《从分数到分式》的教学反思
“tfkd”通过精心收集,向本站投稿了13篇《从分数到分式》的教学反思,下面是小编为大家推荐的《从分数到分式》的教学反思,欢迎阅读,希望大家能够喜欢。
篇1:《从分数到分式》的教学反思
《从分数到分式》的教学反思
这一节涉及到数到式的转变,采用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成,培养学生对数学观察和举一反三的.能力,进而培养学生独立思考的能力。本节要注意以下内容:
1、一般情况下对分式的概念理解不存在困难,但是他们往往会忽略分母为零的情况,所以对于分母出现多个字母时,学生会感觉到素手无策,
2、学生对分式何时值为零的条件理解不够全面,往往不能够注意到分母不为零,即使是注意到有什么条件,也不是通过自己独立分析得到的,过分依赖老师的总结、归纳。
3、把分式和除法联系到一起,让学生来理解为什么分母不能为零,效果会更好一点。
4、对于分式何时值为正、何时值为负的教学情况不理想。原因一是,不等式(不等式组)的解法不过关,二是, 对分式的分子和分母不能够做出适当的分析。
篇2:从分数到分式说课稿
一、授课内容的数学本质和教学目标定位
【授课内容的数学本质】
分数与分式联系紧密,二者是具体与抽象、特殊与一般的关系。分数的有关结论与分式的相关结论具有一致性,即数式通性。可以通过类比分数的概念、性质和运算法则,得出分式的概念、性质和运算法则。由分数引入分式,既体现了数学学科内在的逻辑关系,也是对类比这一数学思想方法和科学研究方法的渗透。
从整数到分数是数的扩充,从整式到分式是式的扩充。数学知识源于生活、用于生活。分式与整式都是描述数量关系的代数式,研究分式有助于进一步培养数学建模的意识和数学应用的能力。
分式概念是形式定义,分式的分母不能为0(即分式有意义的条件)是对分式概念的深入理解。此外,考察使分式值为0(或为正数、为负数)的条件,本质上是解一类特殊的分式方程(或不等式)。明确分式的分母不能为0有助于理解解分式方程可能产生增根的道理。
【教学目标定位和教学重、难点】
教学目标:
1。 了解分式的概念,能确定分式有意义的条件,能确定使分式的值为0的条件。
2。 通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。
3。 体会类比等数学思想或方法,获得代数学习的成功经验。
本节课的重点为分式概念、分式有意义的条件;难点是分式有意义及分式的值为0的条件。
从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素。这部分内容是本课的教学难点。
二、教材的地位和作用
本节课是分式单元起始课,主要内容是分式的概念、分式有意义的条件和用分式表示数量关系。分数和整式的知识是学习本节课的基础,本节课内容也是进一步学习分式性质、运算、解分式方程以及后续学习反比例函数的基础。
新教材体系下,学生已经历了从有理数到整式再到一次函数的思维提升;从本节课开始,学生的思维还要经历从分数到分式再到反比例函数的又一次螺旋式上升。
三、教学诊断分析
班级状况:授课班级41名学生多数有较好的数学素养,求知欲强,乐于面对挑战;也有少数学生学习数学的热情不高、代数运算能力较弱。
知识基础:学生对分数和整式的知识比较熟悉,也已初步掌握了列代数式、求代数式的值及解简单的一元方程或不等式的方法。本节课中,预计所有学生对由分数类比到分式的过渡不会感到困难;也能顺利发现当发现字母取某些特殊值时,分式无意义。
预计可能出现的主要问题:分析复杂分式时,容易遗漏分母不为0的条件或者将其误解为分母中的字母取值不为0。在将分子等于0的条件转化为方程、将分母不等于0的条件转化为不等式后,也可能不知从何入手求解由方程和不等式组成的条件组。这部分内容是教学重点和难点。
四、教法特点以及预期效果分析
本节课的教学设计中,我重点关注以下几个问题:(1) 学习兴趣的培养,(2) 重点难点的突破,(3) 应用意识的渗透,(4) 思维训练的层次。
为此,在引入部分,打破学科界限,用学生熟悉的诗文素材构建情境、挖掘问题,提升学生的学习兴趣,激发他们的探究热情,让学生在逐一解决问题的过程中体会成就感、并通过揭示复杂分式的实际背景的'练习提升思维层次。
接下来,教师引导学生观察、归纳所列出的分式的特点,形成分式概念,突出重点。形成概念的过程中要警惕负迁移的发生。例如,在给出分式 的形式表示后,可能有学生因机械记忆“B中含字母”或者“A中含字母”而导致混乱。这时需要教师及时指出,关键是理解分母含字母。又如,学生已学习了一次函数,可能会从变量和函数的角度观察分式。教师可以肯定学生的数学思维,但不必在此展开强调函数观点,紧扣住本节课类比分数认识分式的主要思路即可。
在突破难点的过程中,为达到引发类比、化旧知为新知的教学目的,设计了填写表格这个探究环节。通过填表,学生产生认知冲突、然后自己发现问题、分析问题和解决问题的过程,正是体现学生主体性的学习过程。这个设计也能渗透给学生一种认识新事物、学习新知识的方法――
(1) 从具体入手:当分式中字母取定具体的数值时,分式即表示具体的数。
(2) 发现问题:当字母取某些特殊值时,有可能出现分母等于0的情况。
(3) 分析、解决问题:类比分数有意义的条件可知,分式要有意义,分母不能为0。
虽然上述过程对相当一部分学生而言确实简单了些,但其中隐含的“从具体入手”、“正向思维”等研究方法并不平凡。华罗庚先生所讲的“巧从拙中来”,庶几近之。另外,这张表也为学生后续学习反比例函数做了初步铺垫。
两道例题的分析讲解需要体现教师的主导性。先帮助学生总结出分式有意义和值为0分别需要满足的条件,再通过板书教给学生严谨有序的思维模式,使学生体会到方程和不等式联立的方法有助于理清思路,同时分散了解题难点(列条件、解条件组分为两个步骤)。这是帮助学生从感性思维上升到理性思维的重要一步。另一方面,学生领会和掌握这种解题方法需要一个过程。通过多种变式练习,教师引导学生多实践、多谈思路,做到师生互动、生生互动,发现问题后互相提醒、纠正,达到落实双基的效果。
三个拓广探究问题力求让不同层次的学生都能有发挥的空间。
练习1引导学生灵活处理方程和不等式组成的条件组:先解方程,再将方程的解逐一代入不等式检验。
练习2引导学生将视野由等量关系拓展至不等关系,类比分数的值为负数的条件得到这个分式的值为负数的条件。
练习3是学生熟悉的追及问题情境,他们可以很快地给出正确代数式,但一般不会首先考虑取值范围。教师可以从肯定学生的生活经验出发,先让学生列式,体会成就感,再从分式要有意义的角度提醒学生关注字母的取值范围,最后引导提升到字母取值应使实际问题有意义的认识高度,潜移默化中渗透数学建模的意识。
游戏环节再次提升学生的兴趣。教师鼓励学生开阔思路、大胆发言、不断出新,师生共同分享“突发奇想”、掌握知识的喜悦。这个设计旨在培养学生的发散思维和创造力,也符合新课标中鼓励学生在自主探索和合作交流中掌握数学知识的理念。
本节课的分层作业中,必做题目涵盖了本课的重、难点内容;选作题目是开放式的,鼓励学生在探究中创新求变、总结规律,提高分类的意识和穷举的能力。
总之,本节课的教法特点是:通过不断提出和解决问题,激发学生的求知欲,使学生在老师的引导下,通过观察、归纳、总结、应用甚至游戏掌握新知。从实际教学效果看,学生思考积极、发言踊跃,始终保持了一种积极的课堂状态。
本节课我对基础薄弱的学生能否顺利形成概念给与了特别的关注,保证绝大多数学生能跟上最低限度的教学要求。在思维拓展的环节中,学生也不乏精彩的发言和创见,应该说实现了课前设计的三维教学目标。
篇3:《从分数到分式》说课稿
一、教材分析
1.地位和作用
“从分数到分式”是人教版九年制义务教育课本中八年级第一学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
2.学情分析
我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标
(1)知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2)技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3)能力目标:学习观察类比和转化的思想方法,培养学生分析、归纳、概括的能力。
(4)情感目标:通过类比学习分式的的意义,培养学生认识事物之间普遍联系的辩证唯物主义观点,并在探索学习的过程中体会成功的喜悦,从而提高学生学习数学的兴趣。
4.教学重点与难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
(1)重点:分式的意义;分式有意义的条件;
(2)难点:分式无意义、分式的值为零的条件。
二、教学方法与学法
本节课运用启发类比的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力以及类比归纳能力的培养,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
三、教学过程
本节课的教学我主要分下面这样几个环节
1.复习回顾,以旧探新,类比联想,形成概念
教师先问学生一个问题,帮助学生回忆整式,并从中找出不是整式的式子备用。
复习:下列式子那些是整式?那些不是整式?
然后教师再请学生看以下两个问题。
填空:
(1)长方形的面积为10cm2,长为7cm,宽应为cm;长方形的面积为S,长为a,宽应为cm.
(2)把体积为200cm3的水倒入底面积为33cm2的圆柱形容器中,水面高度为cm;把体积为V的'水倒入底面积为S的圆柱形容器中,水面高度为。
学生通过运算、比较,可以发现是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“从分数到分式”。
接着,教师在此基础上引导学生类比分数的相同点与不同点归纳概括出分式的概念。即两个数,相除可以用“”或“”来表示,如果两个代数式A,B相除我们也可以用“A÷B”或“”来表示。
分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。
在教师与学生共同得到分式的概念后,紧接着教师给出:
练习:
下列式子中,哪些是分式?哪些是整式?
通过对分式的概念的理解,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。
2.观察感知,启发引导,指导运用,巩固概念
在掌握了分式的概念以后,教师通过“要分数有意义,只要使分母不为零”让学生很自然得过渡到“要分式有意义,也只要使分母不为零”即可的思想。
教师抓住这一契机,给出:
例1下列分式中的字母满足什么条件时分式有意义?
教师板演解题过程,再给学生机会练习
练习:下列分式中的字母满足什么条件时分式有意义?
讲到这里,教师又乘胜追击,问学生:
那么以上各分式,当取什么值时,分式无意义?
3、变式训练,讨论辨析,揭示内涵,深化概念
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,教师将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。
教师问学生:
若使分式的值为0,则对分式的分子和分母有什么要求?
由于学生对新概念的理解在本质方面还是肤浅的,很多学生只会考虑满足分子为零即可,教师对此先不做评价,出示例题:
例2下列分式中,当字母为何值时,分式的值为0?
教师给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样教师就能及时得对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)分子的值为零;(2)同时分母的值不等于零。
练习:
4.反思小结,自主评价,培养能力,激励奋进
一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?类比分数与分式的学习你认为本章将研究的内容有哪些?
教师整理学生的发言,归纳小结:
(1)分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。
(2)要分式有意义,也只要使分母不为零
(3)分式的值为零必须满足两个条件:(1)分子的值为零;(2)同时分母的值不等于零。
5.分层作业
(1)课本133页1、2、3.
(2)取何值时,分式的值为负数?
伊宁县第四中学葛吉凤
篇4:《从分数到分式》说课稿
从分数到分式
课时:一课时
知识与技能目标
1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分。
2.使学生能够求出分式有意义的条件,过程与方法目标。
能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比。
转化的思想方法研究解决问题。
教学重点和难点,准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点。
教学方法:探究与讲授结合。
教学过程
活动一情境引入:
一般轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流流航行100千米所用时间,与以最大航速逆水航行60千米所用时间相等,江水的流速为多少?
活动二思考
活动三观察
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
(2)由学生举几个分式的例子.
(3)学生小结分式的概念中应注意的问题。
①两个整式相除
②分母中含有字母。
(4)整式与分数的不同.分工具有一般性。
活动四分式中的分母应满足什么条件?
如同分数一样,分式的分母不能为零
活动五:1、求分式的值.2、何时分式的值为零?
例1(1)当a=1,2时,求分式的值;
解:(1)当a=1时,
当a=2时
例2当x取何值时,下列分式有意义?
思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做?
例3当x取何值时,下列分式的值为零?
解:由分子x+3=0得x=-3.
而当x=-3时,分母2x-7=-6-7≠0.
∴当x=-3时,原分式值为零.
例4当x取何值是分式的值为零。
解:由分子|x|-1=0得x=±1
当x=1时x+1≠0
当x=-1时x+1=0,分式无意义。
∴当x=1时原分式的值为零。
小结:若使分式的值为零,需满足两个条件:
①分子值等于零;②分母值不等于零.
活动六课堂练习p课本第6页1――3
活动七课堂小结
本节课你学到了哪些知识和方法?
1.分式的定义。
2、分式与分数的区别.
3.分式何时有意义?
4.分式何时值为零?
作业
教材p10页第1―3题
篇5:《从分数到分式》说课稿
一、教材分析
1.地位和作用
“从分数到分式” 是人教版九年制义务教育课本中八年级第一学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
2.学情分析
我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标
(1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3) 能力目标:学习观察类比和转化的思想方法,培养学生分析、归纳、概括的能力。
(4) 情感目标:通过类比学习分式的的意义,培养学生认识事物之间普遍联系的辩证唯物主义观点,并在探索学习的过程中体会成功的喜悦,从而提高学生学习数学的兴趣。
4.教学重点与难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
(1)重点:分式的意义;分式有意义的条件;
(2)难点:分式无意义、分式的值为零的条件。
二、教学方法与学法
本节课运用启发类比的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力以及类比归纳能力的培养,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
三、教学过程
本节课的教学我主要分下面这样几个环节
1.复习回顾,以旧探新,类比联想,形成概念
教师先问学生一个问题,帮助学生回忆整式,并从中找出不是整式的式子备用。
复习:下列式子那些是整式?那些不是整式?
然后教师再请学生看以下两个问题。
填空:
(1)长方形的面积为10 cm2,长为7 cm,宽应为 cm;长方形的面积为S,长为a,宽应为 cm.
(2)把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为 cm;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 。
学生通过运算、比较,可以发现是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“从分数到分式”。
接着,教师在此基础上引导学生类比分数的相同点与不同点归纳概括出分式的概念。即两个数,相除可以用“”或“”来表示,如果两个代数式A,B相除我们也可以用“A÷B”或“”来表示。
分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。
(这样设计的意图是刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)
在教师与学生共同得到分式的概念后,紧接着教师给出:
练习:
下列式子中,哪些是分式?哪些是整式?
通过对分式的概念的理解,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。
2.观察感知,启发引导,指导运用,巩固概念
在掌握了分式的概念以后,教师通过“要分数有意义,只要使分母不为零”让学生很自然得过渡到“要分式有意义,也只要使分母不为零”即可的思想。
教师抓住这一契机,给出:
例1下列分式中的字母满足什么条件时分式有意义?
教师板演解题过程,再给学生机会练习
练习:下列分式中的字母满足什么条件时分式有意义?
讲到这里,教师又乘胜追击,问学生:
那么以上各分式,当取什么值时,分式无意义?
3、变式训练,讨论辨析,揭示内涵,深化概念
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,教师将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的`音符一样活跃起来了。
教师问学生:
若使分式的值为0,则对分式的分子和分母有什么要求?
由于学生对新概念的理解在本质方面还是肤浅的,很多学生只会考虑满足分子为零即可,教师对此先不做评价,出示例题:
例2下列分式中,当字母为何值时,分式的值为0?
教师给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样教师就能及时得对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)分子的值为零;(2)同时分母的值不等于零。
练习:
4.反思小结,自主评价,培养能力,激励奋进
一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?类比分数与分式的学习你认为本章将研究的内容有哪些?
教师整理学生的发言,归纳小结:
(1)分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。
(2)要分式有意义,也只要使分母不为零
(3)分式的值为零必须满足两个条件:(1)分子的值为零;(2)同时分母的值不等于零。
5.分层作业
(1)课本133页1、2、3.
(2)取何值时,分式的值为负数?
伊宁县第四中学 葛吉凤
篇6:《从分数到分式》评课稿
上周五下午我们参加了新塘二中的“一课两讲”教研活动。那两位老师为我们展示了精彩的课堂教学,下面是我们的一些看法:
两位老师的共同优点是:
都能够根据学科质量评价标准进行讲课。
了解分式的概念,清楚明白分式和整式的意义。
导入自然,时间运用少,能够通过分数与分式的类比让学生分清分式与整式分母与分子,了解分式的概念,初步让学生感受类比思想。
4、教学过程中有用肯定性的语言鼓励学生
其中,朱老师上课的优点是:
内容上的填表探索分式意义较好,能使学生教容易理解。
教案的设计内容教简单,能使学生加深理解分式的概念。
教学结构完整,内容循序渐进。
建议:
在展示的过程中,建议讲解时语言简练,突出重点。
在教学时语言不要过于单调,适当运用一些学生感兴趣的词使课堂气氛活跃。
建议生生之间要有充分的交流。
曾老师的上课优点是:
上课时语言幽默有趣,有效且善于引导学生思考,课堂气氛活跃。
有效整合教材内容,依纲靠本。
能运用一些新颖的词语吸引学生,使课堂气氛上升。
建议:
建议少讲多做,让学生有足够时间做练习题。
导学案上的B组题较难,学生难于做题,理解。
建议让学生与学生之间多点小组合作,互助互评,构造有效的交流。
大鹏中学八年级数学备课组
曾老师这节课目标明确,教法灵活,环节衔接得非常好,教学效果好。由浅入深,层层善诱,把知识一步步向学生展示,由始至终调动好学生的学习热情,牢牢地把控住课堂。学生学习热情高涨,作为异地教学,能收到这样的效果,确实是水平很高的一堂课,教学设计非常好,教师把知识传授得非常到位。如果是曾老师本身的学生,再加强学生之间的互动,互学,效果会显得更好。
朱老师这节课的优点是:(1)目标明确、重点突出;(2)表达准确,层次分明;(3)导入自然,层层善诱;(4)能使学生识别分数与分式的概念,分式有意义和分式的值为0的条件;(5)教学效果好、能达到预期目标。若老师少说一点学生多练一点效果会更好。
篇7:《从分数到分式》评课稿
听了两位老师的《分式(一)》这节课,受益颇多。他们都对教材研究透彻,通过整合教材,让知识易懂,易学。他们在教学过程中,能巧妙的引入新课,激发学生的学习兴趣和求知欲,能引导学生积极思维、主动地获取知识。很注重有机地采取多种教学方法,使学生在愉快的气氛中学会数学知识。
朱老师的课:
1、数学教学生活化,激发了学生的学习兴趣。在新课引入、上课过程中能密切联系生活实际,使数学教学生活化。很好的体现了以培养学生实践能力为目标的教学理念。
2、充分利用教材资源。
教学过程是师生互动的过程,产生多种资源,教师学会观察、倾听,充分利用来自学生的兴趣的资源。在本堂课的.教学设计中,朱老师非常巧妙而充分的利用了教学资源。例如,在巩固阶段,朱老师出示了很多有趣的题目,让学生用今天所学的知识解决数学问题。
3、注重知识的来源的探导。
在教学分式有意义这一环节,朱老师放手让学生自己探导,去发现,去总结,相信学生,尊重学生。
本堂课值得商榷的地方,我们认为朱老师可以少讲精练,给多一些机会让学生去发现,去解答,而不是替学生解答。同时对学生评价的方式能不能再丰富一些,更能激励学生一些,这样会取得更好的效果
曾老师的课:
1、教学设计巧妙,“请君入瓮”
曾老师从生活实例入手,让学生初步感悟整式与分式的区别,再举出一些实例让学生理解整式与分式,并让学生观察找出整式与分式的不同之处,让学生不知不学地就知道了分式的概念,以及与整式的区分关键点了。
2、教学环节层次分明,过渡自然。
曾老师设计的每个环节一环扣一环,层层递进,面面俱到。让学生从练中发现知识,并应用知识。让学生充分体验到学习的喜悦和成功的体验。使每个层次的学生都能得到不同的发展。
3、教学方式多样化,激发学习兴趣
曾老师在课堂上用观察发现法,小组合作讨论,生生互改等方式进行教学,让学生自己去发现,去提问,合作去解决,充分信任学生,突现学生的主体性。学生可以在平等的交往中充分展示自己的潜能,教师也成为学生学习和探究的启发者、合作者、促进者。小组合作学习,充分赋予了课堂的活动空间。曾老师有效地开展了小组合作的学习方式,例如:一开始,就以小组交流题目引入,让学生自己去探索所学的新知识;在后来的教学过程中,又让学生讨论解决问题。真正开展了有效地小组合作学习,师生共同探究。让学生感悟到自己是学习的主人,激发学生学习的内驱动力,引发学生学习的兴趣。
4、注重学习方法小结,“画龙点睛”
曾老师在教学过程中,每完成一个环节,都让学生发现要注意的问题,并进行小结,让学生对知识点进一步明确理解,起到“画龙点睛”的作用,这是我们在平时教学中应学习的地方。
5、教学评价丰富,及时鼓励学生。
曾老师在课堂上评价学生的语言丰富,如“我发现你们的计算能力不错”“你的思维非常严谨”“你的解法很独特”“你很聪明”等等,让学生充分得到老师的及时肯定,更有信心往下学。让学生在课堂上收获成功的体验。
本堂课值得商榷的地方,我们认为曾老师可以给学生更多的空间去展示自我及小组合作的成果,训练学生的口头表达能力。同时语速可以相对慢一点,这样更有利于学生对知识点的理解。
篇8:《从分数到分式》评课稿
下午我们备课组的老师在二中听了两位老师”一课两讲“的全市公开课,获益良多。
两位老师的公开课都准备很充分,每一个教学环节的教学思路的都很清晰,设计的练习和例题选题典型,能由浅入深,层层推进,能照顾不同层次的学生。老师善于创设问题情景导入新课,通过让学生解决问题,观察发现分式的式子特征来形成分式的概念。为了让学生更好的得出分式的概念,通过小学学习的分数与分式的类比,从具体到抽象,从特殊到一般地认识分式,轻松有效地导入了新课。正确理解分式的基本概念是学习分式的基本运算、分式方程的基础。在课堂中,老师都能积极地鼓励学生,激发学生的学习兴趣,充分地调动学生学习积极性,让学生能有效地理解分式有意义,无意义,值为零的条件。
两位老师的教学各有自己的教学特色。新塘二中的老师讲解很详细,能设计填表探究题,创造条件使学生在探究中获取新的知识;通过变式练习的训练,使学生更能透彻地理解知识与解题方法。建议老师可少讲一些,多留时间让学生独立思考和做题,老师也不要急着讲。
新塘二中的老师上课有激情,教学语言新颖,能有效引导学生思考,充分地调动学生学习积极性,给学生留有思考和探索的余地,让学生能在独立思考与合作交流中解决学习中的问题,并能调动学生之间对练习互相批改,加强学生间的互动。建议适当降低B组练习第5和第7题的难度。
篇9:《分式》教学反思
1、关于概念
以一首唐诗引入并提出相关的问题让学生解决,不仅激发了学生的学习兴趣和好奇心,也为分式概念的探索打下了基础。紧接着在以贴近学生生活的实例为背景提出一系列问题,层层深入,既让学生感受了字母表示数的意义,发展他们的符号感,又在这一过程中初步感受分式的模型作用,初步体会分式的意义。最后,在给出定义前,通过问题的引导和观察、交流,让学生自己发现分式的特征,从而提炼出分式定义中重要的三个要点,为后面的内容做铺垫。
2、关于应用
由于有整式的学习基础,我把列分式和求分式的值直接放手给学生先自己去做,在学生的解题过程中,注意引导学生分析实际问题的数量关系,注意解题过程中的书写格式,在巡堂时发现问题及时给学生指出纠正,给予了学生充分的时间,也注重了学生学习的自主性。
3、关于条件
对于分式无意义、有意义、值为0的三个条件,是本节课的重难点,我在这里主要通过由分数到分式的过渡提问,让学生自己发现前两种情况下分别需要满足的条件,特别是值为0的条件的探究中,我设计了一个改错的问题,让学生自己探究出值为0的条件,同时也将容易忽视的地方凸显出来,加深学生的印象。在每个条件得出后,再给出相应的练习,对刚学的知识予以巩固。
由于内容较多,在对课堂的时间安排不够合理,前松后紧。最后总结草草结束,心里觉得很遗憾。
篇10:《分式》教学反思
下面是我在教学中的几点体会:
一、教学中的发现
(1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:
1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;
2.增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;
(3)列分式方程错误百出。
针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。
二、教学后的反思
通过这节课的教学及课后几位专家的点评,这节课的教学目的基本达到,不足之处本节课的容量较大,如果能采用多媒体教学效果会更好;在以后的教学中我将继续努力,提高自己的教学水平。
篇11:《分式》教学反思
通过例题由我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。
这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。
在本课的教学过程中,我认为应从这样的几个方面入手:
1、分式方程和整式方程的区别;
2、分式方程和整式方程的联系;
3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母;
4、对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
课堂效果:在这节课上,11班学生状态非常好,所有的学生都能积极思考,踊跃回答问题,感觉这节课的效果还是不错的。
篇12:《分式》教学反思
《分式》教学中,通过对教材的研读与操作,我觉得,教学应当根据学情对教材灵活应用,不必拘泥于教材,按部就班,甚至死板硬套,造成学生理解、应用的困难。
(一)适度添加“移号法则”。利用对比的方法认识了分式的基本性质以后,课本的编排是约分、通分,可在相关的例题训练中都不同程度的涉及到了“移号”的问题,而“移号法则”在新教材中有删略,仅仅体现在习题P9第5题“不改变分式的值,使分式的分子、分母中都不含”-”号”,显然,教材的编写者试图淡化这一重要变形,仅仅从有理数的除法则方面再次加以提醒,这其实是远远不够的。基于此,我在引导学生完成粉饰的基本性质以后,对本题进行了深入探究:通过本题,你发现了什么?----通过提炼总结,得出了“分式、分式的分子、分式的分母中,改变其中两项的符号,分式的值不变(移号法则)”的结论。这样,通过铺垫,学生在完成P6例3(1)、P11例1(2)、例2(2)等问题时,困难就迎刃而解了。
(二)对整数指数幂点的处理。当前,教材倾向于“数学从实践中来”的理念的践行,很多知识点要从实际问题中反映出来,然后加以研讨,而就整数指数幂而言,似乎完全不必:数学是一门有严密的逻辑体系的学科,从原有的“正整数指数幂”的基础上构建,其实更符合数学科的特点。因此,在具体的教学中不妨引导学生从数的发展史方面进行类比教学,使学生的知识体系有一个渐进的完善过程,更有利于其对整个体系的构建。
(三)对列分式方程解应用题方面,是本章的教学难点,也是学生(何止是学生?)颇感头疼的部分。解决这个问题的关键是正确审题。学生依据已有的生活、知识经验对问题进行解读,提取、整合相关信息,找出相等关系(等量关系),抓住这个突破口,列方程也就顺理成章了,故而在这一部分的教学中,应当充分让学生身体,准确理解题意,这才是关键环节,教材的设计顺应了学生的常规思路,可让学生在预习时充分利用,课堂教学时应着力找出相等关系。
篇13:分式教学反思
今天下午,我于多媒体教室对八(2)班学生教学《分式》第一节,该课是数理化教研组的组内公开课,在学生和参会的教师的共同努力下,结束了听课评课活动,于我,有很大的启发,在此,就我个人的看法做以下简单的反思:
一、个人认为的亮点。
1、情感教育。
在教学的情境引入上,就土地沙化问题,提出环境保护,由“地球村”一词引入,对学生进行了环境保护的情感教育,让学生意识到“焚烧垃圾”是污染环境的不正确的做法、地球是我们的家,我们有责任去保护她、植树造林对环境有很好的净化美化作用,通过学生思考交流,该目标基本达成。
2、大胆尝试新的教学方法———学案教学法。
在课前的前两天,我就发给学生学案,以每小组四人,每组发放一篇教学学案,让学生通过预习对学案上的知识点有一定的了解,且要求学生对我的设计充分提出要求
3、概念的创新教学。
在学习分式概念时,避免传统教学中对于概念直接给出,叫学生死记硬背,忽略了学生学习的过程,也不考虑学生是否真正理解,本课时是让学生通过观察、归纳、总结整式与分式的异同,从而得出分式概念.
4、注重能力培养
新课标注重学生探索,创新、合作能力的培养,本课时观察分式与整式的异同时,就是采取学生自主探索,合作交流的形式.
5、课堂反馈效果良好
对学生学习效果的反馈采用我特色的“学生互讨互进”的方法,较全面的了解学生的学习情况,对不足之及时补充,有良好效果.
二、出现的不足
1、节奏有点慢。
课后我看了几遍这堂课的教学录像,教学语言过慢,影响了整堂课的教学时间。
2、声音太小。
由于多日的'感冒,声音沙哑且较小,另加个人一直声音偏小,故在本堂课的教学中出现有的话听不明的状况,这大大影响了教学效果。
3、忽略了组内代表发言。
在教学中我采用了学生举手发言的方式让学生交流,但忽略了组内代表发言,组内代表发言可以让学生在组交流时加强其责任心,使学生在组内交流时更高效。
4、分式得出欠科学。
在教学中就和七年级学习整式对应起来,得出分式只强调了内涵的除法运算,而忽略了七年级学习整式时商的形式应写成分数的形式。
5、教学目标未全部达成。
由于在教学中设计及教学时没有把握好时间,导致该堂课没完成预定的教学目标。
三、需要加强的方面。
1、教学语言。
节奏适度加快,精炼教学语言,普通话有待进步。
2、加强组内代表发言的环节。
在教学交流过程中,想办法让学生参与度增加,增强学生交流责任,提高交流质量。
3、重视目标达成,提高教学效率。
设计中的预定目标应高度重视,设计时就高度重视教学时间,让该用的时间用上,不该用的时间少用亦或不用,提高教学效率。
4、设计中重视承前启后。
在教学中,认真分析教材,搞清教材的地位,做好承前启后教学工作,让学生学习终生有用的数学。
5、声音小的补救措施。
每天早上起来进行练声训练,上课时最好配备挂式麦克风,让自己所说的每一句话都清清楚楚,提高教学效率。
总之,教学是一门遗憾的艺术,在教学中,我将认真设计每一堂课,认真反思每一堂课的教学,积累经验,为自己教学更高效不懈努力。在此,我真诚地感谢评课的所有教师,谢谢你们为我提了很有建设性的建议。
【《从分数到分式》的教学反思】相关文章:
2.分层次教学反思
3.分苹果教学反思
5.分一分的教学反思






文档为doc格式