欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 说课稿>《平行线与相交线》说课稿

《平行线与相交线》说课稿

2023-01-28 08:01:46 收藏本文 下载本文

“不长叶儿的树”通过精心收集,向本站投稿了11篇《平行线与相交线》说课稿,下面是小编给大家带来《平行线与相交线》说课稿,一起来阅读吧,希望对您有所帮助。

《平行线与相交线》说课稿

篇1:《平行线与相交线》说课稿

《平行线与相交线》说课稿

尊敬的各位评委、亲爱的各位同仁:

我说课的内容是:义务教育课程标准实验教科书数学七年级下册第五章第36页的活动:你有多少种画平行线的方法。下面我将从以下四个方面对本课时的内容进行说明。

一、教材分析:

1、地位和作用你有多少种画平行线的方法?这一活动内容是在学完平行线的相关知识的基础上设计的,设计此活动课的目的不仅仅是知识回顾,更重要的是培养学生动手实验操作能力,还可以培养学生运用数学知识解决实际问题的能力,所以我认为本节数学活动课是一节非常好的教学素材,对今后的数学学习,对知识的渴求及对知识的求索方法都能起到无法估量的作用。

2、活动目标:根据对教材的研究和分析,综合学生的认知基础,我确定了下列活动目标:

1)理解并掌握两直线平行的条件,掌握两种以上最快捷的画平行线的方法。

2)培养学生动手实验,概括总结的能力,养成胆大心细的习惯,发散学生思维,增强学数学、用数学,探索奥妙的欲望。

3)鼓励学生大胆探索,科学分析,培养协作意识,建立自信心,体验成功感。

4)指导学生探究、应用的能力。

3、重难点确定及成因分析:重点:理解两直线平行的条件,掌握两种以上最快捷的画平行线的方法难点:探索新的画两直线平行的方法,并能简单说理。分析:平行线画法不仅锻炼学生实际动手能力,还可以复习本章多学的相关知识,因此,把它确定为本课时的重点。七年级学生自主探究,用已有的知识和能力探索出新的画两直线平行的方法有一定的难度,所以把它作为本课时的难点。

二、教法、学法

本节课借鉴了美国教育家杜威的“在做中学”的理论及“授之以鱼,不如授之以渔”的思想,我将主要采用“情景激趣,自主探究”法教学,由情景—操作—发散—应用形成,层层推进,有力地调动了学生思维的`积极性,把知识的体验过程化为亲身参与,动手实验,运用推广,进行实践的过程。

三、活动准备:

1、学生自动分组,5-6人一组,自选组长。

2、尺规、量角器、铅笔和纸四、活动设计本节课我将按以下四个环节来完成教学

(一) 情景激趣,导入实验5分钟

(二) 动手实验,探究创新25分钟

(三) 联系实际,铸就能力10分钟

(四) 归纳小结,体验感受5分钟这种分法环环紧扣,层层递进,过渡自然,有利于教法,学法的实施,教学目标的实现,能帮助学生理顺本节知识点,提高效率,活跃课堂气氛,也体现了活动课的特点。

四、情景激趣,导入实验。

1、教师演示课件,依次展示铁轨,木工师傅用角尺画平行线,学校跑道、树林,这些平行线的例子,你知道是怎样画出来的吗?通过本节课的学习,你就能明白其中的道理,从而引出课题“你有多少种画平行线的方法”。 (设计意图)让学生体验所学内容与现实生活的密切联系,激发学生想画平行线的欲望。

2、教师提出问题,什么叫平行线?平行线有哪些性质?怎样判定两直线平行?让学生讨论后推举一人回答。 (设计意图)通过回顾平行线的性质,判定方法为探索画平行线的方法作好铺垫。

篇2:相交线与平行线教案

1. ▲平面上不相重合的两条直线之间的位置关系为_______或________

2. 两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互

为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。P3 例;P8 2题;P9 7题;P35 P35 3题

3. 两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线

叫做另外一条直线的垂线,他们的交点称为垂足。 4. 垂直三要素:垂直关系,垂直记号,垂足

5. 做直角三角形的高:两条直角边即是钝角三角形的`高,只要做出斜边上的高即可。

6. 做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。

7. 垂直公理:过一点有且只有一条直线与已知直线垂直。

8. 垂线段最短;

9. 点到直线的距离:直线外一点到这条直线的垂线段的长度。

10. 两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。

P7 例、练习1

11.平行公理:过直线外一点有且只有一条直线与已知直线平行。

12. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c P17 4题

13.平行线的判定。P15 例 结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

P15 练习;P17 7题;P36 8题。

14.平行线的性质。P21 练习1,2;P23 6题

15. 命题:如果+题设,那么+结论。P22练习1

16. 真、假命题P24 11题;P37 12题

17.平移的性质P28归纳

篇3:平行线与相交线美文

平行线与相交线美文

他们站在网络的平台上,相遇了,很平静的聊着,就像很熟悉的朋友一样,逐渐的熟悉了对方一些事,还是那么平静的聊着家常;渐渐的开始关心起对方来,似乎平静的湖面起了微微的波澜;渐渐的开始牵挂起对方,好似那湖面的波澜再次掀起来了,涌向心头;渐渐的思念起对方,就像波涛涌向那海岸,激荡起来。随着时间的流逝,他们的感情一步步的贴近,除了牵挂还是牵挂,除了思念还是思念,不再等待了,迫切希望见到对方,恰似一日不见如隔三秋,那渴望的心情无法用那美丽的文字所能表达的,带着激情来了,来了......

天公不作美,竟把他们相隔离在平行线上,只能遥想着,却不能相见,他们只能接受那感情的折磨,承受惩罚,他们只能承受着灼人的痛苦的思念,他们的心在被爱情洗礼着,尽管如此,也动摇不了那份真情,一直在做着痛苦的挣扎,尽管他们的心支离破碎,碎成一片片......他们还是执着的等着爱情奇迹的.出现,因他们一直坚信他们的爱情是坚不可摧的,是忠贞不渝的,因他们相信对方是深爱着自己,谁也割舍不下谁,因他们曾承诺不离不弃,正因这个信念,让他们在爱情的洗礼下还是执着的等着那平行线变成相交线,他们知道之所以现在还在平行线上,不是谁的错,是时间的错,错在现在还不是他们相见的时候,可他们要坚信,经久考研的爱情是牢固的,那爱情才是最幸福的真谛,不经风雨哪得见彩虹?

他们开始相信天意,相信冥冥之中, 相信那阵阵的心口绞痛和手指痉挛,都是彼此爱的感应。他说他在人群中找她很久了,找得很辛苦;她说她曾上一炷香期盼他,用一朵花开的时间等待他。他们承诺永远牵着对方的手不放开。

现在的他们都觉得自己是对方的镜子,说话的语气,为人的方式,还有对待生活的态度那么相近; 有时候又觉得自己就是和对方拼成圆的那段弧线。 困惑的问题、未知的领域、不得体的处理方式,可以相互讨论,取长补短。生活曾是那么默契,现在好似出了状况,虽然他们还在平行线之上艰难的行走着,但坚信总有一天他们的爱情会感动上苍,让他们走在相交线上,最后相携手走到爱情相交的一点上。

篇4:相交线与平行线测试题

相交线与平行线测试题

1.在同一平面内,两条直线有____________种位置关系,分别是____________,如果两条直线 不相交,那么这两条直线的位置关系一定是____________,记作____________.

2.如图,计划把河水引到水池A中 初中物理,可以先引AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是________________.

3.下面生活中的物体的运动情况可以看成平移的是 _________.

(1)摆动的钟摆,(2)在笔直的公路上行驶的汽车,(3)随风摆动的旗帜,(4)摇动的.大绳,(5)汽车玻璃上雨刷的运动,(6)从楼顶自由落下的球(球不旋转).

4.木工师傅用“丁”字尺(长、短两尺接成丁字,两尺的夹角是900),画出工件边缘的两条垂线(如图),则这两条垂线平行,理由是________________________.

篇5:平行线与相交线作文

平行线与相交线作文

依稀记得,那夜你的样子。你眼望星空,终于说出那句犹豫许久的话:“我们,究竟是平行线,还是相交线?”

平行线?相交线?我不知如何回答。只是苦笑一下,望着你有些失落与忧伤的表情,心里不禁涌起阵阵的酸涩。

我喜欢开玩笑,你也从不介意。你曾对我说:“你的玩笑让我觉得亲切,让我觉得你在乎我。”我心里高兴极了,我以为,我们会成为知已朋友;我以为,我们这段友谊会永远持续下去;我以为……

可是我错了,错得好离谱。当我收到那封带着浓浓绝交意味的信时,才真的意识到自己错了。你说,你很伤心。你说,我的`挖苦讽刺再也伤不到你,因为你的心就如冰山一样坚硬。你说,我们以后就做平行线好了……顿时,心如刀绞,眼泪不受控制地涌出眼眶。我委屈,明明玩笑一直是一样的,明明比以前还要在乎你,可为什么结果却是绝交……

我不知道当时是怎样控制住了眼泪,只觉得心很痛。在给你写的回信中,我说,不会相交的线叫做平行线。我说,平行线活得平安又枯燥。我说,我更喜欢相交线,因为它们相交。我说,也许我们的相交是个错误……

我将它递给你时,真的很想说:“原来我们的友谊如此脆弱。”却没说出口……

记得后来,你给我写了好多信,对我说了好多“对不起”。你说,你的那封信只是玩笑。你说,你不是有意伤我。你说,你不想失去这个朋友。你说,你不想和我做平行线……我看着你的信,只是叹气。后来给你写了很多回信,或长或短,内容都不一样,却始终有一句:我们应该保持距离,毕竟只是朋友。

又成了朋友,之间却有一层看不见,逾越不了的屏障。

“我们究竟是平行线,还是相交线?”低弱的声音把我从思绪中拉了回来。

“啊?”我正好对上了你的眼睛,那固执的眼神让我感觉不自在。我别过头,躲开你的视线,慢慢道:“我不知道,曾经的我们是相交线,可现在的我们,就像平行线,我不知道我们究竟是平行线还是相交线。抱歉,我回答不了。”

你眼里彻彻底底盛满了失望,苦笑道:“是啊!时间不早了,我要回去了。”转身便跑走了,望着你的背影,想了很久,终是没有想明白……

时间飞逝,现在的我已经明白了,相交线怎样,平行线又怎样?它们的差别只不过在于平行线永远不会相交。而相交线有一个交点,相交线相交过后,还会无限延长,延伸到比平行线还远。

篇6:数学教案-相交线、平行线

4.7   相交线

教学内容:课本第160―163页。主要内容为通过一个直线相交的课件的分析得到相交直线垂直的概念,并进一步探索垂足的概念和垂直的性质,同时探索了两条直线之间被第三条直线所截形成的角。

第一课时   4.7.1  垂线

教学目标

▲    知识与能力

1、分析和探索垂直的概念,体会垂直的性质。

2、理解过平面中一点有且只有一条垂线的性质。

▲    过程与方法

1、复习相关内容并引入新课。

2、通过对相关课件的分析,引出两条直线垂直以及相关的概念。

3、通过对例题图形的操作得到垂直的性质。

▲    情感、态度与价值观

通过对课件的分析,引导学生得出生垂直的定义,从而进一步培养学生探索精神和探索能力。

教学重、难点及突破

▲    重点

两条直线的垂直概念以及垂直的性质。

▲    难点

能充分理解垂直的定义,并能应用于解决实际问题。

▲    教学突破

本节内容较为形象化,涉及到的图形较多,所以建议教师在教学的'过程中能够充分的利用多媒体课件等教学的资源,能给喾学生较为形象的描述以帮助学生认识个中关系,从而使学生较深刻地理解本节内容。另外在本世中节建议教师对学生进行一些数学语言的训练,使学生能用数学语言描述图形的位置关系,从机时进一步培养学生用数学说话的习惯。

教学准备

▲教师准备    有关相交直线移动的课件

▲学生准备    预习相交线的概念

▲    教学步骤

教学流程设计

教师指导

学生活动

1.设问,引导学生回顾两直线相交的内容,并引入新课

2.通过对两相交直线的旋转的动画分析,从直观上得到两直线垂直的概念.

3.引导学生动手画得到垂 直的唯一性.

4.布置适当练习,巩固所学

1.认真地回顾两直线相交的知识,并随着教师的思路进入新课的学习.

2.通过对动画效果的分析,能总结出两直线垂直的概念.

3.通过亲手画图得到垂 直的唯一性.

4.完成练习,对所学内容有进一步的理解.

一、导入  新课

教师活动

学生活动

1、导入  :我们在以前学习了相交直线的知识,让我们一起回忆一下。

2、总结学生的回答,并做出适当补充,引入新课:今天我们进一步讨论相交线问题。

1、认真地回忆有关相交直线的内容,进一步提升认识,并在此基础上积极回答问题。

2、在教师作总结的过程中积极思考,并随着教师的思路进入新课。

二、对相交线的探索

教师活动

学生活动

1、  用电脑展示两直交线中的一条沿着交点旋转形成垂直的动画效果,引导学生观察并讨论得到垂直的概念,向学生渗透从几何直观到抽象概念的思维过程。

2、  引导学生完成课本第161页

“试一试”的内容,鼓励讨论在直线外或直线上一点能引该直线的几条生垂线?在此过程中培养学生动手操作解决问题的能力。

3、  让学生观察课本第161页图4.7.6,提问:点A与直线BC上各点连线中哪条最短?

4、  总结学生的回答,讲述点到直线距离概念,提醒学生注意垂线段与线的区别.

5、  组织学生观察讨论课本第162页”做一做”的内容,在此过程中通过小海龟的运动渗透旋转思想.

6、  练习:课本第162页练习1-3题.

7、  教师小结本内容

8、  布置作业 :课本第166页习题4.7第1题

1认真积极讨论,基础上发现图形中两条相交直线形成的四个角是直角,从而认识两条直线垂直的概念,能初步理解从几何直观到抽象概念的过程。

2.认真完成“试一试|”的内容并积极讨论,在此过程中发现在同一平面内,经过直线外或直线上一点有且只有一条垂线。

3.认真观察,动手测量,积极讨论可发现点A与直线BC各点连线中AB最短。

4.结合图形,认识点到直线距离的概念,掌握垂线与垂线段的区别。

5.通过做出图形和讨论能发现两条相交直线垂直可以看作一条直线是另一条直线绕点旋转900度得到的,从而理解旋转思想。

6.认真完成练习,巩固所学的知识。

7.学生完成作业

篇7:相交线平行线证明题

相交线平行线证明题

相交线平行线证明题

由于分成了2部分那么肯定E在正方形的边上,不然就没分成2部分拉,哈哈。

如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。

由于可以是曲线,所以才有了其他不同的选择,因为用线围图形的时候,相等面积时候,圆所需要的线最少,知道吧。

不过这里不需要求出来最小是多少,所以不管它是不是圆弧拉,但我们可以得到它与正方形边上的交点肯定没达到C,

第一种情况:E在CB或者CD上,显然正方形对称只考虑一种就可以了,不妨设它在CB上,先不管AE是什么样的.曲线,我们连接AE,肯定的知道AE是比线段AE长,(两点之间线段最断嘛)。

因为三角形ABE当中AE是斜边,所以很容易得到 :

曲线AE >线段AE >AB=2

第二:E在AB或者AD上的情况,同样只考虑在AB上,

也不管AE是什么东东,哈哈。

在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,

曲线AE= 曲线AF +曲线EF >线段AF +线段EF

三角形AEF中,AF+ EF>AB,不用说了吧。三角形两边和大于第三边。

所以

曲线AE >AB = 2

其实,有需要的时候,我们可以把AE的最小值算出来的,

在这里我就不罗嗦拉

2

证明:因为∠1与∠3互补

所以DE//BC

所以∠1=∠4(两直线平行,同位角相等)

所以∠2=∠4(对顶角相等)

所以∠1=∠2(等量代换)

(电脑打不出“因为”,“所以:,在写证明过程中,将因为和所以改成三个点的样子)

3

第二:E在AB或者AD上的情况,同样只考虑在AB上,

也不管AE是什么东东,哈哈。

在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,

曲线AE= 曲线AF +曲线EF >线段AF +线段EF

三角形AEF中,AF+ EF>AB,不用说了吧。三角形两边和大于第三边。

所以

曲线AE >AB = 2

其实,有需要的时候,我们可以把AE的最小值算出来的,

在这里我就不罗嗦拉

证明:因为∠1与∠3互补

所以DE//BC

所以∠1=∠4(两直线平行,同位角相等)

所以∠2=∠4(对顶角相等)

所以∠1=∠2(等量代换)

(电脑打不出”因为“,”所以:,在写证明过程中,将因为和所以改成三个点的样子)

篇8:相交线和平行线测试题

相交线和平行线测试题

一、概念部分:

1、下列正确说法的个数是

①同位角相等②对顶角相等

③等角的补角相等④两直线平行,同旁内角相等

A.1,B.2,C.3,D.4

2、下列说法正确的是()

A、相等的角是对顶角B、互补的两个角一定是邻补角

C、直角都相等D、两条直线被第三条直线所截,同位角相等

3.如图,与是对顶角的为().

4.如与是对顶角且互补,则它们两边所在的直线().

A.互相垂直B.互相平行

C.既不平行也不垂直D.不能确定

5.一个角的余角是它补角的,这个角的度数是().

6、一个角的余角是30,则这个角的大小是.

7、一个角与它的补角之差是20,则这个角的大小是.

8.如图,A、O、B共线,OM、ON分别是的平分线,则互余的角有()

A.2对B.3对C.4对D.5对

9.如图4,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=_____.

10、下列图中∠1和∠2是同位角的是()

A.⑴、⑵、⑶,B.⑵、⑶、⑷,

C.⑶、⑷、⑸,D.⑴、⑵、⑸

11.如图,中是同位角的有________,是内错角的有_________,是同旁内角的有__________.

12、如图11,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角。其中正确的.个数是()

A、4个B、3个C、2个D、1个

二、平行线的判定和性质

1、如果a∥b,b∥c,那么a∥c,这个推理的依据是()

A、等量代换B、平行公理

C、两直线平行,同位角相等D、平行于同一直线的两条直线平行

2、如图⑨,DH∥EG∥EF,且DC∥EF,那么图

中和∠1相等的角的个数是()

A.2,B.4,C.5,D.6

3.如图,由已知条件推出的结论,正确的是().

A.由,可推出

B.由,可推出

C.由,可推出

D.由,可推出

4.如图,,则下列结论中,错误的是()

A.B.

C.D.

5、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是()

A、第一次右拐50°,第二次左拐130°B、第一次左拐50°,第二次右拐50°

C、第一次左拐50°,第二次左拐130°D、第一次右拐50°,第二次右拐50°

6、张雷同学从A地出发沿北偏东500的方向行驶到B地,再由B地沿南偏西200的方向行驶到C地,则∠ABC的度数为()

A、400B、300C、200D、00

三、计算证明:

填写理由

1、已知:如图、BE//CF,BE、CF分别平分∠ABC和∠BCD

求证:AB//CD

证明:∵BE、平分∠ABC(已知)

∴∠1=∠

∵CF平分∠BCD()

∠2=∠()

∵BE//CF(已知)

∴∠1=∠2()

∴∠ABC=∠BCD()

即∠ABC=∠BCD

∴AB//CD()

2、如图,已知:∠BCF=∠B+∠F。

求证:AB//EF

证明:经过点C作CD//AB

∴∠BCD=∠B。

∵∠BCF=∠B+∠F,(已知)

∴∠()=∠F

∴CD//EF

∴AB//EF

3、如图,已知:∠3=125°,∠4=55°,∠1=118°,

求:∠2的度数。

4.如图,已知,求的度数.

5、已知,如图14,AC∥DF,∠1=∠A。求证:AB∥DE。

篇9: 《相交线与平行线》教后反思

《相交线与平行线》教后反思

这一段时间复习了《相交线与平行线》,发现学生存在以下问题:

1.对于“三线八角”中,有不少同学一直认为,只要是同位角和内错角,就应该相等,只要是同旁内角就是互补的,把前提条件两直线平行这个条件就给忘记了。这个知识点要再给学生讲清楚,不能让学生有误解的。

2.在平行线的性质和判定的应用中,学生不太明白是哪两条直线应该平行,或者说由哪两条直线应该得到哪些角平行,不少学生搞不太清楚。比如在平行四边形ABCD中,连接AC,不少学生搞不明白,假如是AB∥CD,应该得到∠DCA=∠CAB还是得到∠DAC=∠ACB,所以在学生练习时要结合图形,让学生明白在平行的三条线中,到底是哪两条直线被哪一条直线所截,应该得到哪些角相等,要让学生完全弄明白,教学反思《相交线与平行线》复习教学反思》。

3.在平移中,学生对于画平移的图形掌握的不是太好,要么是画图时不体现画图痕迹,要么是不会画,完全凭自己的感觉在画图,说明学生对于平移的规律和特征没有掌握,要以后练习中要加强这方面的训练。

4.对于有关平行的计算和证明,做的也不是太好,有的同学根本不会做,也有一部分学生会做,但是不会写解题过程,没有严格的逻辑推理。

综上所述,在以后的复习中要注意,加强基础知识点的`掌握,对于一些概念和定理,要让学生准确无误的掌握,不能让学生因为基础知识掌握的不好,出现这样那样的问题。对学生的解题过程要加强训练和指导,让学生尽快的掌握几何的书写过种和推理过程。

篇10:相交线与平行线知识点总结

相交线与平行线知识点总结

一、目标与要求

1.理解对顶角和邻补角的概念,能在图形中辨认;

2.掌握对顶角相等的性质和它的推证过程;

3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

二、重点

在较复杂的图形中准确辨认对顶角和邻补角;

两条直线互相垂直的概念、性质和画法;

同位角、内错角、同旁内角的概念与识别。

三、难点

在较复杂的图形中准确辨认对顶角和邻补角;

对点到直线的距离的概念的理解;

对平行线本质属性的理解,用几何语言描述图形的性质;

能区分平行线的性质和判定,平行线的性质与判定的混合应用。

四、知识框架

五、知识点、概念总结

1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.对顶角和邻补角的关系

4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7.垂线性质

(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

8.同位角、内错角、同旁内角:

同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

10.平行线:在同一平面内,不相交的两条直线叫做平行线。

11.命题:判断一件事情的语句叫命题。

12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

13.假命题:条件和结果相矛盾的命题是假命题。

14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

16.定理与性质

对顶角的性质:对顶角相等。

17.垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

19.平行线的性质:

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

20.平行线的判定:

判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

21.命题的扩展

三种命题

(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。

(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

四种命题的相互关系

(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。

(2)四种命题的真假关系:

两个命题互为逆否命题,它们有相同的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系

命题之间的关系

(1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。

(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。

(3)命题的分类:

A:原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)2单调递增。

B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x>1.

C:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,

如:若x小于1,则f(x)=(x-1)2不单调递增。

D:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,

如:若f(x)=(x-1)2不单调递增,则x小于1.

(4)命题的否定

命题的否定是只将命题的结论否定的新命题,这与否命题不同。

(5)4种命题及命题的否定的真假性关系

原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。

充分条件与必要条件

(1)“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件。

(2)“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。

充要条件

如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。

篇11:相交线说课稿

相交线说课稿

说课内容选自义务教育课程标准实验教科书《数学》七年级下册,第五章相交线与平行线中的5.1.1相交线第一课时,主要内容包括:对顶角、邻补角的定义、对顶角的性质,下面我将从教学背景、教学目标的确定、教学重点与难点、教学方式与手段、教学过程设计等几个方面对本节课的教学设计进行说明.

一、背景分析

1.学科的特点

两条直线的位置关系有三种,相交、平行和异面,异面的知识在高中阶段学习,而平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,是初中阶段学习的重点内容之一,同时也是平面几何图形由简单到复杂的最基本图形之一——由两条直线相交构成的角。相交线、平行线在现实生活中随处可见,教学内容紧密联系学生生活和社会发展,同时它们也是同一平面内两条直线的基本位置关系;在七年级上册,已经学习了最基本的平面图形——直线、射线、线段和角,了解了它们的性质,是本章学习的基础;在后续的学习中,三角形、特殊四边形、相似形、圆的知识中,都和相交线的知识息息相关,对顶角相等的性质主要是传递角相等。数学作为一门学科,主要是运用理性,以理服人。学习逻辑推理的顺序按照“说点儿理”“说理” “简单推理”“用符号表示推理”等不同层次分阶段逐步加深。

2.数学课程标准的要求

新课标提出,在课程的学习过程中重视学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。在发展空间观念中提出:能从复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系,我讲的相交线这节课恰好是构成复杂图形的一个基本图形,是一个起始点,数学课程标准要求了解补角,对顶角,知道等角的补角相等、对顶角相等,我觉得有些低,在后续的学习知识中不断的会遇到对顶角的图形,所以我把它定位于“理解对顶角相等的性质,并能运用它解决一些实际问题”

3.教材处理

教材从剪刀剪开布片过程中角的变化来引出两条直线相交所成的角的问题,引出对顶角和邻补角的概念;对于“对顶角相等”,教科书首先设置一个“讨论”栏目,让学生度量两条相交直线所成的角的大小,通过学生的充分讨论,探究发现对顶角相等这个结论,然后再对这个结论进行了说理,这样就将实验几何与论证几何相结合。通过阅读教材,理解教材,我在知识的引入上没有采用教材提供的方法,而是从学生已有的知识经验出发,采用画一画,画出一个角两边的反向延长线,即构成两条相交的直线,来探索4个角之间的位置和大小关系;对于例1的处理,则增加了两个变式练习,主要向学生渗透用方程思想解决几何问题;然后增加了理解概念的识图题,和实际应用此知识的题目,感受学习相交线知识的必要性。

4.学情分析

(1)知识的储备:在小学,学生结合生活情境了解平面上两条直线的平行和相交;在七年级上册,我们已经初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角(余角)相等,能画出图形思考问题,初步掌握思考几何问题的方法,学会说点儿理。由于学生的来源复杂,掌握知识的程度各不相同,70%的学生能准确的画出一个角的余角或补角,知道余角和补角的性质,但应用性质则只有30%的学生能有意识的用。

(2)能力的储备:学生初步具有探究问题的能力,积累了一定的知识经验,有一定的学习迁移能力,但对于几何知识的`准确表达还存在着困难,尤其是由图形语言、文字语言和符号语言的相互转换,还不能做到准确;

(3)心理特点:初一年级大都是十二、三岁的孩子,它们积极、热情,喜欢探究活动,有一定的合作探究意识,学习的方式由偏重机械记忆向偏重理解记忆过渡,但他们热衷于口头表达,在笔头表达上70%的学生存在书写困难。

基于以上分析,我把教学目标确定为:

二、教学目标:

1.了解邻补角、对顶角的概念, 能找出图形中的一个角的邻补角和对顶角;理解对顶角相等的性质,并能运用它解决一些实际问题;

2.学生通过动手画图、观察、推断、交流、归纳小结等数学活动, 初步感受学习几何知识的方法,体会图形语言、文字语言、符号语言三种语言的相互转换;

3.通过探索邻补角、对顶角的定义及对顶角相等的性质和应用,培养学生言之有理、言之有据的语言表达和书写能力;

三、教学重点和难点:

根据学生小学已有的知识、学生的思维特点以及课标要求和教材内容的分析,我认为教学重点是对顶角性质与应用,教学难点是对顶角性质应用几何语言的表达.

四、教学方式与手段

在初中,有效的数学学习方式不能单纯的依赖模仿和记忆,动手实践、自主探索与合作交流是学习的重要方式,在教学中我采用启发式,引导学生思考,探究,交流,学生在这样的学习过程中对知识进行认识、体会和内化;教学手段则采用多媒体辅助教学。

五、教学过程设计

在学习的过程中,学生始终是学习的主体,老师是学习的组织者、引导者、合作者,本节课以相交线的知识为载体,思维为主线,培养能力为目标的原则,突出多媒体这一教学技术手段在辅助知识产生和突破重难点的优势,基于这种理念,我把教学过程设成如下几个环节:

1.回顾知识,感受必要;

2.逐步探究,形成新知;

3.理解概念,巩固新知;

4.实际应用,体会必要;

5.小结回顾,习惯反思;

6.分层作业,获得进步。

下面就突出难点、突破难点作具体的说明:

5.1 回顾知识,感受必要

用几何画板演示学习几何知识简单的过程:点——直线、射线、线段——角,画出角的两边的延长线,引发新的知识——相交线。

意图是:回顾几何知识的学习过程,重温角的概念,利用已有的知识经验去探索,构想新概念,寻求新知识、新思路和新方法

5.2逐步探究,形成新知:

学生画出图形后,提出问题:

问题1:你能描述一下∠AOB与∠1有什么关系吗?你能给这对角起个新名字吗?

问题2:回忆刚才的作图,∠2是怎样形成的?∠2和∠4在位置上有什么特殊的关系吗?你能给∠4和∠2这对角起名吗?这两个角数量上有什么关系呢?

∵∠1与∠4互补,∠1与∠2互补

∴∠4=∠2(同角的补角相等)

即:对顶角相等

设计意图:让学生观察图形,抓住两个角的特点,尝试给出邻补角、对顶角的概念,培养学生数学语言的表达;进一步观察,得到对顶角相等的性质,训练学生由图形语言到文字语言,再到符号语言的三种语言的转换,培养学生几何语言的表达的能力,训练学生语言的表达的准确性;

5.3理解概念,巩固新知;

(1)通过3个识图题,巩固邻补角和对顶角的概念

1.下列各图中∠1、∠2是邻补角吗?为什么?

2.下列各图中,∠1和∠2是对顶角吗?为什么?

3.如图,直线AB、CD相交 于O点,∠AOE=90°,

∠1和∠2是 角;

∠1和∠4互为角;

∠2和∠3互为 角;

∠1和∠3互为 角;

∠2和∠4互为 角.

(2)通过两个例题的学习,体会对顶角相等、邻补角互补的应用。

例1 如图,直线a、b相

交,∠1=40°,求 ∠2、∠3、

∠ 4的度数.

变式1:若∠2是∠1的3倍,求∠3的度数。

变式2:若∠2比∠1大40度,求∠4的度数。

例2 如图,已知直线AB、CD相交于点O,

OA平分∠EOC,并且∠EOC=70°,求∠BOD的

度数.

例1的设置是要学生观察图形,应用知识,要求学生会表达,即:由什么,根据什么,得到什么。变式练习渗透用方程的思想解决几何问题的方法

例2的设置是结合前面的角平分线的知识与新知识组合,再次体会新知识的应用,培养学生思考问题的有序性

5.4实际应用,体会必要;

做一做,试一试

1. 要测量两堵墙所成的∠ AOB的度数,

但人不能进入围墙,如何测量?说明道理

2. 如图所示,有一个破损的扇形零件,

利用图中的量角器可以量出这个扇形零件的

圆心角的度数.你能说出所量角是多少度

吗?你的根据是什么?

用这节课所学的知识解决生活中的现实问题,体会学习对顶角和邻补角的价值,体会数学知识来源于生活又服务于生活的.

5.5小结回顾,习惯反思

为了让学生学完知识后形成反思与小结的良好学习习惯,将新知识纳入已有的知识体系,引导学生从知识上、学习的方法上和后续知识的设想上进行了小结。内容如下:

1.对比邻补角和对顶角的概念,它们有什么异同?

相同点:1都是两条直线相交而成的角;

2都有一个公共顶点;

3都是成对出现的 ;

不同点:1邻补角要有公共边,而对顶角没有公共边;

2两直线相交时,对顶角只有两对, 邻补角有四对

2.今天主要学习邻补角和对顶角的知识,我们从哪几方面研究的?

(1)从两个角位置和两个角数量关系,两方面进行了探究;

(2)从图形、文字、符号语言的转换;

(3)在实际生活中的应用。

3.我们的研究由一个角到两个角,由一条直线到两条直线,图形由简单逐渐变复杂,根据你的学习经验,接下来我们要研究哪些知识?说说你的想法?

期待学生能回答:

(1) 垂直(两条相交直线的特殊位置);

(2) 添加一条直线,研究三线八角;

两直线平行……

5.6分层作业,获得进步。

必做题:第8页习题5.1第1题和第2题,第9页8题写书上;第9页第7题,写本上.

选作题:如图,直线AB、CD交EF

于点G、H,∠2=∠3,∠1=70 °,求∠4的度数.

必做题要求所有的学生完成,选做题为学有余力的学生准备,目的是初步体会对顶角相等在后续知识中怎样应用。

说课到此结束,欢迎大家批评指正!

【《平行线与相交线》说课稿】相关文章:

1.数学教案-相交线、平行线

2.数学课《相交线与平行线》的教学反思

3.相交线作文

4.相交线、对顶角 教案

5.平行线说课稿

6.七年级数学下学期《相交线》教学反思

7.人教版相交线教学设计教材分析

8.线面角 说课稿

9.平行与相交教学反思

10.平行与相交教学设计

下载word文档
《《平行线与相交线》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部