欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教学总结>代数教学总结

代数教学总结

2022-12-01 08:42:49 收藏本文 下载本文

“步知”通过精心收集,向本站投稿了14篇代数教学总结,以下是小编为大家准备的代数教学总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

代数教学总结

篇1:代数教学总结

一、代数式的定义:

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

注意:

(1)单个数字与字母也是代数式;

(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;

(3)代数式可按运算关系和运算结果两种情况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:

把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

五、代数式书写要求:

1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;

2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序。如式子(a+b)·2·a应写成2a(a+b);

3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;

4.在代数式中出现除法运算时,按分数的写法来写;

5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

六、系数与次数

单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:

(1)单项式的系数包括它前面的符号;

(2)若单项式的系数是“1”或-1“时,”1“通常省略不写,但“-”号不能省略。

2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。

注意:

(1)单项式的次数是它含有的所有字母的指数和,只与字母的指数有关,与其系数无关;

(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。

3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数。

4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和”中单项式的个数。

七、列代数式:

用含有数、字母和运算符号的式子把问题中的数量表示出来就是列代数式。

正确列出代数式,要掌握以下几点:

(1)列代数式的关键是理解和找出问题中的数量关系;

(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;

(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。

八、代数式求值:

一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。

代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。

常见考法

列代数式与代数式求值是中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观察出规律,并尝试归纳出代数式或公式,再加以验证。

误区提醒

(1)列代数式时,由于审题不清,对条件理解不透,很容易搞错运算顺序而列错代数式;

(2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。如果没有对实数运算掌握好,就会出现运算顺序搞错的现象。

(3)在进行规律探索中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,出现以点概面,以偏概全的现象。

篇2:代数教学总结

同学们在学习线代的时候觉得有难度。我认为有两个方面的原因:

1.大家在学习了高数后,难免在学习线代时后劲不足;

2.线代知识体系错综复杂,联系比较多,大家往往搞不清联系。

下面,跨考教育数学教研室的向喆老师跟大家说说一些难理解和常考的概念。今天所说的是线性代数中的矩阵学习问题,大家分三个步骤来学习。

首先,构建矩阵知识框架。矩阵这一章在线性代数中处于核心地位。它是前后联系的纽带。具体来说,矩阵包括定义,性质,常见矩阵运算,常见矩阵类型,矩阵秩,分块矩阵等问题。可以说,内容多,联系多,各个知识点的理解就至关重要了。

然后,把握知识原理。在有前面的知识做铺垫后,大家就要开始学习矩阵了。首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。

最后就是矩阵秩。这是一个核心和重点。可以毫不夸张的说,矩阵的秩是整个线性代数的核心。那么同学们就要清楚,秩的定义,有关秩的很多结论。针对结论,我给的建议是大家最好能知道他们是怎么来的。最好是自己动手算一遍。我还补充说一点就是分块矩阵。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

最后,多做习题练习。在前面有了知识体系和掌握了知识原理后,剩下的就是多做题对知识进行理解了。有句古话:光说不练假把式。所以对知识的熟练掌握还是要通过做题来实现。同时,我也反对题海战术,做题不是盲目的做题,不是只做不练。做题应该是有选择的做题,做一个题就应该了解一个方法,掌握一个原理。所以,大家可以参考历年真题来进行练习。每做一个题,大家就该考虑下它是怎么考察我们所学的知识点的。如果做错了,大家还要多进行反思。找到做错的原因,并且逐步改正。这样才能长久的提高。

总之,希望大家在学习线性代数的矩阵的时候把握这三个原则,在此基础上,勤思考,多练习,那么大家一定可以学习好,祝大家考研成功!

篇3:代数教学总结

20xx-20xx学年第二学期的教学工作已顺利结束,为了及时、准确了解考试状况,以便不断改进教学,现将本次考试情况总结如下:

一、对试卷的总体评价:

1.命题目的

1)用于考查学生对基本知识的掌握情况

2)用于考查学生运用所学知识分析和解决问题的能力

2.预期结果

本次考试基本上达到了预期的'目的,试题较科学、严谨、试卷内容覆盖面宽、试卷结构合理,由于本班学生是三年高职生,基础较好、学习态度端正加之复习准备较充分,所以考试成绩较理想。

二、学生成绩分布情况:

三、分析失分的原因;

本试卷共包括6个大题:

(1)填空题,本题占总分的10%,学生平均得分约8分,掌握较好,说明学生的基础知识较扎实。

(2)选择题,满分30分,平均得分约27分,掌握较好,说明学生对基础知识理解透彻。

(3)判断题,该题满分15分,平均得分约13分,掌握较好,说明学生的判断力较强。

(4)计算题,该题满分31分,平均得分约27分,掌握较好,说明学生的计算能力较强。

(5)证明题,该题满分5分,平均得分约5分,掌握较好,说明学生的基础知识较扎实。

(6)解方程,满分9分,平均得分约7分,掌握一般,说明学生的计算能力欠缺。

其中失分较多的题目是解方程,原因是:

a.三年高职学生的数学基础相对五年高职和三年中职的学生来说要好得多,但随着高校招生规模的扩大及我院招生速度增加,整体学生素质也相对下降,通过一学期的学习,学生的数学水平有很大的提高,但个别学生学习数学的兴趣较底,书面表达能力较差。因此根据要求分析和证明上错误较多,失分情况较多。

b.因学生来源不同,学生的层次不同,内地学生基础普遍较好,本地学生基础相对较差。

四、存在的问题及建议:

a.随着高校招生规模的扩大及我院招生速度增加,整体学生素质也相对下降,招生时应有所选择。

b.教学方法有待改进。

篇4:数学代数教学总结

数学代数教学总结

在学习vb过程中,很多同学简单地认为布尔值true就是―1或非0值,false就是0,这种看法是错误,下面将布尔值、逻辑运算和关系运算总结如下:

在vb中,布尔(boolean)值有两个:true(真)和false(假),布尔值可以用于逻辑、关系(比较)和算术运算中。

1)布尔值用于逻辑运算中,结果为布尔值。

例如:

print not true, not false

print true and true, true and false, false and true, false and false

print true or true, true or false, false or true, false or false

结果为:

false true

true false false false

true true true false

【总结】

not 非运算规则:非真则假,非假则真

and 与运算规则:只有都是true,结果才为true(只要有一个为false,结果就为false)

or 或运算规则:只有都是false,结果才为false(只要有一个为true,结果就为true)

2)布尔值用于关系(比较)运算中,结果为布尔值。

例如:

print true >false

结果为:

false

【总结】在关系运算中,true小于false。

3)布尔值用于算术运算中(true当作―1,false当作0),结果为数值型。

例如:

print true + 3, false + 3

结果为:2・ 3

1)逻辑运算说明

数值用于逻辑运算中,非0值当作true,0当作false,结果为数值型。

注:true and n和false or n的结果为n,其他情况true写成―1,false写成0(即结果可能为n、―1或0)

例如:

print true and 5, true and 0, false and 5, false and 0

print true or 5, true or 0, false or 5, false or 0

结果为: 5 0 0 0

―1 ―1 5 0

【注意】布尔值可用于算术运算;数值可以用于逻辑运算。但不能认为true和―1、false和0完全等价。

● 算术运算的'结果必然为数值型。

● 关系运算(比较运算)的结果必然是布尔值。

● 逻辑运算的结果可能是布尔值或是数值型。

2)关系(比较)运算说明

数值、日期、字符和布尔值都可以比较。

● 日期比较的规则是“日期在后的大”

● 字符比较的规则是按照ascii码比较,空格<”0“―”9“<”a“―”z“<”a“―”z“<汉字

● 布尔值比较的规则是假大于真。

例如:

print 3 < 5

print #9/19/# >#9/18/2009#

print ”abc“ >”abcd"

print true >false

结果为:

true

true

false

false

例题:(16)设a=4,b=3,c=2,d=1,下列表达式的值是

a>b+1 or c

a)true b)1 c)―1 d)0

【分析】

a>b+1 即 4>3+1 结果为 false。

c

b mod c即3 mod 2结果为 1。

即false or false and 1。and优先级高于or,false and 1结果为0。

false or 0的结果为0。

所以本题答案为0 。

篇5:初中代数教学

摘 要:代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算法则抽象化和公式化。

学生在学习的时候会产生一些困难,特别的初一学生刚刚接触代数,对代数的了解有一定的困难,在这里就初中代数的特点和学生学习代数谈谈自己的看法。

关键词:初中 代数 概念

代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算法则抽象化和公式化。

初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习的'困难所在。

为了克服初一新生对这一转化而引发的学习障碍,教学中要特别重视“代数初步知识”这一章的教学。它是承小学知识之前,启初中知识之后,开宗明义,搞好中小学数学衔接的重要环节。

数学中要把握全章主体内容的深度,从小学学过的用字母表示数的知识入手,尽量用一些字母表示数的实例,自然而然地引出代数式的概念。再讲述如何列代数式表示常见的数量关系,以及代数式的一些初步应用知识。

要注意始终以小学所接触过的代数知识(小学没有用“代数”的提法)为基础,对其进行较为系统的归纳与复习,并适当加强提高。使学生感到升入初一就像在小学升级那样自然,从而减小升学感觉的负效应。

初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。

如介绍:(1)数学的特点。(2)初中数学学习的特点。(3)初中数学学习展望。(4)中学数学各环节的学习方法,包括预习、听讲、复习、作业和考核等。(5)注意观察、记忆、想象、思维等智力因素与数学学习的关系。(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的联系。

学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数———负数,与学生日常生活上的联系表面上看不很密切。

他们习惯于“升高”、“下降”的这种说法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。

我们在正式引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发新数集的扩展。

即自然数集添进数0→扩大自然数集(非负整数集)添进正分数→算术数集(非负有理数集)添进负整数、负分数→有理数集……。这样就为数系的再一次扩充作好准备。

正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产300千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示出来呢?从而激发学生的求知欲。

再让学生自己举例说明这种相反意义的量在生活中是经常地接触到的,而这种量除了要用小学学过的算术数表示外,还要用一个语句来说明它们的相反的意义。如果取一个量为基准即“0”,并规定其中一种意义的量为“正”的量,与之相反意义的量就为“负”的量。用“+”表示正,用“-”表示负。

这样,逐步引进正、负数的概念,将会有助于学生体会引进新数的必要性。从而在心理产生认同,进而顺利地把数的范畴从小学的算术数扩展到初一的有理数,使学生不至产生巨大的跳跃感。

初一的四则运算是源于小学数学的非负有理数运算而发展到有理数的运算,不仅要计算绝对值,还要首先确定运算符号,这一点学生开始很不适应。在负数的“参算”下往往出现计算上的错误,有理数的混合运算结果的准确率较低,所以,特别需要加强练习。

另外,对于运算结果来说,计算的结果也不再像小学那样唯一了。如|a|,其结果就应分三种情况讨论。

这一变化,对于初一学生来说是比较难接受的,代数式的运算对他们而言是个全新的问题,要正确解决这一难点,必须非常注重,要使学生在正确理解有理数概念的基础上,掌握有理数的运算法则。对运算法则理解越深,运算才能掌握得越好。但是,初一学生的数学基础尚

不能透彻理解这些运算法则,所以在处理上要注意设置适当的梯度,逐步加深。有理数的四则运算最终要归结为非负数的运算,因此“绝对值”概念应该是我们教学中必须抓住的关键点。而定义绝对值又要用到“互为相反数”的概念,“数轴”又是讲授这两个概念的基础,一定要注意数形结合,加强直观性,不能急于求成。

学生正确掌握、熟练运用绝对值这一概念,是要有一个过程的。在结合实例利用数轴来说明绝对值概念后,还得在练习中逐步加深认识、进行巩固。

学生在小学做习题,满足于只是进行计算。而到初一,为了使其能正确理解运算法则,尽量避免计算中的错误,就不能只是满足于得出一个正确答案,应该要求学生每做一步都要想想根据什么,要灵活运用所学知识,以求达到良好的教学效果。这样,不但可以培养学生的运算思维能力,也可使学生逐步养成良好的学习习惯。

总之,学生在小学数学中接触的都是较为直观、简单的基础知识,而升入初一后,要学的知识在抽象性、严密性上都有一个飞跃,作为初一数学教师,认真分析研究有关问题,对搞好中小学数学课堂教学的衔接和提高教学质量有很大的现实意义。

篇6:高等代数教学论文

高等代数教学论文

高等代数教学中的几点感悟

文/宋雪丽

摘 要:在大学数学课程中,高等代数是其中一门十分重要的科目。结合教学实践,谈了一些感悟。

关键词:内容;概念;方法

高等代数是大学数学课程中一门重要的专业基础课程,为后继课程提供必不可少的数学理论基础知识,一般都在大学一年级开设。由于该课程是学习大学后继相关课程的基石,同时也是研究其他学科的工具,许多高等院校都将高等代数列为研究生招生考试课程,因此,该课程在整个专业课程体系中地位很高。由于该课程的抽象性和枯燥性,许多初学者往往觉得学起来很困难。因此,作为高校教师,如何培养学生对高等代数的学习兴趣,提高高等代数的课堂教学质量显得尤为重要。结合多年的教学实践经验,下面我谈谈在《高等代数》教学中的一些感悟。

一、尽量与中学数学内容相联系

高等代数课程中的许多教学内容与中学数学有着紧密的联系。例如数与数域,中学教材中有整数、有理数、实数及复数。高等代数中介绍了数域的概念;多项式,在中学数学教材中就有多项式的加、减、乘、除四则运算法则。在高等代数中严格定义了多项式的次数及加法、减法、乘法运算,介绍了多项式的整除理论及最大公因式理论;方程,中学教材中有一元一次方程、一元二次方程的求解方法、一元二次方程根与系数的关系。高等代数中介绍一元n次方程根的定义、复数域上一元n次方程根与系数的关系及根的个数、实系数一元n次方程根的特点、有理数一元n次方程根的性质及其求法;方程组,中学教材中有二元一次方程组、三元一次方程组的消元解法。高等代数中有n元一次线性方程组的行列式解法(克拉默法则)和矩阵消元解法、线性方程族解的判定及解与解之间的关系;空间与图形,中学教材中有平面与空间向量的长度与夹角,高等代数中有欧式空间向量的长度和夹角。

通过以上分析,高等代数与中学数学在内容上有很多相关联的地方。不同的是中学数学知识比较浅显,面也比较窄,而高等代数将中学数学的内容拓宽了许多,同时也抽象了许多。因此作为老师,要正确地引导学生以较高的观点去认识中学教学内容。例如,通过线性方程组的矩阵解法、有解判别定理以及解的结构所反映的辨证思想,指导学生对中学数学的加减消元法本质的认识。高等代数中有许多概念,有些概念比较抽象,学生也不明白这个概念有什么用。这种情况下,老师在讲课时,可以先不必马上讲出这个概念,可从学生所熟悉的中学知识出发,由具体到抽象,慢慢地转到主题上。

二、深刻理解概念

高等代数中概念很多,几乎每一章节都涉及到了概念,而且有些概念还很相似,好多题的证明都要通过概念来证明。因此,在教学中,要让学生深刻理解、体会概念。譬如,阶行列式的定义,是由所有位于不同行不同列的n个元素乘积的代数和得到的。(www.fwsir.Com)只有深刻明白了这个定义,才能用行列式的定义来解题。还有多项式中,零多项式与零次多项式的区别,线性空间的同构与欧几里得空间的同构的相似点和区别。

俗话说:“书读百遍,其义自见”,要告诫学生多读几遍书,多思考,思考得多了,自然就理解了。只有理解概念了,才能在解题中熟练、灵活地运用这些概念来证明。

三、课堂上注重教学方法

教师的教学方法是影响学生学习方式的重要因素,在培养学生的创新能力方面起到重要作用。为了上好每一堂课,老师一定要注意教学方法。我曾参加了全国高校教师网络培训课程,听了张贤科老师主讲的高等代数,受益很多。张老师在讲一些高等代数内容时,根本没有按课本思路去讲,有些性质的证明运用其他方法来证。大家都知道高等代数中很多章节内容是彼此相关联的。老师在讲课中,没必要完全照课本来讲,例如,讲一个定理或一条性质的证明,可以运用以前所学的知识证出来,老师可鼓励学生运用不同的方法来证明,激发学生的思维能力,这样学生也会觉得不是太枯燥。

上课时切忌照本宣科,要说课,这节课大家需要掌握什么,教学大纲的要求,考试要考的知识,重点、难点是什么,使学生清楚这节课堂的目的,做到有的放矢。代数学的一些重要内容,例如集合的线性运算、八条运算规则、等价关系等经常出现的内容,我们采用类比的方法进行讲授,使学生能触类旁通,举一反三。对于一些难于理解的定理的证明,则着重介绍证明思想及每个证明阶段的技巧和预备知识,并要求学生课后复习。对于一些较抽象的概念,在讲授之前,应尽可能地介绍它们的应用背景或简单例子,启发学生思维从具体到抽象升华。

针对高等代数这门课程的.特点,应注意传统教学手段与现代化教学手段相结合。概念性知识较多的章节可以应用多媒体技术,而对那些理论证明较多,难以理解的内容,则采用传统的教学手段,一步步引导学生推理验证,更易于让学生接受、掌握。

四、培养学生数学思维的审美性

数学同其他学科一样,蕴含着美,存在着美的价值。代数学这朵奇葩,更以其高度的抽象性,理论的严谨性,应用的广泛性,在数学王国里独领风骚,展现出其多姿多彩的迷人风貌。

高等代数的美是内在的、深沉的、含蓄的,不易被大家所发现、接受。这就要求我们在教学中注意引导学生挖掘数学美,审视数学美,追求数学美,创造数学美。只有如此,我们才能将抽象的概念、空洞的定理、刻板的推导、繁琐的计算、枯燥的理论变换成一种美的享受,美的追求。这对诱发学生的求知欲,激发学生的学习兴趣,提高学生的学习效率起着极大的推动作用。

高等代数中,蕴含着许多数学特有的美,数学的语言美在高等代数中表现得淋漓尽致。数学语言是一种科学的语言,它除具有一般语言文字和艺术共有的特点外,更有“符号化”的特点。例如,用AX=B,其中A=(aij)mn,表示一个有m个方程n个未知量的线性方程组,多么简洁明快。另外,高等代数的美也体现在证明过程的逻辑严密上,许多定理的证明层层递进,严丝合缝,看懂了一个证明,就能给人一种惊叹佩服、赏心悦目的感觉。

总之,高等代数中的数学美无处不在,只要我们教师在教学过程中用心去揭示,从美的角度去挖掘,并积极引导学生去欣赏、体味定能感觉美不胜收,回味无穷,教学质量必将提高。

注:西安科技大学博士启动基金资助项目(QDJ040)。

(作者单位 陕西省西安科技大学理学院)

篇7:代数的教学方案

有关代数的教学方案

教学目标

1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2. 初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;( -7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题

二、讲授新课

例1 用代数式表示乙数:

(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

解:设甲数为x,则乙数的代数式为

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2 用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的 与乙数的 的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3 用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的`数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n; (2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4 设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的 ;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5 设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个; (2)( m)m个

三、课堂练习

1设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2用代数式表示:

(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数

3用代数式表示:

(1)与a-1的和是25的数; (2)与2b+1的积是9的数;

(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕

四、师生共同小结

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握

五、作业

1用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

篇8:代数教学反思怎么写

1、注重学生的双基训练的同时必须注意培养学生的自学能力

这节课,先让学生自己阅读课本,了解相关的概念,然后完成自学检测,教师进行适当点评后,学生完成分层练习,巩固对概念的掌握。整一节课基本是以学生自学为主线,完成整个教学过程。意在培养学生的自学能力。如果学生可以养成自己阅读课本,在相应的教材内容中获得自己所需的知识,学生的自学能力会得到很好的锻炼。

但从课堂的实施情况中可以看到,虽然这个教学班的学生基础比较好,起点比较高,但是整个学习过程并不是一帆风顺,可以说学生是在磕磕碰碰中完成了学习任务。几个本来并不难理解的知识点,比如“多项式的项”、“多项式的排列”,如果学生有一定的数学学习的基础和独立分析问题的能力,应该可以自己顺利完成学习,但事实上,必须由老师不断加以点评、分析,学生才能较准确地把握相关语句的含义,说明学生对数学语言的理解和表达还是存在较大困难。这个让学生阅读课文的习惯必须要进一步培养。

这节课的教学内容并不难,如果采用讲授的方式,很快代数式教学反思以上的学生都可以理解、掌握,配以学习卷上的分层练习,学生的双基训练很到位,单纯地从学生接受知识的角度,讲授法应该效果更好。但同时学生的自主学习的习惯和能力也不知不觉地被忽略了。事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约。

虽然表面上看,这节课采用这种自学模式好像浪费了不少时间,由于老师要不是插入将瓶,导致课堂的时间比较紧张,但是,从学生的长远发展出发,我还是觉得应该采用这种模式,使学生在起始年级开始养成一个好的学习习惯,对他们应该是有利无害的。这节课是一次初步的尝试,在今后的教学中我还要多加以运用。

2、教师的教学方式要根据学生的实际情况

本课的知识点比较简单,属于概念介绍型的,在教师的知识层面上看是非常简单、易懂的知识点。我在曾经听过一些老师上相关内容的课时,采用了比较简单的介绍形式,也就是举出一个多项式的例子,然后按照课本的概念,一下子就把的多项式的项、最高次项、多项式的次数都确定下来了,对于一些理解能力比较差,反应比较慢的学生根本没有办法接受,结果在自己动手解决问题的时候就遇到了很多的障碍。

因此,我在学生阅读课本以后,进行点评时,我向学生介绍了以加、减号为分界线把多项式带符号分段的方法解析“项”的概念,然后逐项逐项在单项式的有关知识的基础上求出各项的次数,解析“最高次项”,进而解析“多项式的次数”。学生在这样详细的剖析中,才能把刚才在课本中阅读到的相关概念慢慢地转化为相应的数学符号,理解这些概念。

所以我觉得,我们上课,不能只考虑要学生学什么,还应该更要考虑学生需要怎样学。作为初一的学生,刚从小学生上来,还没有摆脱小学那种被动接受型的学习方法,如果我们初一的老师在这方面不注意引导的话,就容易出现脱节,造成学生提早出现分化。

这节课在这一点的处理上我觉得我是成功的。

3、教学的重构思

结合这节课暴露的问题,如果再次设计这一学习卷的话,在自学指导部分,学习“多项式的次数”时,我会再细化一些,把课堂上我讲解的部分,用脚手架的形式呈现在学习卷上,让学生阅读课本的时候有一根拐杖,这样就可以更大限度的照顾到各层面学生的学习要求。在学习“多项式的排列”的时候,增设一个例题,让学生有一个规范的样板,学习起来不会造成这些不必要的困惑。

总之,一堂课的教学总存在这样那样的遗憾,我要在不断的思考和总结中调整,才能适应学生的要求,适应教材的变化和课标的要求。

老师也需要学习再学习。

篇9:代数教学反思怎么写

课后与学生作交流,有以下几种情况:

(1)能达到我们所制定的目标在教学的过程中我以例题精讲,并与中考相同或靠近的题目为例,在解题过程中实现三个目标,化解重难点,使学生了解,理解,掌握并应用!

(2)突出中考的热点现在中考试题强调个性与创新,我在例题中也突出(如用“¤”定义新运算:对于任意实数a,b都有a¤b=(a*a+b)÷3,求3¤(-2)的值。)这样考察了学生的阅读理解能力,同时也作适当的拓广。

(3)注重基础重在实效题目面对大众,不搞偏难怪。让学生“看起来块块,做起来怪怪”,使学生对此类的题不敢掉以轻心,不敢瞧不起“它”。

(4)进行“小题大做”思想贯彻对于如:计算:

解题前提问:如何解答?让学生思考并回答。而后我再作答,比较学生刚才他们的思路有何不同。并注:必须按部就班,一步一个脚印,切记应小题大做!不能单有一个答案。

(5)强化书写格式在解题的过程中,我巡视学生的作题情况,对于发现问题作出及时处理以达到规范。

(6)同时也存在几个缺点①有的知识点没有顾及到,②有的学生没有自觉在解决问题,③与学生互动不激烈。

(7)以后的努力①夯实基础②题目靠近中考,让学生了解中考理解中考,实战中考,对其不陌生,觉得中考不过而而。③在授课过程中要精讲多练,多让学生发问,而且也要让学生多多总结,学以致用。

篇10:代数教学反思怎么写

第一、能达到我们所制定的目标。在教学的过程中我以例题精讲,并与中考相同或靠近的题目为例,在解题过程中实现三个目标,化解重难点,使学生了解,理解,掌握并应用!

第二、注重基础重在实效题目面对大众,不搞偏难怪。让学生“看起来块块,做起来怪怪”,使学生对此类的题不敢掉以轻心,不敢瞧不起“它”。

第三、进行“小题大做”思想贯彻对于如:计算:

解题前提问:如何解答?让学生思考并回答。而后我再作答,比较学生刚才他们的思路有何不同。并注:必须按部就班,一步一个脚印,切记应小题大做!不能单有一个答案。

第四、强化书写格式在解题的过程中,我巡视学生的作题情况,对于发现问题作出及时处理以达到规范。

第五、同时也存在几个缺点①有的知识点没有顾及到,②有的学生没有自觉在解决问题,③与学生互动不激烈。

第六、以后的努力①夯实基础②题目靠近中考,让学生了解中考理解中考,实战中考,对其不陌生,觉得中考不过而而。③在授课过程中要精讲多练,多让学生发问,而且也要让学生多多总结,学以致用。

看过代数式教学反思的人还看了:

篇11:CFI代数

关于CFI代数

对可交换FI代数(简称CFI代数)的特征进行系统研究,获得(正则)FI代数和CFI代数的`一些新的性质;探讨CFI代数与HFI代数、格蕴涵代数及R0代数等逻辑代数之间的关系,得到CFI代数成为正则HFI代数的一个充分必要条件.

作 者:刘春辉 吴红霞 徐罗山 LIU Chun-hui WU Hong-xia XU Luo-shan  作者单位:扬州大学,数学科学学院,江苏,扬州,225002 刊 名:扬州大学学报(自然科学版)  ISTIC PKU英文刊名:JOURNAL OF YANGZHOU UNIVERSITY(NATURAL SCIENCE EDITION) 年,卷(期): 10(4) 分类号:O141.1 O153.1 关键词:FI代数   CFI代数   HFI代数   剩余格   格蕴涵代数  

篇12:数学代数教学总结 布尔值、逻辑运算、关系运算总结

数学代数教学总结 布尔值、逻辑运算、关系运算总结

在学习VB过程中,很多同学简单地认为布尔值True就是-1或非0值,False就是0,这种看法是错误,下面将布尔值、逻辑运算和关系运算总结如下:

在VB中,布尔(Boolean)值有两个:True(真)和False(假),布尔值可以用于逻辑、关系(比较)和算术运算中。

1)布尔值用于逻辑运算中,结果为布尔值。

例如:

Print Not True, Not False

Print True And True, True And False, False And True, False And False

Print True Or True, True Or False, False Or True, False Or False

结果为:

False   True

True    False    False    False

True    True     True     False

【总结】

Not 非运算规则:非真则假,非假则真

And 与运算规则:只有都是True,结果才为True(只要有一个为False,结果就为False)

Or  或运算规则:只有都是False,结果才为False(只要有一个为True,结果就为True)

2)布尔值用于关系(比较)运算中,结果为布尔值。

例如:

[1] [2] [3] 下一页

篇13:数与代数教学反思

数与代数教学反思

本单元内容繁多,教学时间又少,刚开始复习时,一节课只能复习一些基本概念,并且效果不好,有一部分学生记不住也不会用,特别是因数和倍数一章,学生概念本来就模糊,而且只安排一课时,课后又没有有效的练习,学生复习得很不扎实。我改进了复习方法:在课前出一些有效的练习,课堂上,边练习边复习概念,模糊处及时讲解,效果稍好一点。这部分内容完全复习完后,我总结了以下几点经验:

1、课前教师应整理好复习内容,理解清楚每条概念,合理地把教材中混乱的内容进行分类,学生在复习时就会有条有理。

2、准备一些辅助联系,如果书上练习题不到位,利用额外的题进行讲解,效果较好。

3、家庭作业中,增加计算题练习,我每天让学生额外做一页或两页口算卡,提高学生的计算能力。

4、对于易出错的题目,最好在练习中讲解,不好空讲概念。

存在的问题:

1、大部分孩子只会做笔记,不愿意思考,有些浪费时间。

2、解决问题是教学中的难点,也是考试的重点,但复习这么久了,最不扎实的就是解决问题。六年级上册的分数乘、除法应用题是难点中的'难点,特别是单位“1”未知的问题,应该放在一起复习,进行对比练习,但教材中不但分开复习,而且出现的例题及练习都是最基础的,根本没有达到让学生深入理解的目的。

篇14:《数与代数》的教学反思

《数与代数》的教学反思

数与代数的教学反思 要让学生“经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题”。经历数学是作为数学学习的过程目标,是指“在特定的数学活动中,获得一些初步的经验”。让学生经历就必须有一个实际的情境,学生在实际情境中通过活动体会数学、了解数学、认识数学。要学生经历将实际问题抽象为数学问题的过程,经历数概念产生的过程,就要给学生提供现实的背景,使学生有机会去体验,有机会去感知。这样,从现实生活出发,就能使学生真切地感受到日常生活离不开数学,数学就在我们身边。像这样让学生在生活中学习数学,在生活中“用数学”,既使学生充分体会数学学习的乐趣,又使学生初步感知数学与人类生活的密切联系。 数学本身具有抽象性,但数学所反映的内容又是非常现实的`,学习数学的过程不只是让学生记住数学事实,还应当让学生形成数学意识,要培养学生提出问题、分析问题和解决问题的能力。了解数学的价值,认识数学与生活的密切联系。因此,学生经历数学的过程、在现实背景下感受和体验数学、探索数学模型应当成为数学课程的目标。 因此,在新的课改理念下的“数与代数”内容的教学应注意让学生多联系自己身边具体、有趣的事物,通过观察、操作、解决问题等丰富的活动,感受数的意义,体会数用来表示和交流的作用,初步建立数感,在实践中探索、认识和体会数学中的模型。通过一个又一个分东西的实践活动,学生在不断地分东西的过程中,亲身经历了知识发生、发展的过程,在不断地总结、修正自己分东西的策略,从中体验到探索的乐趣,感受到成功的喜悦。当学生深深体会到不管怎样分,最后每份均分得“同样多”时,教师自然而然地向学生介绍了除法的含义。从生活情境到建立数学模型如水到渠成一般,学生也较好地理解了除法的含义,也急于向教师讨教有关除法的表达式。为后续学习做好了充分的准备。 这样的教学,转变了学生的学习方式,让学生在做中学、做中悟、做中思,有利于学生主动建构,理解数学概念,获得数学方法,并用数学知识进行交流,解决问题,也培养了学生自主、探究、合作的学习态度和习惯。l

【代数教学总结】相关文章:

1.数与代数教学反思

2.《数与代数》的教学反思

3.初中数学数与代数知识点总结

4.人教版六年级数与代数教学设计

5.代数老师作文300字

6.六下数与代数复习课教学设计

7.高等代数教学中的一些想法的论文

8.周易太极代数与直觉思维论文

9.教学总结

10.语文教学总结

下载word文档
《代数教学总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部