过哪几个步骤?

同学们可根据例题和练习题的步骤,讨论总结。

解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;

(2)解这个整式方程;

(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去。使最简公分母不为零的根才是原方程的根。

3.补充练习

出示投影片(§3.4.2 D)

解分式方程:

(1) = ;

(2) = (a,h常数)

强调解分式方程的三个步骤:一去分母;二解整式方程;三验根。

解:(1)去分母,方程两边同时乘以x(x+3000),得9000(x+3000)=15000x

解这个整式方程,得x=4500

检验:把x=4500代入x(x+3000)≠0.

所以原方程的根为4500

(2) = (a,h是常数且都大于零)

去分母,方程两边同乘以2x(a-x),得

h(a-x)=2ax

解整式方程,得x= (2a+h≠0)

检验:把x= 代入原方程中,最简公分母2x(a-x)≠0,所以原方程的根为

x= .

Ⅳ。课时小结

同学们这节课的表现很活跃,一定收获不小。

我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可。

我明白了分式方程转化为整式方程为什么会产生增根。

我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程。

……

Ⅴ。课后作业

习题3.7

篇12:分式方程数学教案

教案

【教学目标】

知识目标

1.理解分式方程的意义.

2.了解解分式方程的基本思路和解法.

3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.

能力目标

经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.

情感目标

在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.

【教学重难点】

重点:解分式方程的基本思路和解法.

难点:理解解分式方程时可能无解的原因.

【教学过程】

一、创设情境,导入新课

问题:一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?

分析:设江水的流速为v km/h,则轮船顺流航行的速度为(30+v) km/h,逆流航行的速度为(30-v) km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时.可列方程=.

这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.

二、探究新知

1.教师提出下列问题让学生探究:

(1)方程=与以前所学的整式方程有何不同?

(2)什么叫分式方程?

(3)如何解分式方程=呢?怎样检验所求未知数的值是原方程的解?

(4)你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?

(学生思考、讨论后在全班交流)

2.根据学生探究结果进行归纳:

(1)分式方程的定义(板书):

分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程

练习:判断下列各式哪个是分式方程.

(1)x+y=5; (2)=;

(3); (4)=0

在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.

(2)解分式方程=的基本思路是:将分式方程化为整式方程.具体做法是:“去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般思路和做法.

3.仿照上面解分式方程的做法,尝试解分式方程=,并检验所得的解,你发现了什么?与你的同伴交流.

4.思考:上面两个分式方程中,为什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解却不是②的解呢?学生分组讨论产生上述结果的原因,并互相交流.

5.归纳:

(1)增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的'整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.

(2)解分式方程必须进行检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.

三、巩固练习

1.在下列方程中:

①=8+; ②=x;

③=; ④x-=0.

是分式方程的有( )

A.①和② B.②和③

C.③和④ D.④和①

2.解分式方程:(1)=;(2)=.

四、课堂小结

1.通过本节课的学习,你有哪些收获?

2.在本节课的学习过程中,你有什么体会?与同伴交流.

引导学生总结得出:

解分式方程的一般步骤:

(1)在方程的两边都乘以最简公分母,约去分母,化为整式方程.

(2)解这个整式方程.

(3)把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解时,必须舍去.

五、布置作业

课本152页练习.

第2课时

【教学目标】

知识目标

会分析题意找出相等关系,并能列出分式方程解决实际问题.

ok3w_ads(“s002”);

同步练习

1.在某市举行的大型商业演出活动中,对团体购买门票思想优惠,决定在原定票价的基础上每张降价80元,这样按原定票价需花6000元购买的门票张数,现在只花费了4800元,求每张门票的原定价格?

2.为丰富校园文化生活,某校举办了成语大赛.学校准备购买一批成语词典奖励获奖学生.购买时,商家给每本词典打了九折,用2880元钱购买的成语词典,打折后购买的数量比打折前多10本.求打折前每本笔记本的售价是多少元?

2.“六?一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.

(1)求第一批玩具每套的进价是多少元?

(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?

精选练习

列方程或方程组解应用题:

据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.

篇13:分式和分式方程

分式和分式方程

1.4 分式与分式方程

班级: 小组: 等级:

【考点透视】

1.了解分式的概念,能求出分式值为零时字母的值,知道分式无意义的条件

2.会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除及混合运算与分式的化简求值。 3.能正确求出可化为一元一次方程的分式方程的根,能结合实例解释解分式时产生增根的原因,能结合现实情境列分式方程解决简单的实际问题。

【知识梳理】

1.分式的概念:分式: 2.弄清分式有意义,无意义和值为零的条件

分式有意义的条件是分母不为零;无意义的条件是分母为零;值为零的条件是分子为零且分母不为零,弄懂这几个条件是做分式题很重要的一点.

3.分式基本性质的.灵活应用

分式的基本性质:

分式的约分: 分式的通分: 最简公分母: (注意: 利用分式的基本性质熟练进行约分和通分,这是分式运算的基础,利用分式的基本性质时,要注意分子、分母同乘以和除以不为零的整式.) 4.分式的运算

(1)分式的加减法法则

(2)分式的乘除法法则 (3)分式的乘方

(4)分式的混合运算

分式的四则运算主要出现在化简中,与通分、约分、分式的基本性质联合,要保证最后结果为最简分式.

5. 分式方程

(1)解分式方程:步骤 (2)列分式方程解应用题

6. 条件分式求值的常用技巧 (1)参数法:当已知条件形如化简的分式时,通常设代入所求代数式。 (2)整体代换法 像已知把1x?

1x?1y?3,求

2x?3xy?2yx?2xy?y

xa?yb?xazc?yb?zc

,所要求值的代数式是一个含x、y、z、a、b、c而又不易

?k(k就是我们常说的参数),然后将其变形为x?ka,y?kb,z?kc

的值这样的问题, 合化

所求

数式

?

已1y

知条件变换成适的形式

?

,如35

?3化为x?y??3xy,代入

2x?3xy?2yx?2xy?y

中,得

(2x?y)?3xy(x?y)?2xy

?6xy?3xy?3xy?2xy

,这样就

达到整体代入、化简求值的目的。 7.裂项法

裂项法即把一项化为两项,使计算得以顺利进行。 常用裂项有:

1n?(n?1)

?1n?

1

;

1

?1(

1

?

12n?1

).

n?1(2n?1)(2n?1)22n?1

【考题例析】

1.识别分式的概念

例1. ( 重庆江津)下列式子是分式的是( ) A.

x2

B.

xx?1

C.

x2

?y D.

x3

例2、如果分式

|x|-1x?3x?2

2

的值为零,那么x等于( )

A.-1 B.1 C.-1或1 D.1或2 例3. (2011浙江杭州)已知分式

x?3x?5x?a

2

,当x=2时,分式无意义,则a= ,当a

时,使分式无意义的x的值共有 个. 2.分式的基本性质的识别 例2、下列各式与

x?yx?y

相等的是( )

A.

(x?y)?5(x?y)?5

; B.

2x?y2x?y

; C.

(x?y)x?y

2

2

2

(x?y) D.

x?yx?y

2

222

点评:分式的基本性质是一切分式运算的基础,分子与分母只能同乘以(或除以)同一个不等于零的整式,而不能同时加上(或减去)同一个整式.

3.化简求值题 例3、(1)已知a+

1a

=5, (2)已知

x?4x?3x?1

x

2

2

=0,

a?a?1

a

2

42

=________. 先化简后求

m?nmn

2

2

x?3

?

93?x

的值.

例4. (2011 江苏南通,)设m>n>0,m+n=4mn,则A.

1m

22

的值等于

D. 3

2

例5. (2011 四川乐山)若m为正实数,且m?4.分式方程的解法及应用 解下列分式方程: 例1.(1)

xx?2

?

6x?2

?3,则m?

1m

2

?1 (2)

2x?1

?

3x?1

?

6x?1

2

例2.用换元法解方程x2?

1x

2

?x?

1x

?4,可设y?x?

1x

,则原方程可化为关于y的方程

是 . 【巩固练习】 一.选择题 1、函数y=

1x?1

2

中自变量x的取值范围是( ).A.x≠-1 B.x>-1 C.x≠1 D.x≠0

2、若分式

x?9x?4x?3a

b

2

2

的值为零,则x的值为( ).A.3 B.3或-3 C.-3 D.0

3、化简

a?b

?

a(a?b)

的结果是( ).A.

a?ba

B.

a?ba

C.

b?aa

D.a+b

4、当分式

|x|?3x?3

2

的值为零时,x的值为( ).A.0 B.3 C.-3 D.±3

mm?3

mm?3

mm?3

m3?m

5、化简

m?3m9?m

2

的结果是( )A. B.- C. D.

6、 将分式

xyx?y

中的x,y都扩大2倍,分式的值 ( )

A.扩大4倍 B.扩大2倍 C.不变 D.缩小2 7、化简 A.

12m?9

2

2

+

2m?3

的结果是( )

2m?3

m?6m?9

B. C.

2m?3

D.

2m?9m?9

2

二.解答题 1.计算:

3.化简:(

4.(2011重庆江津)先化简,再求值:

【中考链接】

11?x

?

x1?x

. .先化简,再求值:

x?1x?1

2

+x(1+

1x

),其中

-1.

aa?1

?

2a?1

1

)÷(1-

1a?1

). 4.化简:m+n-

(m?n)m?n

2

.

x?1x?2

2

?(

1x?2

?1),其中x?

13

1.(.潍坊中考)分式方程

xx?5

?

x?4x?6

的解是_________.

2.(2011江苏泰州)(ab

b

2

a?ba?ba

)?

a?ba

2ab?b

a

2

3. ((2011山东济宁)计算:

?(a?)

ab

ba

4.(2011・山西)已知a-6a+9与│b-1│互为相反数,则式子(

1x

1y

66x?3

2

?)÷(a+b)的值为____.

5.(2011・天津)已知

?,则分式

60x

2x?3xy?2yx?2xy?y

的值为________.

6. (.潍坊)方程?

a

2

?0的根是 .

7、(2012吴中区一模)化简 (A)

1a?1

a?1

?a?1的结果是( )

(B)-

1a?1

(C)

3a?1

2a?1a?1

(D)

2

a?a?1a?1

2

8. (2012.辽宁营口市)先化简: 作为a的值代入求值.

9.(2011.呼和浩特)若

Ax?5

?

Bx?2

(?a?1)?

a?4a?4

a?1

,并从0,?1,2中选一个合适的数

?

5x?4x?3x?10

2

,试求A、B的值.

10.(2011・广东)如图1-16-1小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按照到校,王老师每天骑自行车接小明上学.?已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车速度各是多少?

学校

篇14:《用分式方程解决实际问题》教案

教学设计

教学目标:

1、知识技能目标:理解分式方程的“建模”思想,掌握实际应用的方法。

2、过程和方法:经历探索建立分式方程的模型,领会它的解题方法,发展学生的分析问题,解决问题的能力。

3、情感态度:培养学生积极的态度,增强他们的应用意识,体会数学建模的实际价值。 教学重点:将实际问题中的等量关系用分式方程表示并且求得结论。

教学难点:

寻求实际问题中的等量关系,正确地“建模”。

教学过程:

一、课前复习演练:

1、分式方程 的最简公分母是______。

2、如果 有增根,那么增根为______。

3、关于X的方程 的解是X=1/2,则a=______。

4、若分式方程 有增根X=2,则a=______。

5、解分式方程:(1) (2)

二、探索新知,讲授新课

(一)例题讲解 【例1】两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的.三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快? 分析:甲队一个月完成总工程的1/3,设乙队如果单独施工一个月能完成总工程的1/x,那么甲队半个月完成总工程的_____,乙队半个月完成总工程的____,两队半个月完成总工程的__________. 用式子表示上述的量之后,在考虑如何列出方程 解:设乙队如果单独施工一个月能完成总工程的1/x 记总工程量为1,根据题意,得 解之得 x=1 经检验知 x = 1 是原方程的解. 由上可知,乙队单独工作一个月就可以完成全部任务, 所以乙队施工速度快.

【例2】从5月起某列车平均提速v千米/小时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少? 思路点拨:明确这里的字母V、S表示已知量,可以根据行驶时间不变直接设提速前列车的平均速度是X千米/小时,列出方程。 解:设提速前着次列车的平均速度为X千米/时、则提速前它行驶S千米所用的时间为S/X小时,提速后列车的平均速度为(X+V)千米/时,提速后它运行(S+50)千米所用的时间为(S+50)/(X+V)小时。 根据题意得 S/X=(S+50)/(X+V) 解之得 X=SV/50 经检验,X=SV/50是原分式方程的解。 答:提速前列车的平均速度为SV/50千米/时

(二)师生共同总结用分式方程解应用题的方法和步骤: 方法:与列一元一次方程解应用题一样,着眼于找出应用题中的等量关系进行“建模”。

步骤

(1)弄清题意;

(2)找相等关系,建立模型

(3)设元(列出方程)

(4)解方程并且验根

(5)写出答案。

三、课堂演练:

[小试牛刀]: 某车间有甲、乙两个小组,家族的工作效率比乙组的工作效率高25%,因此甲组加工个零件所用的时间比乙组加工1800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件? [巩固训练]: 某校学生进行急行军训练,预计行60千米的路程可在下午5点到达,后来由于把速度加快1/5,结果下午4点到达,求原计划行军的速度。 [拓展延伸]: 甲、乙两个工程队共同完成一项工程,乙队单独做一天后,再由两队合作2天就完成了全部工程。已知甲队单独完成工程所需天数是乙队单独完成所需天数的2/3,求甲、乙两队单独完成各需多少天?

四、课时小结 将实际问题转化为数学模型,应把握哪些主要问题?

五、课后作业: 课本38页“习题16.3”第 2,5,7,8题。

篇15:《用分式方程解决实际问题》教案

1、教学设计中,对于例1、例2引导学生依据题意,找到等量关系,并引导学生依据等量关系列出方程。这样安排,意在启发学生思考问题,激励学生在解决问题中养成灵活的思维习惯。这就为在列分式方程解应用题教学中培养学生的发散思维提供不广阔的空间。

2、教学设计中体现了充分发挥例题的模式作用。例1是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率)。这些都是运用列分式方程求解的典型问题。教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识别,让学生弄清哪些类型的问题可借助于分式方程解答,求解的思路是什么。学生完成课堂练习和作业,则是识别问题类型,能把面对的问题和已掌握的模式在头脑中建立联系,探求解题思路。

3、通过列分式方程解应用题教学,渗透了方程的思想方法,从中使学生认识到了方程的思想方法是数学中解决问题的一个锐利武器。通过找等量关系列方程,把已知量与假设的未知量平等看待,这就能“以假当真”。通过解方程求得问题的解,被假设的未知量x就变成了确定的量,从而“弄假成真”,使实际问题迎刃而解。

篇16:如何解分式方程微教案

如何解分式方程微教案

一、教学目标

1.知识与技能

能掌握解分式方程的步骤,会如何解分式方程

2.过程与方法

通过一步步引导,使学生掌握解分式方程其实是转化为整式方程求解后验证解是否成立个一个过程。

3.情感、态度与价值观

探求新知是一个将新知与旧知如何建模链接的过程,边探索,边完成这个过程。

二、重点与难点

1.重点

分式方程的解法

2、难点

分式方程转化整式方程时的理论依据及具体步骤

三、学情分析及课前反思

本节课的学习前,学生已经熟练掌握解整式方程的求解,等式的基本性质,分式的运算。因此只需要点一下,应该就可以顺利过渡。教师的任务是如何能恰当地点一下,并让学生知其所以然。

四、重难点突破

1、前面复习时复习分式的性质要详尽并板书

2、不按照传统的顺序,给出题目后马上给出整式方程,引起学生的学习兴趣。

五、课前反思

此引入部分不宜太长,也不能忽视等式基本性质的复习。最终需要达到的目的就是在课堂前10分钟内学生要掌握解分式方程是转化成一个整式方程求解的过程。经过多年实践,在环节三中,很多学生会理解成所谓的交叉相乘,必须予以及时纠正,否则出现有常数项时会产生混乱。二是在环节四后直接板书完整过程,学生容易漏掉检验这一步骤。所以等到学生在做题后,试误后予以引导,强化效果更好。

六、教学过程

教学环节

教学活动

教师活动

学生活动

设计意图

环节一:复习引入

提问:1、方程的定义 2、等式的基本性质

提问并板书的方程定义,既然加上补充成分式方程的定义;板书等式的基本性质1,等式两边同时加或减同一个数或式子,等式仍然成立,等式的性质2,等式左右两边同时乘或除不等于0的数或式子,等式仍然成立。

1、全体口答

1、通过课题,学生已经明白今天要学的内容是分式方程,提问方程的定义目的是使学生明白分式方程是方程的一类,是等式,所以等式的基本性质适用于方程,也适用于分式方程

环节二:

以旧带新;触类旁通

通过分式方程:

90/(30+x)=60/(30-x)的求解过程。是学生明白解分式方程是将其转化成分式方程

板书90/(30+x)=60/(30-x)

提问能解吗?

隔行后板书:

90(30-x)=60(30+x)并提问:能接吗?

问题1有点迟疑,部分有提前学的同学回答能解;问题2异口同声回答能解

这样一来能引起学生的兴趣,老师的意图是什么?为什么老师会这样写?究竟两个方程间有何联系?这一系列的问题在学生脑袋里面转动,调动了学生的积极性,活跃了课堂气氛,同时也建构了新知

环节三:

明确依据;强化新知

明确分式方程90/(30+x)=60/(30-x)可以通过等式的基本性质转化成90(30-x)=60(30+x)整式方程,然后求解

提示:注意观察两个方程,发现他们的联系吗?再引导学生看刚才复习过的`等式基本性质。

稍作思考后回答:交叉相乘。引导后知道应该是运用等式的性质二。

引导学生将未知转化为已知,分式方程可以通过转化成我们已经很熟练的整式方程求解

环节四:

板书步骤;规范格式

按照书本的规范格式作为示范板书,给学生一个规范

补上刚才留空的一行:方程左右两边同时乘以两个分式的最简公分母(30-x) (30+x),去分母得。强调这一步就是去分母,是将分式方程化为整式方程的关键一步。

看老师板书

尽管有些同学已经提前预习了,但这些步骤为什么要这样处理以及处理依据是什么,学生似懂非懂,所以需要给学生一个完整的思维过程

环节五:

留白过程,满下伏笔

后面整式方程的解题过程已经检验过程都留空,为一下强调检验过程铺垫

提问:以下过程大家都懂了吧,那我就不详细下了。

认真听课

留白过程意图有两个:一,稍后时间巡视学生集体过程,若发现普遍问题就集体讲解,否者直接给出;二,一向学生都会很容易忘记分式方程的检验,所以等一下在学生做完所以题目后再特别提示会产生无解的情况,因此需要检验这一必要步骤

环节六:

先做后教,加深印象

板书另外四道解分式方程的题目作练习,根据完成情况再评讲

板书四道题目:

(1)5/x=7/(x-2)

(2)2/(x+3)=1/(x-1)

(3)1/(x-5)=10/(x2-25)

(4)x/(x-1)-1=3/(x-1)(x+2)

堂上练习本完成练习

学生解题后,引导学生回顾等式的性质中除为什么要强调不为0,是否这5道题的值都符合原方程。(4)(5)两个方程是无解的,因为解代入分母中为0。这时再强调分式方程接完后必须要检验。

七、板书设计

分式方程定义

等式的性质

课题

例题(1)练习(2)~(5)

八、课后反思

效果还是不错的,学生基本能掌握分式方程求解过程关键是运用等式的基本性质去分母。需要后面多一个课时才能达到熟练程度。

篇17:23.1分式方程教案冀教版

23.1分式方程教案冀教版

新城中学集体备课纸 第  周 使用人 年级 八 科目 数学 课题 23.1分式方程 第 1 课时 主备人 申柱芳 初备 时间 讨论 时间 讲授 时间 教学设计 教学目标: 1、使学生更加深入理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程. 2、使学生检验解的原因,知道解分式方程须验根并掌握验根的方法 重点难点: 1.  了解分式方程必须验根的原因; 2.  培养学生自主探究的意识,提高学生观察能力和分析能力。 教学过程: 一、创设情境,导入新课: 问题:小明和小亮进行百米赛跑,当小明达到终点时,小亮离终点还有5米,如果小明比小亮每秒多跑0.35米,你知道小明百米跑的平均速度是多少吗? 轮船在水中顺水航行80千米所需的时间和逆水航行60千米所需时间相同,已知水流速度是3千米/时,求船在静水中的速度。 分析:设船在静水中的速度为x千米/时, (1)轮船顺流航行速度为 千米/时,逆流航行速度为   千米/时。 (2)顺流航行80千米所用时间为小时。 (3)逆流航行60千米所用时间为小时, (4)根据题意可列方程。 二、合作交流,解读探究: 议一议:方程 特征:含分式,并且分母中含未知数――分式方程。 想一想: 是不是分式方程? 归纳:确定是不是分式方程,主要是看是否符合分式方程的概念,方程中含有分式,并且分母中含有未知数,像这样的方程才属于分式方程。 做一做:在方程:(1)   (2) (3)   (4) 中,是分式方程的有 。 讨论:怎样解方程   回顾一元一次方程的解题步骤,得出去分母,化分式方程为整式方程。 三、应用迁移,巩固提高: 例1、解方程: (1)  +1 分析:解分式方程的关键是去分母,首先要找出各分式的最简公分母,再在方程左右两边乘以最简公分母,化为整式方程求解。 解:方程两边同乘 -1,得     +1=-( -3)+( -1) 解这个整式方程,得   =1 当 =1时,原分式方程的分母为0.这说明 =1不是原分式方程的根(或解)。我们把这样的'根叫做方程的增根此时原分式方程无解。所以解分式方程必须进行验根。 (2) 解:方程两边同乘 +2,得 2-(2- )=3( +2) 解这个整式方程,得   =-3 检验:当 =-3时, +2≠0. 所以 =-3是原方程的根。 想一想:增根:两个因素必须同时满足:(1)使得分式分母中有因式为0 (2)增根一定是分式方程去分母后所的整式方程的解。 例2: 已知关于x的方程 有增根,求m。 分析:若有增根肯定是 =3,所以,去分母后,把 =3代入所得的整式方程,就求出m的值了。详解略 例3:如果分式方程 无解,求m。 分析:若方程无解,只能是有增根 =-1,所以,去分母后,把 =-1代入所得的整式方程,就求出m的值了。详解略   四、总结反思,拓展升华: 解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。 解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 五、课堂跟踪反馈: 106页练习1、2 六、作业: . 106页习题1、(2)(3)(4),2   修改建议 教学反思  

篇18:八年级下册数学分式方程的教案

一、目标导航

1.可化为一元一次方程的分式方程的解法.

2.用分式方程来解决现实情境中的问题.

二、基础过关

1.已知方程的解与方程的解相同,则a等于( )

A.3 B.-3 C.2 D.-2

2.已知,用x的代数式表示y,应是( )

A. B. C. D.

3.当k= 时,关于x的方程会产生增根.

4.甲、乙两班同学参加“绿化祖国”植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用时间与乙班种66棵树所用时间相等.则乙班每小时种

树棵.

5.若方程出现增根,则增根为( )

A.1 B.2 C.0 D.2或0

6.李明计划在一定日期内读完200页的'一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书.解答方案:

设李明原计划平均每天读书x页,用含x的代数式表示:

(1)李明原计划读完这本书需用天;

(2)改变计划时,已读了页,还剩页;

(3)读了5天后,每天多读5页,读完剩余部分还需天;

(4)根据问题中的相等关系,列出相应方程;

(5)李明原计划平均每天读书页.(用数字作答)

7.若关于x的分式方程无解,则m的值为.

三、能力提升

8.解方程

(1)(2)

9.已知的解为负数,试求m的取值范围.

10.A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.

11.某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6立方米,求该市今年居民用水的价格.

四、聚沙成塔

用如图的长方形和正方形纸板分别作侧面和底面,做成如图的竖式和横式的两种无盖纸盒.现在需要生产竖式纸盒与横式纸盒的个数比是5:3.为使长方形和正方形纸板恰好都能用完,进料时长方形和正方形纸板的张数比应是多少?

3.4分式方程(2)

1.B;2.C;3.3;4.22;5.D;6.⑴,⑵5x,(200-5x),⑶,⑷;⑸20;7.;8.⑴x=4,⑵x=7;9.且;10.解:设公共汽车的速度为x千米/时,则小汽车速度为3x千米/时,根据题意得解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x元,则今年价格为1.25x元,根据题意得,,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x个,则需要横式3x个,根据题意得,∶=29x∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.

【分式方程教案】相关文章:

1.分式方程练习题

2.分式方程检测题

3.分式方程教学反思

4.解分式方程练习题

5.八年级分式方程的试题

6.分式方程练习题及答案

7.人教版分式方程教学设计

8.《分式方程的应用》听课反思

9.八年级数学下册《分式方程的应用》的教学反思

10.教案

下载word文档
《分式方程教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部