欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 说课稿>奇偶性说课稿

奇偶性说课稿

2024-06-13 07:33:12 收藏本文 下载本文

“go1022”通过精心收集,向本站投稿了10篇奇偶性说课稿,以下是小编收集整理后的奇偶性说课稿,仅供参考,希望对大家有所帮助。

奇偶性说课稿

篇1:奇偶性说课稿

说教学目标:

能正确判断两数之和的奇偶性,并利用两数之和的奇偶性解决简单的实际问题;初步感知两数之积的奇偶性。运用所学知识和已有的经验,自主探索、合作交流、反思验证寻求两数之和的奇偶性的判断方法,体会用“数形结合”解释数学问题。

说重点:正确判断两数之和的奇偶性。

说难点:自主探索判断两数之和的奇偶性的方法,并验证结论。

说教学准备:数学

说教学过程

(一)摸奖游戏导入

摸奖规则是:掷骰(tóu)子得到点数A,就从标有数字A的格子向后走A格,每个格子里都有奖品,走到哪一格,格子里的奖品就是你的。(出示图)

摸奖后发现,得到的奖品的价值都是低于摸奖的费用,贵重的却一个都摸不到。

手气差?还是有猫腻??

通过今天的学习,能不能弄清背后藏着一些什么呢。刚才出示的课题是什么?谁能说说

出示课题:和与积的奇偶性

看到课题,(板书:奇偶性)思考:什么是奇偶性?能说说你的理解(“和”与“积”其实就是得数,“奇偶性”就是它是奇数还是偶数),我们是怎样判断奇数和偶数,也就是它们的特点是什么?(说明:我们今天研究的数都是一些不是0的自然数的和与积)

今天这节课我们一起来探究和与积的奇偶性是谁决定的,是否会否存在一些规律。

(二)自主探究,指导交流

1、研究和的奇偶性

猜想:谁能决定着和的奇偶性(板书:和),怎样验证?(列举,加数的奇偶性能否决定和奇偶性)

2、填表

出示:任意选两个不是0的自然数,求出它们的和,再判断和的是奇数还是偶数(也就是和的奇偶性)。

学生完成表格,并汇报填写结果。(选三个算式填写)

你选的`两个加数是奇数还是偶数,相加后的和是奇数还是偶数?

(学生回答,板书:奇+偶 奇、奇+奇 偶、偶+偶 偶)

有和他列举的一样的吗?也是……结果和他说的一样吗

3、这个结论看来像是正确的,老师还有点怀疑(在板书空格处加上“?”),在同学们完成表格时老师就在思考:刚才用的是“列举”能不能尝试其他方法呢,画图也是发现规律的好办法啊。

图示法(用奇数和偶数的特征来判断)。

因为奇数除以2余1,偶数除以2没有余数,所以奇数加偶数的和除以2仍余1,所以奇数+偶数=奇数。

看来大家理解有点困难,用画图表示:

“奇+奇”“偶+偶”的和的奇偶性,除了列举,我们也能通过奇数和偶数的特征来判断

(三)回顾与反思

通过列举和画图我们验证得到和的奇偶性的规律,看看老师表里填的是哪些数,它们的和是否和你们判断的是一样(分三种情况出示,奇偶、奇奇、偶偶,实际上找的是一些大数来验证。)。

现在可以把板书改一改了吧(把板书中“?”改成“=”)

和是奇数还是偶数与谁有关系?看来你们的猜想是正确的。有些数学知识的学习就是要有猜想,再通过举例来验证(板书:举例、验证)

(四)运用与拓展

1、老师打开数学书,学生猜想:左右两边页码的和是奇数还是偶数?任意两个相邻的自然数的和呢?你能通过发现的规律说说原因吗?(三个连续的自然数的和)

写出三个连续自然数连加求和,和是奇数还是偶数?你能用学到的规律解释吗?(出示:(1)奇+偶+奇、偶+奇+偶)

我们写出的三个连续的自然数是两奇一偶、或一奇两偶,如果是三个任意自然数,那还会出现什么情况?学生举例,(出示:(2)奇+奇+奇、偶+偶+偶)验证:再写连加求和,说出和是奇数还是偶数,你的算式中有几个奇数几个偶数?在这些算式后面再增加一个偶数,和是奇数还是偶数变了吗?换成增加一个奇数呢?看来和是奇数还是偶数与加数中奇数的个数有关了,有什么关系?(出示:加数中有1个、3个、5个……奇数时,和一定是奇数。加数中有2个、4个、6个……奇数时,和一定是偶数)

2、1+3+5+…+27+29和是奇数还是偶数?

解题的关键是什么?

小结:我们通过列举或画图发现两个数的和的奇偶性的规律,接着研究多个数相加又发现和是奇数还是偶数与加数中奇数的个数有关,什么关系,说说。

3、出示:1×3×5= 8×4×10×2= 1×2×3= 3×5×7×2=

轻松一下,口算判断积的奇偶性(一题一题的出示,再板书一道大数目相乘算式判断,算不出,能判断吗?),整体出示四道口算题。

观察:这些算式有什么不同?什么情况下积是奇数?什么情况下积是偶数?

解释:算式中有偶数,那一定是2的倍数,则积就一定是2的倍数

小结:从积的奇偶性规律探索过程中清晰的发现:我们多写一些算式进行比较后,就能发现规律;而从不同的算式中发现共同的特点是我们要掌握的能力;这实际上也是告诉我们,通过举例,并验证是发现规律的好办法。

(五)全课总结,交流收获

1、这节课我们学了哪些知识?你有什么收获?

2、(1)补充:五(11)班56人,如果男生人数是奇数,则女生人数是奇数还是偶数?如果男生人数是偶数呢?

(2)说明:摸奖游戏内幕。

篇2:《数的奇偶性》说课稿

一、说教材

《数的奇偶性》是义务教育课程标准实验教科书数学(北师大版)五年级上册第一单元的内容,教材在学习了数的特征的基础上,安排了多个数学活动,让学生探索和理解数的奇偶性,尝试运用“列表”和“画示意图”等解决问题的策略,发现规律,解决生活中的一些问题。让学生经历探索加法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,体验研究方法,提高推理能力。

二、说学情:

五年级学生在学习过程中已经具备一定的观察能力,分析交流等能力。进行小组合作和交流时,大多数学生能较清晰地表达出自己的主张和见解。绝大部分学生愿意通过自主思考,小组内和全班范围内交流的学习方式来提升自己对问题的认识。

三、说教法:

为适应数学学科“实践与应用”的需求,根据培养学生的求知欲和自我实现的需要,这节课我以学生自主合作探究为主要教学策略,扶放结合,把课堂中更多的时间留给学生去探究和发现,使他们能自主的总结规律、解决问题。

四、说学法:

1、通过动手操作,运用列表法和画图法发现数的奇偶性变化规律。

2、运用观察、猜测、验证方法得出结论,探索加法中奇偶的变化的过程,在过程中发现规律。

五、说目标:

1、在具体情境中,通过实际操作,尝试运用“列表”“画示意图”等方法发现数的奇偶性规律,并运用其解决生活中的一些简单问题。

2、经历探索加减法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

3、使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

六、说重、难点:

1、掌握加法中数的奇偶性的变化规律。

2、能应用数的奇偶性分析和解释生活中一些简单问题。

七、说流程:

(一)、旧知回顾:

1、什么是奇数?什么是偶数?

2、下面的数哪些是奇数?哪些是偶数?(课件出示)

3、判断:自然数不是奇数就是偶数。

在此处设计导语:在我们研究的自然数中,可以把它们按奇偶性分为奇数和偶数两类,我们还可以用这些数的奇偶性来解决生活中的简单问题呢。这节课我们就来上一节数学活动课,继续探究一下有关“数的奇偶性”的问题(板书课题)

(二)、创设情景,引出问题。

师:同学们,在南方的水乡,有很多地方的交通工具是船,有很多人以摆渡为生,请看王伯伯的船,最初小船在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。船摆渡11次后,船停在南岸还是北岸?

(1)探究小船所在的位置:

师:你准备用什么方法来分析。(生口答)

师:请同学们选出其中一种分析方法,把分析过程写在草稿纸上。

小组交流,汇报。

摆渡次数船所在的位置

1北岸

2南岸

3北岸

4南岸

篇3:《数的奇偶性》说课稿

一、教材与学生

1、教材

《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的.因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。

2、学生

五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力.但基础的差异,环境的不同,后天开发的`不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。

二、教学目标

1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性;

2.运用设疑——猜想——验证—运用的教学模式,培养的自主探究的能力;

3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。

三、教法和学法

主要是自主探究与开放式教学相结合.

1、让学生自主探索规律,并全程参与。

我想,什么也不能代替学生的亲身体验。这里我讲一个小故事——有一天,我感冒了。不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。为什么不在适当的时候把课堂还给学生呢?!

2、大胆开放,抛弃束缚。

我的教学不想拘泥于一点,不想修建一个房屋让孩子们在里面玩,在思维的国度,应该是平等的,自由的。这难道不是北大的思想吗?开放式教学不是我们北大附中的精髓吗?

因此我打破了教材的局限,设计了一个崭新的思路——

四、教学设计和思路

(一)游戏导入,感受奇偶性

1、游戏一:6只小鸭子、5只蝴蝶找伴

2、游戏二:转轮盘

(1)讲要求:指针停在几上就再走几步;

(2)独白:

A请他们全班去吃饭,地方吗

B学生开心极了,当听到是东方饺子王………一片赞叹。

C结果:乘兴而来,败兴而归,有的指责我—骗人

(我—我怎么骗人了?)

讨论:为什么会出现这种情况呢?

如果游戏一是感知数的奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。

(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)

3、板书课题,加以破题,加以过渡。

(二)猜想验证,认识奇偶性

1、为什么没有人中奖呢?(学生猜想,教师板书)

2、真的是这样吗?(教师加以验证)

(我在验证的同时,表扬学生达到了一年级水平,二年级的高度,三年级的容量,学生在笑声中体验了愉悦,在开心中学到了知识,增长了能力)

(而在我展现了验证的过程后,开始表扬自己,这个人多帅,多聪明,像不像我------,哈哈不服气,你来呀!?)

(三)大胆猜想,细心求证

1、独立来写(写出了加法,又写出了减法,我提示—有没有乘除呢?)

2、小组合作验证纠偏

3、小组展示(满满的一黑板,加减乘除都有.而且欲罢不能,我就在表扬学生的基础上,圈出我们今天应该掌握的加法的奇偶性.)

(四)坡度练习,层层加深

1、填空

2、判断(这些内容,由浅入深,由难及易,层层推进)

3、填表(着重讲解了这一道题—因为它是例题,我把填表作为要点,学会观察与思考,从而得到规律.)

4、动手(有动脑的,动口的,这里的翻杯子就是动手了.)

五、课堂小结,课后延伸

1、说说我们这节课探索了什么?你发现了什么?或者有什么想说的?

2、思考题

那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

篇4:《函数的奇偶性》说课稿

一、教材分析

(一)教材特点、教材的地位与作用

本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点

1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标

1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;

2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析

1、教学方法:启发引导式

结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用“引导发现法”进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。

2、学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习。

三、教辅手段

以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学

四、教学过程

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。

(一)设疑导入,观图激趣

让学生感受生活中的美:展示图片蝴蝶,雪花。

学生举例生活中的对称现象

折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。

问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点。

以y轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的.痕迹,然后将纸展开。观察坐标喜之中的图形:

问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点

(二)指导观察,形成概念

这节课我们首先从两类对称:轴对称和中心对称展开研究。

思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何

给出图象,然后问学生初中是怎样判断图象关于 轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律。

借助课件演示,学生会回答自变量互为相反数,函数值相等。接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。

思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征。

引导学生发现函数的定义域一定关于原点对称。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:

(1)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数。

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢 。

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:

(2)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数

强调注意点:“定义域关于原点对称”的条件必不可少。

接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤:

(1)求出函数的定义域,并判断是否关于原点对称。

(2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论。

给出例题,加深理解:

例1,利用定义,判断下列函数的奇偶性:

(1)f(x)= x2+1

(2)f(x)=x3-x

(3)f(x)=x4-3x2-1

(4)f(x)=1/x3+1

提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢?

得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数。

接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x)

然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法:

函数f(x)是奇函数=图象关于原点对称

函数f(x)是偶函数=图象关于y轴对称

给出例2:书P63例3,再进行当堂巩固,

1。书P65ex2

2。说出下列函数的奇偶性:

Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3

归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数

(三)学生探索,发展思维。

思考:1,函数y=2是什么函数

2,函数y=0有是什么函数

(四)布置作业: 课本P39习题1、3(A组) 第6题, B组第3

五、板书设计

篇5:《数的奇偶性》说课稿

一、教材与学生

1、教材

《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的.因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。

2、学生

五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力.但基础的差异,环境的不同,后天开发的不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。

二、教学目标

1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性;

2.运用设疑--猜想---验证—运用的教学模式,培养的自主探究的能力;

3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。

三、教法和学法

主要是自主探究与开放式教学相结合.

1、让学生自主探索规律,并全程参与。

我想,什么也不能代替学生的亲身体验。这里我讲一个小故事——有一天,我感冒了。不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。为什么不在适当的时候把课堂还给学生呢?!

2、大胆开放,抛弃束缚。

我的教学不想拘泥于一点,不想修建一个房屋让孩子们在里面玩,在思维的国度,应该是平等的,自由的。这难道不是北大的思想吗?开放式教学不是我们北大附中的精髓吗?

因此我打破了教材的局限,设计了一个崭新的思路——

四、教学设计和思路

(一)游戏导入,感受奇偶性

1、游戏一:6只小鸭子、5只蝴蝶找伴

2、游戏二:转轮盘

(1)讲要求:指针停在几上就再走几步;

(2)独白:A请他们全班去吃饭,地方吗

B学生开心极了,当听到是东方饺子王………一片赞叹

C结果:乘兴而来,败兴而归,有的指责我—骗人

(我—我怎么骗人了?)

讨论:为什么会出现这种情况呢?

如果游戏一是感知数的奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。

(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)

3、板书课题,加以破题,加以过渡。

(二)猜想验证,认识奇偶性

1、为什么没有人中奖呢?(学生猜想,教师板书)

2、真的`是这样吗?(教师加以验证)

(我在验证的同时,表扬学生达到了一年级水平,二年级的高度,三年级的容量,学生在笑声中体验了愉悦,在开心中学到了知识,增长了能力)

(而在我展现了验证的过程后,开始表扬自己,这个人多帅,多聪明,像不像我------,哈哈不服气,你来呀!?)

(三)大胆猜想,细心求证

1、独立来写(写出了加法,又写出了减法,我提示—有没有乘除呢?)

2、小组合作验证纠偏

3、小组展示(满满的一黑板,加减乘除都有.而且欲罢不能,我就在表扬学生的基础上,圈出我们今天应该掌握的加法的奇偶性.)

(四)坡度练习,层层加深

1、填空

2、判断(这些内容,由浅入深,由难及易,层层推进)

3、填表(着重讲解了这一道题—因为它是例题,我把填表作为要点,学会观察与思考,从而得到规律.)

4、动手(有动脑的,动口的,这里的翻杯子就是动手了.)

五、课堂小结,课后延伸

1、说说我们这节课探索了什么?你发现了什么?或者有什么想说的?

2、思考题--那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

这节课,我以设疑—猜想—验证—运用为骨架,以激发的兴趣为血脉,加上开放的翅膀,我想是不是一个鲜活的生命在飞翔?

当时课上完了,似乎又没有完!

我想说:一节没有上完的课,才是令人回味的课!就像我的说课不完美,但残缺是一种另类的美!谢谢!!

篇6:《数的奇偶性》说课稿

有关《数的奇偶性》说课稿

一、说教学内容及农远资源说明。

《数的奇偶性》是北师大版教材五年级上册第一单元《倍数与因数》最后一课时;是在学生掌握奇数、偶数特点等知识基础之上的一次延伸;是让学生学会用数学策略解决生活问题的一次尝试。因此,本课时教学资源的使用目的主要是帮助学会解决问题的策略,体验猜想结果—举例验证—得出结论这种数学研究方式。农远资源我主要应用于课前的情境创设;教学中对学生体验猜想结果—举例验证—得出结论数学研究方式的辅助;以及学生应用数学模型解决问题中的游戏等环节。

二、说教学目标。

我从知识与技能角度确立目标一:尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。从过程与方法角度确立目标二:通过活动让学生经历猜想结果—举例验证—得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。从情感、态度和价值观角度确立目标三:让学生在活动中体验研究方法,感悟解决问题的不同策略,提高推理能力。

三、说设计理念及农远资源的辅助使用。

本课我是四个方面进行设计的。

第一,我从故事引入,创设一个以摆渡为生的船夫想请学生们帮他解决一个问题这一情境。学生遇到这样一个以前从未见过的问题,便产生认知上的冲突,激发了学生的学习兴趣,也调动了学生学习的积极性,在情境创设中,多媒体资源的辅助使用,有效的调动了学生的求知欲,牢牢地把学生吸引在对未知内容的探究之上了。

第二,我组织学生分小组合作,动手操作,感受数的奇偶性,理解解决问题的不同策略,经历猜想结果—举例验证—得出结论这一数学研究方式。

这部分内容是本课教学的重点也是难点,我安排三个活动,层层推进,帮助学生学习。

活动一:对于船夫提出的划11次船在南岸还是北岸这一问题,我组织学生讨论,寻找解决问题的办法。引导学生尝试用不同的方法来解决,全班汇报交流时,利用媒体展示“列表”、“画示意图”等方式让学生理解解决问题的不同策略。

活动二:让学生翻动自己准备的纸杯子,通过动手操作进一步发现数的奇偶性规律,同时让学生想若把“杯子”换成“硬币”你能提出怎样的问题,并试着回答这些问题,再用硬币操作验证。安排这一活动目的是培养学生提出假设问题—猜想结果—再实践验证的'数学研究习惯,发展学生主动探究能力。

活动三:是让学生合作探究加法中数的奇偶性,让学生体验猜想结果—举例验证—得出结论的数学研究方式。本活动主要是让学生相互之间加强交流,形成自主、合作、探究的数学学习课堂。的使用有效的帮助学生建构出数学模型。

第三,运用数学模型,解决实际问题。

这一部分我安排三个内容。第一个内容是出示几个算式,让学生判断结果是奇数还是偶数。这一内容在学生已有数的奇偶性特征这一数学模型经验之后,独立完成已经没有障碍。第二个内容是有3个杯子全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转使得3个杯子全部杯口朝下。这一内容是对前面同一问题的拓展,目的是让学生进一步理解奇偶性,同时培养学生动手实践能力。第三个内容,我安排的是一个游戏,也是一个实际问题,游戏是用骰子掷一次得到一个点数,从A点开始,连续走两次,走到哪一格,那一格的奖品归你。通过这个游戏让学生明白无论掷几,走两次都是偶数,而奖品都在奇数区域里,所以不论怎样都不能获得奖品。让学生运用学过的数学知识解开其中的奥秘,获得情感体验。

第四,总结反思,交流收获,同时进一步拓展知识视野,让学生将学习的知识与生活实际联系起来,培养学生初步的数学应用能力。

以上四步骤,让学生经历从情境创设到建构数学模型,再到运用模型解决解决问题三个阶段,三种层次。学生学会用自己的策略解决问题。媒体资源的辅助使用,让学生的体验更深刻,教学效果更显著,完全实现了课前确立的教学目标。

篇7:《函数的奇偶性》说课稿

教学目标

1.使学生理解奇函数、偶函数的概念;

2.使学生掌握判断某些函数奇偶性的方法;

3.培养学生判断、推理的能力、加强化归转化能力的训练;

教学重点

函数奇偶性的概念

教学难点

函数奇偶性的判断

教学方法

讲授法

教具装备

幻灯片3张

第一张:上节课幻灯片A。

第二张:课本P58图2—8(记作B)。

第三张:本课时作业中的预习内容及提纲。

教学过程

(I)复习回顾

师:上节课我们学习了函数单调性的概念,请同学们回忆一下:增函数、减函数的定义,并复述证明函数单调性的步骤。

生:(略)

师:这节课我们来研究函数的另外一个性质——奇偶性(导入课题,板书课题)。

(II)讲授新课

(打出幻灯片A)

师:请同学们观察图形,说出函数y=x2的图象有怎样的对称性?

生:(关于y轴对称)。

师:从函数y=f(x)=x2本身来说,其特点是什么?

生:(当自变量取一对相反数时,函数y取同一值)。

师:(举例),例如:

f(-2)=4, f(2)=4,即f(-2)= f(-2);

f(-1)=1,f(1)=1,即f(-1)= f(1);

……

由于(-x)2=x2 ∴f(-x)= f(x).

以上情况反映在图象上就是:如果点(x,y)是函数y=x2的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=x2的图象上,这时,我们说函数y=x2是偶函数。

一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。

例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。

(打出幻灯片B)

师:观察函数y=x3的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?

生:(也是一对相反数)

师:这个事实反映在图象上,说明函数的图象有怎样的对称性呢?

生:(函数的图象关于原点对称)。

师:也就是说,如果点(x,y)是函数y=x3的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=x3的图象上,这时,我们说函数y=x3是奇函数。

一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数。

例如:函数f(x)=x,f(x) =都是奇函数。

如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。

注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:

(1)其定义域关于原点对称;

(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。

首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。

(III)例题分析

课本P61例4,让学生自看去领悟注意的问题并判断的方法。

注意:函数中有奇函数,也有偶函数,但是还有些函数既不是奇函数也不是偶函数,唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函数又是偶函数。

(IV)课堂练习:课本P63练习1。

(V)课时小结

本节课我们学习了函数奇偶性的定义及判断函数奇偶性的方法。特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。

(VI)课后作业

一、课本p65习题2.3 7。

二、预习:课本P62例5、例6。预习提纲:

1.请自己理一下例5的证题思路。

2.奇偶函数的图角各有什么特征?

板书设计

课题

奇偶函数的定义

注意:

判断函数奇偶性的方法步骤。

小结:

教学后记

篇8:《函数的奇偶性》说课稿

尊敬的各位老师:

大家好,我是1号考生。我说课的题目是《函数的'奇偶性》(板书课题),根据新课标的理念,以教什么,怎么教,为什么这样教为思路,我从6个方面进行说课。

一、说设计理念

根据新课程教学理念,在教学中,我以领悟为目的,练习为主线,引导学生自主学习,合作探究,在教学中,注重培养学生逻辑思维能力、创新能力、合作能力、归纳能力、及数学联系生活的能力。即实现数学教学的知识目标,又实现育人的情感目标。

二、说教材

《函数的奇偶性》是人教版第一章集合与函数概念单元的重要知识点。全面介绍了偶函数的定义及判定,奇函数的定义及判定等两部分知识。为后面学习指数函数、对数函数、三角函数等知识奠定了基础。

(一)教学目标:

依据本节课的知识特点及新课标要求,本课的三维教学目标是:

1.知识与技能目标是:理解函数的奇偶性及其几何意义,掌握判断函数奇偶性的方法。

2.过程与方法目标是:通过学生自主探索,合作学习,培养学生的观察、分析和归纳等数学能力,渗透数形结合的数学思想。。

3.情感态度与价值观目标是:让学生了解数学在生活中运用的广泛性和实用性,引发学生学习数学知识的兴趣。

(二)重点、难点:

重点是:函数的奇偶性及其几何意义。

难点是:判断函数的奇偶性的方法。

(三)学情分析

本课的授课对象是高一年级的学生,他们思维活跃,求知欲强,他们已经初步认识了函数的概念,高一年级的学生有自主学习、合作探究的能力,但仍需要教师的指导。

三、教法学法

教法:本节课采用自主探究法、启发式教学法、讨论交流法等。

学法:引导学生探究合作,归纳总结,注重对学生自主探究问题能力的培养,发挥学习小组的合作作用。

四、教学准备

教师制作多媒体课件,编印导学案;学生预习课文,观察生活中具有对称美的物体或图像。

五、教学过程

本节课我从导、研、练、拓、升五个环节进行说课。

环节一:创设情境,导入新课。(导3)、

该环节,用多媒体向学生展示现实生活中蝴蝶、太阳、湖面倒影等具有对称性的图像,再让学生举例函数图像是否有类似的属性?通过评价学生回答,引出本节课的标题:函数的奇偶性。

本环节的设计意图是:采用问题探究导入法,有效地引起学生的注意,激发学生学习本节课的兴趣,便于环节二的开展。本环节需要3分钟

环节二:合作探究,获取新知(研20)

该环节,我分两个模块进行。

模块一:完成偶函数的定义。(板书知识点的小标题)。该模块中,让学生观察课本图1.3.7并思考,两个函数图像有什么共同特征?相应的对应表是如何体现这些特征的?进而让学生观察讨论,得出结论:当自变量x取一对相反数时,相应的函数值相同,并引导学生归纳总结出偶函数的定义:定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

模块二:完成奇函数的定义。(板书知识点的小标题)。该模块中,学生已经学习了偶函数的定义,根据偶函数相同的教学方法引导学生推导出奇函数的定义,即:定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

模块三:完成例题5讲解。在引导学生复述偶函数、奇函数的定义的基础上,师生共同完成例题5中的1)2)小题。在这个过程中教师要提醒学生注意函数定义域的范围,掌握函数奇偶性判定的方法。在完成1、2小题的基础上,让学生独立完成3)4)两个小题。然后在小组内讨论交流,教师巡视,以便发现问题,解决问题。

本环节的设计意图是:采用讲授、研讨、探究、评价、训练、等多种教学手段,达成本节课的三维目标。本环节需要25分钟

环节三:强化训练,目标达成。(练12)

该环节,让同学们拿出之前下发的练习题,每个小组选出一位同学到黑板板演。然后教师对板演情况进行讲评,其他同学小组内互相批阅。

本环节的设计意图是:采取自评和他评相结合的方法,检查学生的学习效果,便于及时对学生进行查缺补漏。本环节需要12分钟

环节四:联系生活,拓展延伸(拓5)

这根据所学知识,让学生联系生活,列举在教室中具有奇偶性的具体实物,提高学生将知识联系生活的能力。

环节五:总结提升,布置作业(升5)

教师对本节课知识点进行梳理。完成课堂达标测评试题,然后启发学生思考这一课的收获。最后布置两种作业。基础型作业为总结本节课的所学知识完成相关练习。扩展型作业为学生自主查询函数奇偶性的相关资料。

本环节通过梳理总结,使本课知识要点化,系统化,给学生以强化记忆。所布置的作业,既可以巩固所学知识,又能把课堂所学应用于实践当中,从而达到教学的目的。

六、说板书设计

我的板书直观具体形象地将本节课的学生重点呈现在黑板之上,方便学生理解掌握。

我的说课到此结束,谢谢各位专家老师!

附:板书设计

篇9:《数的奇偶性》说课稿

一、说教材分析

北师大版小学数学五年级上册第一单元14-15页《数的奇偶性》。《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的。

教材安排了几个不同的数学活动和游戏让学生体会数的奇偶变化规律,引发学生的思考,让他们在探究规律的活动中,发现解决问题的方法,从而运用这些方法去解决生活中的实际问题。

根据我对教材的理解,本课主要设计了两个活动:

活动一:通过具体情境让学生体会数的奇偶性规律,会利用数的奇偶性规律解决一些简单的实际问题。主要是让学生发现小船开始状态在南岸,“奇数次在北岸,偶数次在南岸”的规律。(我将教材改为学生翻手掌,得出规律)对学生进行列表、画图等解决问题策略的指导。

活动二:主要是运用上面的奇偶规律探索数学计算中的奇偶变化规律。通过经历尝试列式计算—初步得出结论—举例验证—得出结论过程,探索奇数、偶数相加的规律,提高学生推理能力。

二、说学生分析

五级学生已经有了一些探索数学问题的方法和总结规律的经验,思维比较活跃。他们能随时发现并提出数学问题。在解决问题的过程中,能根据具体问题选择有效的`解决方法和策略,并能及时地总结自己的方法,在运用中积累经验。他们的好奇心和探索的欲望极强,渴望发现规律。通过前侧,我发现有三分之一的学生已经初步掌握所学知识,我通过下面的教学,可以让大部分学生掌握本节课所学的内容,形成认识,实现学习目标。

三、说学习目标

1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单的问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现计算中数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

3、在学习“数的奇偶性”的活动中,能组织学生积极参与数学学习活动。

教学重点:发现加减法中数的奇偶性的变化规律

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题

四、说教学过程:

一、创设情景,激发学生的求知欲望

同学们喜欢做游戏吗?(喜欢),下面老师就和你们一起来做游戏——翻手掌),大家玩过了吗?其实在翻手掌中也有许多数学知识,你留心了吗?今天老师就看谁细心观察,在翻手掌中获得数学规律,大家有信心吗?

二、探索新知

(一)、让学生感受生活中的奇偶性

活动一:师生互动,组织学生通过多种方法发现规律(翻手掌)

1、让全体学生做游戏(翻手掌)

课件出示游戏规则:所有学生手心向下,然后依次手心向上还是向下,再把手心向下,这样来回翻。

2、思考你翻5次后,手心向下还是向上?

学生交流:你是怎样想的?

3、要解决翻100次后你的手心向下还是向上?该怎么办?1000次、9999次怎么办呢?

(1)独立思考

(2)集体汇报交流

(3)老师进行解决问题方法的指导:列表或画图。

4、通过解决这些问题,观察板书,你有什么发现?

翻奇数次后,手心朝。

翻偶数次后,手心朝。

5、学以致用:翻100次、1000次、9999次,手心向上还是向下?

6思考:只要确定第几次的位置,就能确定所有奇数次的位置?也就能确定所有偶数次的位置?

7、思考:有人说手心翻了999次后,手心向下,这种说法对吗?为什么?

8、同桌问一问:手心翻了次后,手心向(),为什么?

活动二:扩展延伸、巩固所学

1、原来利用数的奇偶性可以帮助我们解决一些问题。

(1)请同学用手里的杯子,完成第14页的试一试(课件出示:一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上。翻动10次后,杯口朝,翻动19次后杯口朝。尝试说说理由)

a、独立思考

b、集体交流,指名说说自己的想法

(2)体会奇偶数的相对性

改变杯子开始状态杯口朝下,看有什么规律

质疑:为什么刚才奇数次杯口朝下,现在奇数次的杯口确向上呢?

小结:因为每次的起点不一样。所以的奇数次位置也会发生改变。但我们只要记住第一次的位置,就可以以不变应万变。

2、结合生活实际,运用所学解决问题

根据你的生活经验,你能举出和今天学习的类似的例子吗?

(二)自主探究奇偶性在计算中的作用

1、出示下面的数,让学生判断圈里、方框框里的数各是什么数?

1、11、21、49、21、25、37、3、101、87

2、12、18、20、6、34、80、16、52

偶数奇数

2、探究奇偶性的规律:

(1)你们从圆中任意选两个数相加或相减,我就能判断它们的和或差是奇数还是偶数?(不信或信)

想知道老师这么快说出来的奥秘吗?

(2)让学生从正方形中任选2个数相加或相减,看你能发现什么规律?

(3)再写几组两个偶数相加减的算式,进行验证.

(4)得出结论:当两数都是偶数时,加减后的结果一定是偶数。

(5)如果从圆中任选两个数他们的和或差是奇数还是偶数?尝试验证并得出结论。

当两数都是偶数时,加减后的结果一定是偶数

(6)如果要使两个数他们的和或差是奇数,该怎么办?

个别学生可能说:我想从圆中任选一个数再从正方形中任选一个数,他们的和是奇数。

让学生尝试验证并得出结论当两数一个是偶数、一个是奇数时,加减后的结果一定是奇数

3、总结:通过刚才的研究,你们发现了什么规律?(能用一句话概括吗?

(1)、对于确定的两个数,无论加法还是减法,运算后的奇偶性是一样的。

(2)、当两数的奇偶性相同时,加减后的结果一定是偶数;当两数的奇偶性不同时,加减后的结果一定是奇数。

4、考考你:完成数学书上15页第(7)题:判断下列算式的结果是奇数还是偶数

10389+20xx 11387+131 268+1024

287-163 357-168 1024-268 1024-267

思考:你是怎样判断的?

5、你敢来挑战吗?

2+4+6+8+10……+998+1000

2+4+6+8+10……+998+1000+1

同学们学得很好,掌握了这些规律,我们就可以发现生活中的一些小秘密。

三、实践应用,解决问题

1、小小编辑

你能从我们天天翻看的数学书里发现有关数的奇偶性的问题吗?

a、独立思考。

b、集体交流。

打开和闭合书分别对应着翻的次数;奇数页在正面,偶数页在背面……

2、开关的秘密

一天晚上,淘气在家做作业时停电了,(此开关为一开一关)淘气按了12次开关,等到来电时,灯亮着还是不亮?假若按了201次开关呢?

(1)独立思考,同桌讨论。

(2)集体交流。

四、畅谈收获

你学到了什么?

五、实践作业的布置

判断结果的奇偶性,并说说你发现了什么?

207-13

207-13-11

207-13-11-43

207-13-11-43-25

207-13-11-43-25-49

板书设计:

列表法画图法

上面

五、说课后反思

我的感受是:

1、创设问题情境的目的在于上课时创设一种学生探索的氛围,以激发学生的学习兴趣,为学生提供自我表现的机会,培养学生的问题意识,根据学生对游戏更感兴趣的特点。我设计了翻手掌的游戏活动,从课堂的效果看学生非常感兴趣争先恐后跃跃欲试,但在翻100次后,学生试过几十次之后,停下了,同学们的学习情绪逐步高涨,要急于发现规律。这时学教师适时抓住学生好奇的时机,提出“你发现了什么规律呢?”的问题,这一提问适时地把学生引入到探究的问题中。

2、重视学生活动,引导学生用“经历尝试列式计算—初步得出结论—举例验证—得出结论”的学习方法解决奇数、偶数相加减的规律,提高学生推理能力。

3、本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还需要改进。

4、对于数的奇偶性的运用的举例有些不恰当。我应该利用课堂中生成的资源灵活练习。

5、数学课上的板书必须要能诠释重点,疏通难点。我的板书太简单了。

6、我能用自己的情感感染学生的情感,用我的态度影响学生的态度,让学生在乐中玩,玩中思,充分完成了教学任务,达到了教学目标。

7、对学生适时评价,让学生感受到成功的喜悦。

反思这堂课,我觉得应及时审视自己的教学,调控学生的情绪,引导学生积极参与到课堂中。在练习题的设计中,可以利用课堂中生成的资源灵活练习,而不是一成不变的,这就要求教师正确处理好预设与生成的资源。还应该提高自己的应变能力,处理好课堂随机生成的随机情境,加强对学生及时准确恰当的评价。

篇10:《数的奇偶性》优秀说课稿

《数的奇偶性》优秀说课稿

一、教材与学生

1、教材

《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的.因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。

2、学生

五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力.但基础的差异,环境的'不同,后天开发的不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。

二、教学目标

1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性;

2.运用设疑--猜想---验证—运用的教学模式,培养的自主探究的能力;

3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。

三、教法和学法

主要是自主探究与开放式教学相结合.

1、让学生自主探索规律,并全程参与。

我想,什么也不能代替学生的亲身体验。这里我讲一个小故事——有一天,我感冒了。不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。为什么不在适当的时候把课堂还给学生呢?!

2、大胆开放,抛弃束缚。

我的教学不想拘泥于一点,不想修建一个房屋让孩子们在里面玩,在思维的国度,应该是平等的,自由的。这难道不是北大的思想吗?开放式教学不是我们北大附中的精髓吗?

因此我打破了教材的局限,设计了一个崭新的思路——

四、教学设计和思路

(一)游戏导入,感受奇偶性

1、游戏一:6只小鸭子、5只蝴蝶找伴

2、游戏二:转轮盘

(1)讲要求:指针停在几上就再走几步;

(2)独白:A请他们全班去吃饭,地方吗

B学生开心极了,当听到是东方饺子王………一片赞叹

C结果:乘兴而来,败兴而归,有的指责我—骗人

(我—我怎么骗人了?)

讨论:为什么会出现这种情况呢?

如果游戏一是感知数的奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。

(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)

3、板书课题,加以破题,加以过渡。

(二)猜想验证,认识奇偶性

1、为什么没有人中奖呢?(学生猜想,教师板书)

2、真的是这样吗?(教师加以验证)

(我在验证的同时,表扬学生达到了一年级水平,二年级的高度,三年级的容量,学生在笑声中体验了愉悦,在开心中学到了知识,增长了能力)

(而在我展现了验证的过程后,开始表扬自己,这个人多帅,多聪明,像不像我------,哈哈不服气,你来呀!?)

(三)大胆猜想,细心求证

1、独立来写(写出了加法,又写出了减法,我提示—有没有乘除呢?)

2、小组合作验证纠偏

3、小组展示(满满的一黑板,加减乘除都有.而且欲罢不能,我就在表扬学生的基础上,圈出我们今天应该掌握的加法的奇偶性.)

(四)坡度练习,层层加深

1、填空

2、判断(这些内容,由浅入深,由难及易,层层推进)

3、填表(着重讲解了这一道题—因为它是例题,我把填表作为要点,学会观察与思考,从而得到规律.)

4、动手(有动脑的,动口的,这里的翻杯子就是动手了.)

五、课堂小结,课后延伸

1、说说我们这节课探索了什么?你发现了什么?或者有什么想说的?

2、思考题--那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

这节课,我以设疑—猜想—验证—运用为骨架,以激发的兴趣为血脉,加上开放的翅膀,我想是不是一个鲜活的生命在飞翔?

当时课上完了,似乎又没有完!

我想说:一节没有上完的课,才是令人回味的课!就像我的说课不完美,但残缺是一种另类的美!谢谢!!

【奇偶性说课稿】相关文章:

1.函数奇偶性练习题

2.数的奇偶性教案

3.函数奇偶性说课课件

4.怎么判断函数的奇偶性

5.人教版数的奇偶性教学设计

6.人教版数的奇偶性的教学设计

7.函数的奇偶性教学设计人教版

8.函数单调性与奇偶性教案

9.小学五年级数学《数的奇偶性》教案

10.说课稿

下载word文档
《奇偶性说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部