等差数列中项公式是什么
“哦哦米哦”通过精心收集,向本站投稿了8篇等差数列中项公式是什么,以下文章小编为您整理后的等差数列中项公式是什么,供大家阅读。
篇1:等差数列中项公式是什么
等差数列的通项公式
例如:1,3,5,7,9……2n-1。
通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。
通项公式推导:
a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。
前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2
Sn=[n*(a1+an)]/2
Sn=d/2*n+(a1-d/2)*n
注:以上n均属于正整数。
篇2:等差数列及通项公式说课课件
等差数列及通项公式说课课件
一、教材分析
1、教材的地位和作用:
数列是职专数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
1、在知识上:理解并掌握等差数列的概念,并用定义判断一个数列是否为等差数列;了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,并能在解题中灵活应用;初步引入“数学建模”的思想方法并能运用。
2、在能力上:培养学生观察、分析、归纳、推理的能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
3、在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点
根据教学大纲的要求确定本节课的教学重点为:
1、等差数列的概念。
2、等差数列的通项公式及应用。
4、教学难点
1、用数学建摸的思想解决实际问题
2、通项公式的灵活运用
二、学情分析
由于是中专学生,他们学习基础差且参差不齐,幸好经过几个月的磨合,学生对学习数学产生了浓厚兴趣。课堂上均 能听老师的指挥,能大胆发言,乐于做练习,基本堂堂清。
三、教法分析
针对中专生思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
四、学法指导
在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
五、教学程序
本节课的教学过程由(一)新课导入(二)新课讲授(三)讲解范例(四)课堂小结(五)作业布置(六)板书设计,六个教学环节构成。
【新课导入】
创设情景
上节课我们学习了数列的'定义和表示数列的几种方法——列举法、通项公式、递推公式。这些方法从不同的角度反映数列的特点。今天我们来学习一类特殊的数列。
下面我们观察这样一些实例:
(1)第25届到第28届奥运会举行的年份依次为
1992,,, .
(2)在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:
1682,1758,1834,1910,1986
(3)某舞蹈队对舞蹈员进行排队,队员身高分别为(单位:m)
1.68, 1.66, 1.64, 1.62, 1.60, 1.58
请同学们根据规律在填上合适的数
1992,1996,2000,2004,()
1682,1758,1834,1910,1986,()
1.68, 1.66, 1.64, 1.62, 1.60, 1.58,()
观察并思考:请同学们仔细观察一下,看看以上三个数列有什么共同特征?
共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列
通过练习引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察以上数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
【新课讲授】
(一)、等差数列定义
一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差,常用字母表示.
强调:① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d(n≥1)
练习1:指出刚才实例中各等差数列的公差;
练习2:判断下列数列是否是等差数列
(1)9,8,7,6,5,4,……;
(2)-6,-4,-2,0,……;
(3)1,-1,1,-1,……;
(4)1,2,4,7,11,16,……;
(5)a, 2a, 3a, 4a,……;
(6)0,0,0,0,0,0,…….
指出:其中第一个数列公差<0,第二个数列公差>0,第三个数列公差=0
强调:1、公差可以是正数、负数,也可以是0
2、对于一个无穷数列,通常在写出它的前n项后,接着写省略号,这时要从上下文能知道省略号写出的项是什么
想一想:设{an}是一个首项为a1,公差为d的等差数列,你能够写出它的第n项an吗
(二)、等差数列的通项公式(重点部分)
通项公式: an=a1+(n-1)d(n∈N*)
推导过程:
若等差数列 的首项是a1,公差是,则据其定义可得:
a2-a1=d
a3-a2=d
a4-a3=d
……
an-2-an-1=d
an-an-1=d
等式迭加得到等差数列的通项公式
an=a1+(n-1)d (当n =1时,上式两边都等于a1) n∈N*,公式成立
(三)讲解范例:
例1:求等差数列12,8,4,0,‥‥的通项公式与第10项;
解:因为,a1=12,d=8–12=–4,所以这个等差数列的通项公式为
an=12+﹝n–1﹞×﹝–4﹞
即an=16–4n
所以a10=16–4×10=-24
练习:求等差数列4,7,10,‥‥的通项公式与第6项;
例2:等差数列–1,2,5,8,‥‥的第几项是152?
解:根据a1=-1,d=2-﹝-1﹞=3,an=152,从通项公式得出
152=-1+(n-1)
解得n= 52
练习:等差数列3,5,7,9,‥‥的第几项是21?
评注∶an= a1+(n-1)d中 ,an,a1, n,d这四个变量 ,知道其中三个量就可以求余下的一个量;
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例3(实际建模问题)第一届现代奥运会于18在希腊雅典举行,此后每4年举行一次.奥运会如因故不能举行,届数照算.
(1)试写出由举行奥运会的年份构成的数列的通项公式;
(2) 北京奥运会是第几届?
2050年举行奥运会吗?
解:(1)由题意知,举行奥运会的年份构成的数列是一个以1896为首项,4为公差的等差数列,
其通项公式an=1896+4(n-1)
=4n+1892
(2)假设an=,即4n+1892=2008,
解得:n=29
假设an=2050,即2050=4n+1892
此方程无整数解
答:所求通项公式为an=4n+1892;20是第29届奥运会,2050年不举行奥运会.
练习:全国统一鞋号中,成年男鞋有14种尺码,其中最小尺码是23.5cm,各相邻两个尺码都相差0.5cm.其中最大的尺码是多少?
练习、建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
【课堂小结】(由学生总结这节课的收获)
1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式an= a1+ (n-1)d(n∈N*)会知三求一
3.用“数学建模”思想方法解决实际问题
【作业布置】
必做题:课本11页A组1,2题
选做题:课本P284 B组 第6、7题
(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
【板书设计】
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
篇3:说课—《等差数列前n项和的公式》
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程
一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯“神速求和”的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:“把从1到100的自然数加起来,和是多少?”年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10.
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。
生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。
上面两式相加得2S=11+10+......+11=10×11=110
10个
所以我们得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。
理由是:1+100=2+99=3+98=......=50+51=101,有50个101,所以1+2+3+......+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?
生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.
二、教授新课(尝试推导)
师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。
生4:Sn=a1+a2+......an-1+an也可写成
Sn=an+an-1+......a2+a1
两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)
n个
=n(a1+an)
所以Sn=(I)
师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。
三、公式的应用(通过实例演练,形成技能)。
1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:
(1)1+2+3+......+n
(2)1+3+5+......+(2n-1)
(3)2+4+6+......+2n
(4)1-2+3-4+5-6+......+(2n-1)-2n
请同学们先完成(1)-(3),并请一位同学回答。
生5:直接利用等差数列求和公式(I),得
(1)1+2+3+......+n=
(2)1+3+5+......+(2n-1)=
(3)2+4+6+......+2n==n(n+1)
师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。
生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以
原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)
=n2-n(n+1)=-n
生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:
原式=-1-1-......-1=-n
n个
师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。
例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=-2,∴a1=6
∴S12=12 a1+66×(-2)=-60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。
师:(继续引导学生,将第(2)小题改编)
①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。
2、用整体观点认识Sn公式。
例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)
师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?
生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的'性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。
师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。
最后请大家课外思考Sn公式(1)的逆命题:
已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。
四、小结与作业。
师:接下来请同学们一起来小结本节课所讲的内容。
篇4:说课—《等差数列前n项和的公式》
2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。
生12:1、运用Sn公式要注意此等差数列的项数n的值。
2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。
3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。
师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。
本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。
数学思想:类比思想、整体思想、方程思想、函数思想等。
作业:P49:13、14、15、17
篇5:说课―《等差数列前n项和的公式》
教学难点 :等差数列前n项和的公式的灵活运用。
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程
一、创设情景,导入 新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯“神速求和”的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:“把从1到100的自然数加起来,和是多少?”年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10.
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。
生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。
上面两式相加得2S=11+10+......+11=10×11=110
10个
所以我们得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。
理由是:1+100=2+99=3+98=......=50+51=101,有50个101,所以1+2+3+......+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?
生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.
二、教授新课(尝试推导)
师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。
生4:Sn=a1+a2+......an-1+an也可写成
Sn=an+an-1+......a2+a1
两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)
n个
=n(a1+an)
所以Sn=(I)
师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。
三、公式的'应用(通过实例演练,形成技能)。
1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:
(1)1+2+3+......+n
(2)1+3+5+......+(2n-1)
(3)2+4+6+......+2n
(4)1-2+3-4+5-6+......+(2n-1)-2n
请同学们先完成(1)-(3),并请一位同学回答。
生5:直接利用等差数列求和公式(I),得
(1)1+2+3+......+n=
(2)1+3+5+......+(2n-1)=
(3)2+4+6+......+2n==n(n+1)
师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。
生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以
原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)
=n2-n(n+1)=-n
生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:
原式=-1-1-......-1=-n
n个
师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。
例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=-2,∴a1=6
∴S12=12 a1+66×(-2)=-60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。
师:(继续引导学生,将第(2)小题改编)
①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。
2、用整体观点认识Sn公式。
例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)
师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?
生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。
师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。
最后请大家课外思考Sn公式(1)的逆命题:
已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。
四、小结与作业 。
师:接下来请同学们一起来小结本节课所讲的内容。
生11:1、用倒序相加法推导等差数列前n项和公式。
2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。
生12:1、运用Sn公式要注意此等差数列的项数n的值。
2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。
3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。
师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。
本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。
数学思想:类比思想、整体思想、方程思想、函数思想等。
作业 :P49:13、14、15、17
篇6:说课―《等差数列前n项和的公式》
教学目标
A、知识目标:
掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)
(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生“大众教学”的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
篇7:小学等差数列求和公式
等差数列{an}的`通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意:以上均为整数。
基本概念:
首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1(n-1)d;通项=首项+(项数一1)×公差;
数列和公式:sn,=(a1an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n=(ana1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d=(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);
篇8:等差数列求和公式的
问题1:著名数学家高斯10岁时,曾解过一道题:1+2+3+…+100=?你们知道怎么解吗?
问题2:1+2+3+…+n=?
在探求中有学生问:n是偶数还是奇数?教师反问:能否避免奇偶讨论呢?并引导学生从问题1感悟问题的实质:大小搭配,以求平衡
设 =1+2+3+…+n ,又有 = + + +…+1
= + + +…+ ,得 =
问题3:等差数列 = ?
学生容易从问题2中获得方法(倒序相加法)。但遇到 = = =…=呢?利用等差数列的定义容易理解这层等量关系,进一步的推广可得重要结论:m+n=p+q
问题4:还有新的方法吗?
(引导学生利用问题2的结论),经过讨论有学生有解法:设等差数列的公差为d,则 = +( )+()+…+[ ]
= = (这里应用了问题2的结论)
问题5: = = ?
学生容易从问题4中得到联想: = = 。显然,这又是一个等差数列的求和公式。
等差数列的求和对初学数列求和的离学生的现有发展水平较远,教师通过“弱化”的问题1和问题2将问题转化到学生的最近发展区内,由于学生的最近发展区是不断变化的,学生解决了问题2,就说明学生的潜在的发展水平已经转化为其新的现有发展水平,在新的现有发展水平基础上教师提出了问题3,学生解决了问题3,他们潜在的发展水平已经转化为其新的现有发展水平,在此基础上教师提出了问题4,这个案例的设计体现教师搭“脚手架”的作用不可低估,教师自始至终都应坚持“道而弗牵,强而弗抑,开而弗达”(《礼记·学记》),诱导学生自己探究数学结论, 处理好“放”与“扶”的关系。
【等差数列中项公式是什么】相关文章:
2.等差数列教案
3.等差数列练习题
6.等差数列教学设计
10.初中化学公式






文档为doc格式