欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 作文 > 作文大全>小学作文:数学与人生

小学作文:数学与人生

2022-09-17 08:44:54 收藏本文 下载本文

“OverSlouchy”通过精心收集,向本站投稿了15篇小学作文:数学与人生,以下是小编为大家整理后的小学作文:数学与人生,希望对大家有所帮助。

小学作文:数学与人生

篇1:小学作文:数学与人生

小学作文:数学与人生

正如毕达哥拉斯所说:“数学统治着宇宙。”其实,那道道数学题中正蕴含着种种人生哲理。

同一平面内的平行线,好像两个世界,间隔了一道无限的沟壑,又恍如魔方的两面,魔法般永不相接。那会是光明与阴影还是善良与邪恶?总之构成了两个绝对对立的存在。不知为何,倘若又斜生出一条细长的线,便构成了三线八角:对顶角、同位角、内错角等等。两两相对,承接了某种奇妙的关系。让我不禁联想到我与我的学习伙伴——分明是竞争对手,却拥有超越—切的友谊……

每个人在世界的.范围内都近似于—个小小的点,但几个细微的点就可以扩充为—个几何体,增大数倍的体积与能量。无论你身处何方,都要手握—条条线,将自己与他人连成—个整体,立足于这个世界之中。“个人如果单靠自己,如果置身于集体之外,如果置身于团结民众的思想范围之外,就会—无所用。”高尔基这样告诉我们。我相信,小小的点掌握了几何体的位置关系,就可以拥有它的力量。世界是—个大的整体,就看你向哪里进发。

茫茫世界,人的一生好比一个坐标系。无论是点、面、线、体,都在其中。每个点总有自己的有序对数,它代表了你的唯一。人的目标是什么?就是寻找专属于自己的有序对数,去开拓自己的精彩!

数学的人生,人生的数学,我尽情体验其中的奥秘与美丽!

篇2:我与数学小学作文

“哎!这个双休日又得让这一大堆试卷来充实我的生活了!”看关眼前堆积如山的作业,我不禁又一次叹息。

看在现在脑子还清醒,先做数学吧!不得不说,数学还真是一门让我头疼的科目,尤其是上了初中以后。看着满试卷的几何图形,字母与线段,我真得要头涔涔而泪潸潸了!那就干一场吧!

迎着一道道越来越复杂的题目,我的大脑飞速地运转着,我的笔尖在草稿纸上飞快地跃动着,一题,两题,三题……眼看着整个试卷被我创造的黑色小人布满了,而那通向成功的最后一道关卡――奥数题,这可把我难住了。我原来那暗喜的心顿时被一大盆冷水浇灭。我一遍又一遍地读题,一次又一次地尝试列式,可都失败了。我第三次读题“师父的速度……师父刷的墙数是……问徒弟与师父刷的.总墙面?”读好了一遍,仍是一片迷惆,那解题的灵感像与我作对似的,一点都不愿出现在我的脑海里。我被那急躁的心情充斥了,重重地甩了下笔。但当我再次想起这题,重新拾起笔时,突然有一点儿小小的思路忽然飘进我的头脑。心里有一个坚定的声音告诉我:“试试看吧,万一成功了呢?”于是我从被难题所困惑的黑暗里走了出来,重见希望的光!思绪从我的脑海里不断流露出,我的笔也随着大脑不断运作。一张草稿纸,两张草稿纸……过了许久,一个明亮得让人睁不开眼的方程式跃然出现在白纸上――就是这样!我被兴奋、激动的心情吞没了,手颤抖着将答案一笔一划地写在试卷上,我,成功了!

午后的一缕阳光透过纱窗照映在我的试卷上,我那笑盈盈的脸上,我与数学的战争胜利了,我成功地克服了它向我发出的极难的挑战!

其实战争的输赢并不太重要,贵在坚持……

篇3:小学人生与挫折作文

小学人生与挫折作文

我记得看过这样的两幅漫画:一幅中一棵小树苗在大树厚实的浓荫下成长,没有风吹雨打,没有暴晒的阳光,结果永远都是小不点儿;另一幅中的'一棵小树苗离开树妈妈的襁褓,独自面对烈日,独自经历风雨的洗礼,最后成为了一棵参天大树。

这两幅截然相反的漫画曾让我一度陷入沉思,这不就是人生嘛!不同的环境决定了不同的命运,不同的环境了不同的人生。

一味地躲在港湾里的小海鸥永远不会飞翔;大胆尝试,不怕失败,总结经验的小海鸥将会高飞天堂。

有人说,在一切都顺利的环境下人会容易成长,容易成功。我却认为,人生需要挫折,人们需要历练。若没有了坎坷,人们怎样总结经验?怎样继续前行?恐怕连本能都会忘记!

在我看来,逆境似乎更能磨练人是意志,更有利于人的成长。正所谓:“不经历风雨,怎能见彩虹?”

篇4:数学人生作文

哲学家也要学数学,因为它必须跳入浩如烟海的万变现象而抓住真正的实质……又因为这是从灵魂过渡到真理和永存的捷径。——题记

数学中涵盖了人生。从点线面的三维空间中我看到了人生。

点——如果没有开始的点点滴滴做起,那么以后就没有“一线”希望。

线段——只是比原来多了一点,却决定了你的大小,能量上测下,比较长短,到有了比较的人逐渐突破了一点又一点。

直线——超越了两点的你,豪情万丈,能长能短,却也让你发身了变化。

射线——一个起点,一个方向。认准目标,你就勇往直前,前途无量。

角——一个起点,两个方向,后望:山穷水尽;前看:柳暗花明,天宽地阔。

相交线,垂线——来自四面八方,奔向共同的一个目标,为了各自的目的,又各奔东西。

三角形——稳定的组合,确定的内心,但是也有外心的你却引出了下面的事来。

园——经历了曲折的你,最中分清了“内”“外”。这才是的你的结局最终画上了一个圆满的句号。

数学你是一种不断进化的艺术,而我愿做一名矿工,探求你的宝藏。

篇5:数学与生活小学作文350字

数学与生活小学作文350字

数学在我们生活中无处不在,如:买菜,做实验,计算 记得有一次,我一个人到超市买钢笔和铅,我带了20元。

到了超市,我一看,钢笔12元6角,铅3元5角。当时,我们还没有学过小数加减法。我在心里计算着:12.6+3.5=?我得出结果:17.1元。那20—17.1=?我再次得出结果:2.9元。意思是:营业员要找给我2.9元。我把钱交给营业员后,营业员用电脑扫了一下物品,竟然找给我3.9元。难道机器也会出错?我回家自己用计算器算了一遍,结果还是3.9.原来是我算错了,真不应该啊!看来生活中真少不了数学。现在,我学过了小树加减法,能确无误计算出结果了。下面,我给大家出几道关于数学的谜语吧! 横看像支尺,竖看像跟棒,年龄它最小,大哥它来当。(打一数字) 哈哈,才出来了吗?它就是数字“1”。

如果大家细心观察,就一定能在生活中找到数学,在数学中找到奥妙,乐趣。

篇6:加强实际操作与小学数学教学

近些年来,加强实际操作成为人们越来越重视的一种教学活动。最近修订的《全日制小学数学教学大纲》也十分重视这一点,提出,“要通过直观教学和实际操作,引导学生在感性材料的基础上,理解数学概念,进行简单的判断推理,掌握数学最基础的知识,逐步发展学生初步的逻辑思维。”为什么要加强实际操作,如何在小学数学教学中加强实际操作?下面谈谈个人的一点看法。

篇7:加强实际操作与小学数学教学

根据教育心理学家、儿童心理学家等的研究,实际操作对于儿童的发展和教育起着十分重要的作用。归纳起来有以下几点。

(一)实际操作是儿童智力活动的源泉

前苏联心理学家加里培林在论智力形成的几个基本阶段时说,“只有物质的(或物质化的)活动形式才是完备的智力活动的源泉。”这就是说,儿童的智力活动是在对物体(或物体的代替物,如模型、标本等)的动作中形成的。其他心理学家如瑞士皮亚杰的研究也表明,儿童的智力活动是与他对周围物体的作用密切联系在一起的,也就是说,儿童的理解来自他们作用于物体的活动。小学数学的学习是一项重要智力活动,也不例外。特别是数学具有高度的抽象性,而小学生往往缺乏感性经验,只有通过亲自操作,获得直接的经验,才便于在此基础上进行正确的抽象和概括,形成数学的概念和法则。这在教学实践中的例子很多。例如,一年级教学元、角、分的认识,由于学生缺乏实践经验,长期以来是个难点。由于加强了实际操作,学生对元、角、分的进率就很清楚。中年级教学周长和面积时往往容易混淆,加强实际操作以后,学生对两个概念获得明确的表象,弄清两者的区别,计算错误也大大减少。高年级教学约数和倍数这一单元时,概念多术语也多,学生容易弄混。有些教师使用奎逊耐木条或计数板,引导学生进行操作,大大减少学习的难度,弄清概念的正确含义和求最大公约数、最小公倍数的方法。因此,无论从理论上或从实践上看,加强实际操作都是十分必要的。可以说,加强实际操作是现代的数学教学和传统的数学教学重要区别之一。正如皮亚杰所指出的,传统教学的缺点,就在于往往是用口头讲解,而不是从实际操作开始数学教学。只有加强实际操作,才能体现智力活动源泉这一基本思想。

(二)加强实际操作有助于发展学生思维能力

操作不是单纯的身体动作,是与大脑的思维活动紧密联系着的。儿童心理学的研究表明,早期儿童是在动作中思考的,而且只能在动作中思考,不能在动作之外思考。所以早期儿童的思维是直观动作思维,也称作“用手思维”。到了学前期儿童进入具体形象思维阶段,到了小学、中学以至成人逐步进入抽象逻辑思维阶段,仍有很多学习需要借助实际操作。正如心理学家所说,这种“用手思维”的形式并不会随着更高级的思维形式(即逻辑思维)的发展而消失。赞科夫也说过,有实际对象的活动(即指实际操作),不仅具有运动的技能和技巧本身的特点,其中也以一定方式反映出感觉、空间观念和思维活动。教学实践也表明,在实际操作中,学生要观察、分析、比较所操作的对象的相同点、不同点,然后进行抽象、概括。例如,教学20以内进位加法,学生通过摆小棒或圆片,逐步总结出凑十加的方法。又如教学长方形面积的计算,通过有计划有步骤地摆小正方形,很多学生就概括出长方形面积的计算公式。可见学生操作的过程,同时也是发展思维的过程。由于实际操作是在现代教学论的思想指导下进行的,把学生看作学习的主体,引导学生通过操作发现规律性知识,因此在发展学生思维的同时,也培养了学生独立获取知识的`能力。

(三)加强实际操作可以促进学生的全面发展

这里有两层意思。首先,加强实际操作可以培养学生动手操作能力。这是现代教学论十分强调的一个方面。例如赞可夫在进行小学教学新体系的研究时,把发展实际操作能力作为培养三种重要能力之一(另外两种是观察能力和思维能力)。在欧美等国家十分重视培养学生的操作能力。我国的教育方针也强调使学生在德智体美劳五个方面都得到发展。在小学数学中加强实际动手操作,让学生摆、拼、剪、制作、测量、画图等,有助于学生操作能力的培养,从而促进五育的全面发展。其次,加强实际操作可以促进大脑两半球的协调发展。这一点与前一点有密切的联系。操作能力弱也反映了大脑两半球协调发展不够。最近生理学的研究表明,大脑的左右两半球各有不同的功能占优势。左脑以语言、理解、科学、计算和逻辑思维等活动占优势,而右脑以形象的感知、记忆、时间概念、空间定位、音乐、想象和情绪等活动占优势。大脑的功能具有整体性,只有左右两半球相互配合,协调发展,人的智力发展才能获得最佳效果。如果某方面功能长期受到抑制就会衰退。例如,如果过多发展记忆,则思维判断能力就受到抑制。如果在儿童少年期只注意语言、抽象思维活动,长期下去就会使左脑负担过重,而右脑的功能得不到发展。使用直观的教学材料,由于其具有形象的特点,再加上儿童实际动手操作,就会促使左右两半球的协调发展,从而也促进智力的更好发展。

二 国内外小学数学教学中加强实际操作的情况

(一)重视小学数学教学材料的研究和推广。为了加强实际操作,很多国家都十分重视小学数学教学材料的研究和推广。例如,美国一般学校的教室里都放置大量的教具和学具。现在提倡有条件的学校建立专门的数学实验室,准备各种各样的教学材料,以便于学习和研究数学时使用。此外在实验室中还提供应用数学解决问题的情境。一般每个城市都设有教学手段中心或教学资料中心,为教师和学生提供各种教学材料;还准备各种工具和原材料,以便于教师自制。日本早在60年代就规定了小学需要装备的数学教具达60种,其中包括教具、仪器、模型和教学挂图等。近些年也注意生产和使用操作性的材料。如特为一年级学生准备一盒操作用具,内有方木块、数字卡片、计算卡片、小棒、钉子板、几何图形、钟表模型、塑料钱币等。近年来发展中国家也开始重视实际操作。1978年亚太地区曾召开会议,研究推广使用低价的教学材料,其中包括各科的。1984年又专门召开了亚太地区发展小学数学教学材料研讨会,选定了9个重点课题可以使用的教学材料28种,以后又补充19种。其中很多是用于学生操作的。还提出了鼓励使用教学材料的建议20条。

我国近年来也开始重视在小学数学教学中加强操作。有的地区或单位专门制作了学具袋或学具卡片,供学生操作用。有的出版单位还出版了如何加强操作教学的书籍供教学参考。各地教研部门也加强对操作教学的宣传和指导,收到较好的效果。

(二)提倡取自周围环境的或低价的物品作为教具、学具。例如,美国一位数学教育工作者在对数学实验室应制备的教学材料的目录中,就列有石子、豆子、木片、扣子、自制1米长的棍子等,供数数或计量长度时用。日本一位数学教师曾介绍用家用的小厨柜(上面有几排抽屉)来教学乘法的认识和运算定律。亚太地区发展小学数学教学材料研讨会更是针对本地区发展中国家的特点,提倡选取周围环境的低价的物品作教学材料。

(三)注意研制一种学具多种用途。例如,在国外广泛使用的奎逊耐木条,是分别由长1至10厘米、宽高各1厘米的木条制成的,依次分别涂上白、红、浅绿、紫、黄、深绿、黑、蓝、棕、橙等颜色。这种学生操作用具可用来认识自然数、计算加、减、乘、除、分解质因数、求最大公约数和最小公倍数以及认识分数等。目前国内一些学校也开始使用,取得了较好的效果。还有一种广泛用于几何初步知识教学的学具――几何板(也称钉子板),上面钉有5×5或6×6个无头钉,可以用橡皮筋在上面围学过的图形,用来认识几何图形、计算图形的周长和面积。在日本,有专门为学生制作的20以内加法练习转盘,乘法练习转盘,便于学生熟练加法表和乘法表。在菲律宾,教师即使制作一个式题卡片,也注意使其有多种用途。方法是在式题卡片上加一个可移动的纸套。例如:

(四)注意结合操作发展思维。无论在国外或国内都十分注意通过某种学具的操作发展学生的思维,培养学生的创造力。例如,在钉子板上围成像下页左面的正方形,让学生把它分成两个完全相同的图形,想想有几种分法。又例如,我国传统的玩具七巧板,过去常常只用来照一些现成的图案来摆。现在国内教师则研究出让学生摆某一种图形,如梯形,看有多少种不同的摆法,这样大大促进了学生思维的发展。在日本,还注意利用学具的操作发现解问题的方法,既发展学生思维,又培养解问题的能力。例如,用4根牙签摆一个小正方形,如果要摆10×10个小正方形(如右下图),需要多少根牙签?学生要通过实际操作,寻找解题规律,列出算式,并找出解法公式。还可以找出不同的解法,比较哪种简便。

(五)注意操作的趣味性。加强操作本身已能激发学生的学习兴趣,此外还注意操作的教学材料的有趣性、游戏性。例如,德国制成一种计算盒子。上面分别写着得数1―12的卡片,另外有12道式题,每题的题号1―12分别写在正方形硬纸板上,大小与盒子里写着得数的正方形相同。学生每做一题,就把题号与得数对应地放在一起。全部做完后,把题号翻过来,如果都放得对,将组成一个规则的图案,学生会感到很有趣。在国外广泛流行着各种数学游戏。例如,美国有一种游戏叫做“加法连成线”。先做1―10的点子卡片各两张,然后做20以内的数目表若干张(如右图),每张上的数目要有些变化。一个学生翻出两张点子卡片,算出它们的和,如果数目表上有这个数就用圆片把这个数盖住。第二个学生也照这样做。这样轮流做下去。最后看谁先把某一直行或斜行的3个数盖住为胜。(点子卡片还可以改做数字卡片,另外也可以把数目表中的数改成每两个数的积,来做乘法练习。)

三 在小学数学教学中加强实际操作应注意的问题

加强实际操作是小学数学教学方法上的一个重大改革。要改得好,需要解决好操作中遇到的一些问题。主要有以下几点。

(一)克服思想中的障碍,大胆实践

克服思想中的障碍有两个方面:一是从理论上提高对实际操作的重要性的认识,这一点在前面已经分析过。还有一方面是要解决实际操作中的具体的思想问题。例如,有些教师认为,一个班学生多,怕摆弄学具费时间,影响教学进度。实践表明,有计划有步骤地安排操作,并不费很多时间。开始学生操作,手不灵活,经过一段时间的训练,学生形成习惯和技巧,只要组织得好,边操作、边思考、边讲述,并不多费时间。也有的教师认为制备操作的材料需要花钱,缺少经费。实践也证明,就地取材,废物利用,如用工厂的下脚料,农村用石子、小棍等,可以做到不花钱或少花钱,同样收到操作的效果。总之,关键是克服思想的障碍,大胆实践,就会想出很多解决的办法,尝到实际操作的甜头。

(二)有目的、有计划地进行操作

操作不是在任何情况下都进行的。要根据教学的目的、内容和学生的基础有计划地安排操作活动。一般教学新的概念、法则,学生缺乏感性经验或难于理解的,宜于从操作开始。遇到学生较为熟悉的或者能从已学的知识中推导出来的新知识,就不一定也从操作开始。例如,开始教20以内进位加法,为了使学理解和掌握凑十的方法,可以引导学生用小棒或圆片进行操作。教到6加几、5加几时,学生已经有了基础,也可不再进行操作。学生独立操作的程度也要随着内容和学生的程度而定。例如,在低年级或教学不熟悉的内容,往往先由教师做出示范,说明如何操作,再让学生独立操作;在较高年级,如计算长方形面积,教师可只说明操作的方法和步骤,然后让学生自己操作,教师加以巡视,以了解学生操作的情况。无论怎样进行操作,教师在课前都要做好细致的准备和周密的设计,以期收到良好的效果。

(三)把操作、思维和言语表达紧密结合起来

在小学数学中操作主要是作为一种手段,最终要达到理解数学基础知识和发展思维的目的。因此教学时不能为操作而操作,使操作流于形式。这就要求教师把操作和思维结合起来,通过操作揭示数学知识的要点和基本规律。例如教学34+2,用小棒操作时不是简单地证明34+2等于36,重要的是通过操作来说明其计算的方法和步骤。因为34要用3捆小棒和4根小棒来表示,加上2要用添2根小棒来表示,使学生看到先把单根的小棒加在一起,也就是4个一和2个一相加得6个一;再把整捆的小棒和单根的小棒合并,也就是3个十和6个一加在一起。使学生从操作中逐步抽象概括出两位数加一位数的方法,即先把几个一相加,再和整十数合并起来。这样从操作的过程反映出思维的过程。为要使学生切实理解和掌握这个过程,还要让学生用言语表达出来。开始可以在教师的帮助下进行,以后逐步让学生独立说。还可以让同桌的学生互相说一说,以增加学生用言语表达的机会。通过言语表达,既加深学生对数学知识的理解,又培养学生的思维能力和言语表达能力。

篇8:《小学数学与数学思想方法》读后感

为什么我看这个数学思维方法几页就觉得很受益,有触动。因为以前自己数学能学好感觉只是天然的选择,下意识的动作,在这里能找到原理,让你的行为有理论依据,更加明晰思维方法的重要性。自己就是受益于这些思维方法,但却没意识到,看了书才恍然大悟。很多习以为常,想当然的事情明白了这样设计的道理了。比如为啥设计小学五年级六年级。为什么三四年级、初中一年级会是槛。区别主要是抽象能力的发展不同。思维在低年级作用不是特别大。差距显现不出来。从作者的言外之意也可以看到数学思维方法是最重要的东西,但却不是课堂教学的常态目标,只是教学的附属品,渗透出来的,有人悟性高,捕获的多,发展的好。有人不敏感,攫取的少。差距就出来了。

但不管从数学教育从业者还是我们个人的经历来说,数学思维方法都是最基本的。属于对数学本质的认识,理性的认识。

奥数就是为了训练数学思维方法啊。但是真假奥数不一样,假奥数就是教给你套路,记住就好。

我自己数学学习也是原发性的。没人指导,没人培训。不过有人指点肯定会更轻松,或者能更进一步。

我们常说语文学习,词汇是理解力的基础。在数学中,概念是数学学习的基础,是抽象思维的基础和基本形式。概念大概等同于中文阅读里的抽象词汇,不过概念是有相关系统的东西。说这个是为了说明我们平时说的打好基础再拓展。到底什么是基础。基础就是概念与概念之间的关系构成的知识结构。

所以也自然明白日常我们说的“拓展”是什么。拓展就是在理解概念之间关系的知识结构基础上,利用思想方法、模型思想、推理思想等学习数学,解决问题。

篇9:《小学数学与数学思想方法》读后感

《新课程标准》在总目标中提出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学知识、基本技能、基本思想、基本活动经验。这句话对于我们新教师来已经是烂熟于心,但对于这句话真正理解的少之又少,读了王永春老师的《小学数学思想与数学思想方法》之后,对这句话才有了真正的认识。“授人以鱼不如授人以渔”,对于学生而言,数学知识在其次,数学方法才是最重要的,在这本书中,王老师为我们总结了小学数学知识中蕴含的数学思想,这让我们在日常教学中可以结合所教知识很清楚地知道这些知识中蕴含了哪些数学思想方法,为我们的教学提供了指导和帮助。

这学期我任三年级数学,三年级上册中的主要思想有:第3单元“测量”中学习的长度单位:分米(dm)、毫米(mm)、千米(km)是符号化思想的应用;第7单元“长方形和正方形”中有些习题如本书中第25页的“案例2”应用了分类思想;第9单元“数学广角――集合”中学习的重复问题是集合思想的应用;第8单元“分数的初步认识”中学生用一张正方形白纸可以折出不同的形状表示它的1/4。在学生充分展示后,我们可以引导学生发现虽然形状、大小不同,但都是把一张正方形白纸平均成4份,每份是它的1/4。这个教学过程中有变中有不变的思想的应用。第8单元“分数的初步认识”中把一个圆形平均分,分的份数越多,分数越小,如果一直分下去,可以对应写出无限多个分数。

生活本身是一个巨大的数学课堂,生活中客观存在着大量有价值的数学现象。指导学生运用数学知识写日记,能促使学生主动地用数学的眼光去观察生活,去思考生活问题,让生活问题数学化。在教学中注重培养孩子运用数学的意识,增强学生运用知识解决实际问题的能力。由此可见,数学并不是靠老师教会的,而是在教师的指导下,靠学生自己学会的。在教学中教师要给学生创造情景、提供机会,给学生充足的时间和空间,让学生主动探究新知,在探究中发现规律、归纳规律。因此,我们在课堂教学中,多留些时间给学生,让他们动手操作;多留些时间给学生,自己的`意见;多留些时间给学生,让他们质疑问难。保证充分的时间和空间,让学生再课内交流、讨论、质疑。

这本书教给了我们一种教学理念,教会了我们一种教学方法。读书更是一种好的学习手段,它将带领我们不断更新、与时俱进,成为一名学生喜欢的、有专业素养的好老师。

篇10:《小学数学与数学思想方法》读后感

为了帮助小学数学教师转变数学教育观念,提高对数学思想方法的理解和运用水平,进而提高数学专业素养,本书主编王永春于出版了专著《小学数学与数学思想方法》,该书一经出版,便受到广大小学数学教师的欢迎,参与学习活动的老师们把自己的读书心得写出来,在教学中去实践自己的学习收获,主编王永春把这些鲜活的学习体会和宝贵的教学经验案例结集出版,形成了本书,让更多的老师分享通俗而深刻的理论解读和接地气的实践经验。

本书作者王永春,作为人民教育出版社小学数学编辑室主任,长期从事小学数学教材的编写工作,致力于课程、教材的研究,对小学数学思想方法有深入的思考和探索。基于对提高教育质量、落实教育目标的强烈责任感,作者撰写了系列文章,就有关数学思想方法在小学教学中的应用作了专门的论述。在此基础上,形成了本书。

本书是《小学数学与数学思想方法》一书的读后感,是一线教师对数学思想方法的解读和教学案例的研究。因此本书的内容结构和目录与《小学数学与数学思想方法》的内容结构和目录是基本相对应的,其中第1章到第五章的目录与《小学数学与数学思想方法》相对应,第六章教学案例部分,考虑到各年级案例分布不均,没有按照册数分节,把一、二年级分为第1节,三、四年级分为第二节,五年级分为第三节,六年级分为第四节。对学生来说,数学思想方法不同于一般的概念和技能,概念与技能通常可以通过短期的训练便能掌握,而数学思想方法则需要通过教师长期的渗透和影响才能够形成。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。

数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,而数学思想方法需要通过在教学中长期地渗透和影响才能够形成。古语云“泰山不让土壤,故能成其大;河海不择细流,故能就其深。”教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。希望数学思想方法的教学能够像春雨一样,滋润着学生的心田。

篇11:《小学数学与数学思想方法》读后感

其实,这本书搁置在书架上已经许久了,因为里面概念性的东西比较多,所以读起来并不是那么趣味十足,之前读了几页,便没有再读下去。

之所以重读这本书,缘于这几天和学生一起收看《名师同步课堂》,在电视上做六年级数学直播课的是经验丰富的鲁向前老师,我发现他在讲课的时候,特别注重数学思想方法的渗透,在这方面正是我所欠缺的。

鲁老师在讲解求体积的解决问题时,提到了把一个体积转化成另一个体积,正方体熔铸成圆柱体,小石子放入水中水面升高等等,体现了恒等变形的思想。

鲁老师特别提到一种数学思想方法,由圆柱体积的求法猜想并实验证明圆锥体积的求法,体现了类比的思想方法。类比思想是指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

经常说教方法比教知识重要,作为一名数学老师,需要系统的了解数学思想方法。所以我便想到了书架上的这本书。说实话,读这本书是有些枯燥的,而且如果你不动脑子去思考书中的问题的话,那你可能仅仅读的就是字了。

在《小学数学与数学思想方法》这本书的封皮上写着:

数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成思想和方法的过程。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。

这本书分上下两篇,上篇介绍各类思想方法,下篇介绍各类思想方法在每一册教材中的体现,这本书可以当成我们的一本工具书,在我们备课的时候,方便我们查阅。比如,在总结十以内的加减法或者乘法口诀的推导过程中,都体现了函数思想,作为老师的我们,不必让学生明确知道什么是函数思想,但是我们应该明白这里面体现了函数思想,并且有意识地向学生渗透思想方法,让学生在以后面对类似的问题,能够联想到这种思想方法去解决问题。

仅仅花费两三天的时间,匆匆读完了这本书,书中的一些思想方法或者内容,有些地方还不是太懂,需要慢慢去领悟,但是我知道,在以后备课,做教学设计时,一定要思考一个问题:这节课体现了哪些思想方法?我们应该向学生渗透哪些思想方法?为学生考虑的再长远一些。

篇12:数学思维与小学数学教学

数学思维与小学数学教学

数学思维与小学数学教学

文/孙秀

摘要:小学教育作为一种入门教育,一个重要的教学目标就是培养学生的思维能力。数学由于其学科的特殊性,成了培养学生思维能力的有效途径,小学数学教育也就承担了培养学生思维能力的重任。小学数学教师应该根据数学逻辑性强、应用性和精确性的特点,制定相应的教学方法,为从小培养学生的数学思维打下基础。主要介绍了什么是数学思维及如何在小学数学教学中培养数学思维。

关键词:数学思维;小学数学;培养建议

一、数学思维概述

小学数学教学不仅要求学生掌握基本的数学知识,更重要的是对学生数学思维能力的培养,掌握了数学思维能力,也就增强了数学的学习能力。教学中,我们很常见的就是很多学生从小学开始数学就一直学不好,不管怎么下工夫数学成绩提升成效仍然不明显,这其中的原因就是不具备良好的数学思维能力。由此我们可以看出,要想真正学好数学,对书本数学知识的掌握不是最主要的,重要的是对数学思维能力的培养,拥有了数学思维能力,才能学好以后的数学知识。因此,课堂上教师要注意引导学生独立思考,为学生创设良好的数学思考情境,给学生充分的思考空间,充分调动学生数学学习的积极性和主动性。数学思维在教学过程中的应用主要表现为学习、质疑和总结。数学教学主要是对知识的传授,教师帮助学生学习知识只适用于解决问题,知识的掌握离不开数学思维的发挥。学生通过对数学知识的学习,提出了自己的观点并开始对问题发表疑问,也是数学思维的体现。总结就是对数学知识的概括,总结出知识的特点和运用知识解决问题的规律,充分体现了学生的推理概括能力和逻辑思维能力。

二、在小学数学教学中培养数学思维的建议

培养数学思维能力就是培养学生对数学的推理归纳能力,以下从几个方面提出在数学教学中培养数学思维能力的建议。

1.采取“启发式”的教学方法

不同于以往的教师在课堂上向学生灌输知识的教学模式,()新的教学方法要有所突破、有所创新。小学数学教师要将启发式教学运用到课堂之中,启发能使学生养成动脑思考的习惯,质疑能培养良好的数学思维能力。启发式教学能够使学生思考问题的解决方法,在无形中锻炼了大脑的思维能力。例如,学校需要购买20 张凳子,每张凳子10元,那么250 元钱够吗?对于这道题教师先让学生计算购买20 张凳子需要多少钱,需要运用什么样的计算方式,在教师直接讲解答案之前要找准问题的切入点,启发学生自己动脑思考。当学生养成了自己动脑思考的习惯,便会不自觉地拥有活跃的数学思维,数学思维能力也会逐渐形成。

2.激发学生对数学的学习兴趣

兴趣是学好一门课程的关键,只有拥有了兴趣才会有探索知识的好奇心,才会不断进取。兴趣在一定程度上表现为好奇心,好奇心驱使他们对知识进行探索与钻研,当好奇心表现为强烈的求知欲时,便会拥有丰富的思维想象,从而有助于形成数学思维。例如,在认识“钟表的.时针和分针之间所形成的角的度数”时,教师可以让学生自由选定时针和分针的位置,自己测量所形成的角的度数之后,让教师猜他们测量的结果,这样学生便会好奇为什么教师会准确说出他们测量的结果,这样就激发了他们探索学习方法的好奇心,从而掌握“每两个小时之间的度数是30 度”的结论。

3.总结知识,形成数学知识网

数学的学习是一个环环紧扣的过程,由于数学知识的层层递进的特点,要想学好数学必须精通每一个章节的数学知识,形成一个数学知识网络。教师在教学过程中要定期复习和总结以往的知识点,使新旧知识结合在一起形成一个知识网络,通过这种连贯性的思维方法逐步培养数学思维能力。比如,在学习新知识之前要巩固复习学过的知识,将旧知识运用于新知识的学习,如此便可帮助学生梳理知识,形成知识体系,进而形成系统的数学思维。

学好数学知识,良好的数学思维能力是必不可少的,对于小学数学教学而言就要充分发挥教师的主导作用,创新教学模式,采用新的教学方法逐步培养学生的数学思维能力。

参考文献:

[1]秦秀芳。数学思维和小学数学教学[J].中学生导报,(50)。 [2]孙福建。质疑辩驳,将数学思维不断引向深入[J].小学数学参考,(35)。

(作者单位四川省乐山市峨边彝族自治县五渡小学)

篇13:小学数学学习方法与技巧

一、数学学习的基本过程

学生学习独立新知时,一般要经历以下几个基本步骤。

第一步,对所学知识事物或数的变化发展过程进行初步感知。

如考察事、物的存在、演变的条件与过程;参与对所学知识的演示、操作与实物及再现事物的存在、变化和发展过程,进而获得对所学知识的初步感受。

按触和初步认识新知--建立感性认识

开展联想 ---形成新知表象

探究新旧知识的内在联系---第二次感知

抽象概括新知本质特征---向理性知识转化

记忆新知--- 巩 固

应用新知 ---将知识转化为能力

重视学生学数学的基本过程的研究,对改进教学方法、加强学法指导,提高教学质量具有十分重要的意义。

二、数学课业学习的原则与基本方法

根据心理学的理论和数学的特点,分析数学学习应遵遁以下原则:动力性原则,循序渐进原则。独立思考原则,及时反馈原则,理论联系实际的原则,并由此提出了以下的数学学习方法:

1.求教与自学相结合

在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

2.学习与思考相结合

在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

3.学用结合,勤于实践

在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

4.博观约取,由博返约

课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究。掌握其知识结构。

5.既有模仿,又有创新

模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

6.及时复习,增强记忆

课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作 必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

7.总结学习经验,评价学习效果

学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

更深一步是涉及到具体内容的学习方法,如:怎样学习数学概念、数学公式、法则、数学定理、数学语言;怎样提高抽象概括能力、运算能力、逻辑思维能力、空间想象能力、分析问题和解决问题的能力;怎样解数学题;怎样克服学习中的差错;怎样获取学习的反馈信息;怎样进行解题过程的评价与总结;怎样准备考试。对这些问题的进一步的研究和探索,将更有利于学生对数学的学习。

历史上许多优秀的教育家、科学家,他们都有一套适合自己特点的学习方法。比如,我国古代数学家祖冲之的学习方法概括起来是四个字:搜炼古今。搜就是搜索,博采前人的成就,广泛地研究;炼是提炼,把各种主张拿来比较研究,再经过自己的消化和提炼。着名的特理学家爱因斯坦的学习经验是:依靠自学;注意自主,穷根究底,大胆想象,力求理解,重视实验,弄通数学,研究哲学等八个方面。如果我们能将这些教育家、科学家的更多的学习经验挖掘整理出来,将是一批非常宝贵的财富。这也是学习方法研究中的一个重要方面。


篇14:小学数学学习方法与技巧

小学数学学习方法与技巧

首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。

这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必备 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以略到数学的奥妙,体会到学习数学获取成功的喜悦。

长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。知识是能力的基础,要切实抓好基础知识的学习。

数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实际上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要著重学习各种转化方式,培养转化的能力。

总而言之,在学习数学基础知识中,要注意把握知识的整体精髓,悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。

同时,还要注意知识形成过程无处不隐含著人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。

数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。

在数学学习中,要特别重视运用数学知识解决实际问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。

培养数学应用能力,首先要养成将实际问题数学化的习惯;其次,要掌握将实际问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。

如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实际问题,那么,我们就走在了一条数学学习成功的大道上。

接下来,分享数学学习三部曲:

一、动手试一试:动手有助于消化学习过的知识,做到融会贯通。课下,应该把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。

二、 思考:思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。

三、 培养创造精神:所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。


篇15:《我与小学数学》读后感

《我与小学数学》读后感

近日,我认真研读了《我与小学数学》一书,给我留下了深刻的印象。

书中写道:作为小学数学教师要积极为学生创“数学真奇妙”的学习氛围。是呀!这正是我作为一名数学教师一直深感头痛的事情。相对来说,数学是比较抽象的学科,小学生是6岁――12岁的儿童群体,孩子们生性好动,喜欢多色彩,有趣味的素材。这就向我们教师提出了更高的要求,如何把抽象的严肃的数学概念形象化并富有情感色彩地展现在孩子们的面前,架起教材和孩子们中间的桥。……许多教师教学水平高,受到同学们的喜爱和欢迎,原因之一就是他们十分关注孩子们的这颗好奇心,课堂上为孩子们提供具有奇妙感的数学素材,有效地刺激学生的好奇心,激发起学生学习兴趣和求知欲望。读了这本书后,感觉受益匪浅,我也尝试着在我的教学中进行了实践。下面我就结合自己的学习、实践谈几点体会:

一、 让学生觉得数学真奇妙。

参考该书中的理论,数学课上我试着引发起学生对数学的神奇感,使学生能尽快地走进数学的迷宫。例如:在教学《高、矮》时,我是这样引入的:先请一个班上个子中等的学生到前面来,问大家他是高,还是矮?有的说高,有的说矮。我没说话,走到他的旁边。“他矮,老师高。”学生们异口同声。我又请了一个班中最矮的学生站到我们旁边。“后来的同学最矮,老师最高。”学生们高声说道。我一笑:“是吗?”我让个子最矮的学生站到了椅子上。“现在谁最高?”我笑着问。“还是老师最高。”“不,站在椅子上的同学高。”学生们的意见开始不一致了。“好了,那我们今天就来一起研究高、矮的问题吧。”板书课题。学生们就是在这种轻松愉快的课堂气氛中,主动地参与到学习中来。要想建立民主和谐的氛围并不难,教师首先要放下架子,与学生多沟通,跟他们交朋友,在生活上、学习上多关心他们,从而激起他们对老师的爱,对数学的爱。尝到了成功的甜头,使我教好数学的信心倍增,是啊,好奇之心,人皆有之。爱迪生也曾说过:凡是新的不平常的东西都能在想象中引起一种乐趣,因为这种东西使心灵感到一种愉快的惊奇,满足他的好奇心,使之得到他原来不曾有过的一种观念。老师就是要把“好奇心”巧妙地运用于教学过程中,使之自然地转化为强烈的求知欲望,从而变成孩子们学习和探索的内动力。

二、让学生学会学习数学

如何让学生学会学习?我从书中找到了答案,并积极实践。――采取灵活多样的形式,增强学生的学习兴趣,促学生自主探究学习。1.采取活动的形式。低年级学生年龄小,自制力差,学习时明显受心理因素支配。只有遵循学生心理活动的.规律,把学科特点和年龄、心理特征结合起来才能使学生愿意学、主动学。如果教师用传统的“老师讲,学生听;教师问,学生答,动手练”进行教学,学生会感到很乏味,越学越不爱学。因此在课堂教学中,应力求形式新颖,寓教于乐,减少机械化的程序,增强学生学习的兴趣,促使其主动探究。

2.采取把知识趣味化的形式。教师要善于把抽象的概念具体化,深奥的道理形象化,枯燥的事物趣味化,如色彩鲜艳的教具;新颖的谜语、故事;有趣的教学游戏;关键处的设疑、恰当的悬念;变静为动的电化教学等等,尽可能使学生感到新颖、新奇,具有新鲜感和吸引力,为学生从“要我学”变为“我要学”提供物质内容和推动力。

三、 让课堂教学充满活力

“把数学教育的重心转移到学生的发展上来”是《我与小学数学》贯彻的精神,同时也正是我们每一位教师终生追求的教育目标。只有在充满生命活力课堂上,师生才是全身心投入,因为这不只在教和学,而是感受课堂生命的涌动和成长。只有在这样的课堂上,学生才能获得多方面的满足和发展,教师的劳动才会闪现出创造的光辉和人性的魅力。

《我与小学数学》是一本好书,它教给了我们一种教学理念,教会了我们一种教学方法。读书更是一种好的学习手段,它将带领我们不断更新、与时俱进,成为一名学生喜欢的、有专业素养的好老师。

【小学作文:数学与人生】相关文章:

1.小学人生与挫折作文

2.数学与生活小学作文350字

3.数学人生作文550字

4.数学思维与小学数学教学

5.《我与小学数学》读后感

6.小学数学与素质教育论文

7.自信与人生作文

8.眼泪与人生作文

9.挑战与人生作文

10.棋局与人生作文

下载word文档
《小学作文:数学与人生.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部