欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>Cool Edit混响参数

Cool Edit混响参数

2023-06-06 08:13:16 收藏本文 下载本文

“菜桃粿”通过精心收集,向本站投稿了5篇Cool Edit混响参数,以下是小编收集整理后的Cool Edit混响参数,仅供参考,欢迎大家阅读。

Cool Edit混响参数

篇1:Cool Edit混响参数

Reverb Hall 1 模拟大音乐厅的混响

参数数值范围说明

Rev.Time2.8s0.3-30.0s混响时间

High Ratio0.80.1-1.0高频衰减率

Diffusion60-10混响扩散

Ini.Dly40.0ms0.1-200.0ms直达声与早期反射声之间的延迟时间

LPF7.0kHz1KHz-16KHz,THRU低通滤波器的截止频率

HPFTHRUTHRU,32Hz-8KHz高通滤波器的截止频率

Reverb Hall 2 模拟大音乐厅的混响的变种

参数数值范围说明

Rev.Time3.2s0.3-30.0s混响时间

High Ratio0.70.1-1.0高频衰减率

Diffusion80-10混响扩散

Ini.Dly38ms0.1-200.0ms直达声与早期反射声之间的延迟时间

LPF6.3kHz1.0kHz-16.0kHz,THRU低通滤波器的截止频率

HPFTHRUTHRU,32Hz-8kHz高通滤波器的截止频率

Reverb Room 1 模拟水泥墙壁房间产生大量回声的混响 *为鼓音色增加现场感

参数数值范围说明

Rev.Time1.4s0.3-30s混响时间

High Ratio0.80.1-1.0高频衰减率

Diffusion70-10混响扩散

Ini.Dly5.0ms0.1-200ms直达声与早期反射声之间的延迟时间

LPFTHRU1KHz-16KHz,THRU低通滤波器的截止频率

HPFTHRUTHRU,32Hz-8kHZ高通滤波器的截止频率

Reverb Room 2 Room1的变种

参数数值范围说明

Rev.Time1.8s0.3-30s混响时间

High Ratio0.60.1-1.0高频衰减率

Diffusion60-10混响扩散

Ini.Dly17ms0.1-200ms直达声与早期反射声之间的延迟时间

LPF9kHz1KHz-16KHz,THRU低通滤波器的截止频率

HPF80HzTHRU,32Hz-8kHZ高通滤波器的截止频率

Reverb STAGE 类似程序1,但更明亮,更有现场感

参数数值范围说明

Rev.Time3.4s0.3-30s混响时间

High Ratio0.90.1-1.0高频衰减率

Diffusion80-10混响扩散

Ini.Dly45ms0.1-200ms直达声与早期反射声之间的延迟时间

LPFTHRU1KHz-16KHz,THRU低通滤波器的截止频率

HPF70HzTHRU,32Hz-8kHZ高通滤波器的截止频率

Reverb Plate 模拟钢盘类混响系统,适应性很广,特别是人声,鼓和打击乐

参数数值范围说明

Rev.Time2.4s0.3-30s混响时间

High Ratio0.70.1-1.0高频衰减率

Diffusion80-10混响扩散

Ini.Dly16ms0.1-200ms直达声与早期反射声之间的延迟时间

LPF8kHz1KHz-16KHz,THRU低通滤波器的截止频率

HPFTHRUTHRU,32Hz-8kHZ高通滤波器的截止频率

Rev Ambience 1 模拟乐器周围的混响,用于人声,合唱和打击乐

参数数值范围说明

Rev.Time1.2s0.3-30s混响时间

High Ratio10.1-1.0高频衰减率

Diffusion80-10混响扩散

Ini.Dly19ms0.1-200ms直达声与早期反射声之间的延迟时间

LPF9kHz1KHz-16KHz,THRU低通滤波器的截止频率

HPF45HzTHRU,32Hz-8kHZ高通滤波器的截止频率

Rev Ambience 2 程序7的变种

参数数值范围说明

Rev.Time0.8s0.3-30s混响时间

High Ratio0.60.1-1.0高频衰减率

Diffusion80-10混响扩散

Ini.Dly0.1ms0.1-200ms直达声与早期反射声之间的延迟时间

LPFTHRU1KHz-16KHz,THRU低通滤波器的截止频率

HPF56HzTHRU,32Hz-8kHZ高通滤波器的截止频率

Rev Live Room 1 模拟现场房间的混响,混响反射比Recerm Room强

参数数值范围说明

Rev.Time2.4s0.3-30s混响时间

High Ratio0.80.1-1.0高频衰减率

Diffusion70-10混响扩散

Ini.Dly0.1ms0.1-200ms直达声与早期反射声之间的延迟时间

LPF7kHz1KHz-16KHz,THRU低通滤波器的截止频率

HPFTHRUTHRU,32Hz-8kHZ高通滤波器的截止频率

Rev Live Room 2 程序9的变种

参数数值范围说明

Rev.Time2.2s0.3-30.0s混响时间

High Ratio0.50.1-1.0高频衰减率

Diffusion60-10混响扩散

Ini.Dly12.0ms0.1-200.0ms直达声与早期反射声之间的延迟时间

LPF4.0kHz1.0kHz-16.0kHz.THRU低通滤波器的截止频率

HPFTHRUTHRU,32Hz-8kHz高通滤波器的截止频率

Reverb Vocal 用于人声,合唱的混响

参数数值范围说明

Rev.Time1.9s0.3-30.0s混响时间

High Ratio0.50.1-1.0高频衰减率

Diffusion60-10混响扩散

Ini.Dly16ms0.1-200.0ms直达声与早期反射声之间的延迟时间

LPF12kHz1.0kHz-16.0kHz.THRU低通滤波器的截止频率

HPF100HzTHRU,32Hz-8kHz高通滤波器的截止频率

Chorus Reverb 立体声合唱后接混响

参数数值范围说明

Mod.Freq0.8Hz0.1-20Hz调制速度

Mod.Depth40%0-100%调制深度

Mod.Dly1.3ms0-24ms在开始调制前的延迟时间

Rev.Time2.4s0.3-30s混响时间

High Ratio0.70.1-1高频衰减率

Diffusion70-10混响扩散

Ini.Dly30ms0.1-139ms直达声与早期反射声之间的延迟时间

LPF6.3kHz1kHz--16kHz, THRU低通滤波器的截止频率

HPFTHRUTHRU,32Hz--8kHz高通滤波器的截止频率

Rev.Depth24%0-100%混响深度

Flange Reverb 立体声飘忽后接混响

参数数值范围说明

Mod.Freq1.4Hz0.1-20Hz调制速度

Mod.Depth22%0-100%调制深度

FB Gain+45%-99--+99%处理后的信号返回飘忽的增益

Mod.Dly13ms0-15.5ms在开始调制前的延迟时间

Rev.Time2.4s0.3-30s混响时间

Diffusion80-10混响扩散

Ini.Dly26ms0.1-200ms直达声与早期反射声之间的延迟时间

LPF4.5kHz1kHz--16kHz, THRU低通滤波器的截止频率

HPF45HzTHRU,32Hz--8kHz高通滤波器的截止频率

Rev.Depth30%0-100%混响深度

Delay L-C-R 左,中,右声道独立的延迟

参数数值范围说明

Dly L250ms0.1-661ms左声道延迟时间

Dly R500ms0.1-661ms右声道延迟时间

Dly C125ms0.1-661ms中央声道延迟时间

Level C700-100中央声道延迟音量

FB.Dly500ms0.1-661ms在开始反馈前的延迟时间

FB.Gain+40%-99--+99%处理后的信号返回延迟的增益

High Ratio0.80.1-1反馈的调频衰减率

Monodly-Chorus 单声道延迟后接立体声合唱

参数数值范围说明

Delay400ms0.1-618ms延迟时间

FB.Gain+32%-99--+99%处理后的信号返回延迟的增益

High Ratio0.80.1-1反馈的调频衰减率

Mod.Freq0.4Hz0.1-20Hz合唱调制速度

Mod.Depth10%0-100%合唱调制深度

Mod.Dly0.1Ms0-24ms合唱开始调制前的延迟时间

Chrous-Dly L C R 立体声合唱后接左,中,右声道独立的延迟

参数数值范围说明

Mod.Freq0.8Hz0.1-20Hz调制速度

Mod.Depth24%0-100%调制深度

Mod.Dly5.9ms0-24ms在开始调制前的延迟时间

Dly L26.4ms0.1-618ms左声道延迟时间

Dly R33.2ms0.1-618ms右声道延迟时间

Dly C13.1ms0.1-618ms中央声道延迟时间

Level C600-100中央声道延迟音量

FB.Dly40.5ms0.1-618ms在开始反馈前的延迟时间

FB.Gain-48%-99--+99%处理后的信号返回延迟的增益

High Ratio0.10.1-1反馈的调频衰减率

Delay-Chrous 两级延迟后接立体声合唱

参数数值范围说明

Dly 1250ms0.1-618ms1 延迟时间

Dly 2500ms0.1-618ms2 延迟时间

FB.Dly500ms0.1-618ms在开始反馈前的延迟时间

FB.Gain+33%-99--+99%处理后的信号返回延迟的增益

High Ratio0.70.1-1反馈的调频衰减率

Mod.Freq1.2Hz0.1-20Hz调制速度

Mod.Depth25%0-100%调制深度

Mod.Dly10ms0-24ms在开始调制前的延迟时间

Karaoke Echo 1 卡拉OK效果

参数数值范围说明

Dly L220ms0.1-332ms左声道延迟时间

FB.Gain L+40%-99--+99%左声道处理后的信号返回的增益

Dly R223ms0.1-332ms右声道延迟时间

FB.Gain R+40%-99--+99%右声道处理后的信号返回的增益

High Ratio0.40.1-1反馈的调频衰减率

Karaoke Echo 2 卡拉OK效果

参数数值范围说明

Dly L220ms0.1-332ms左声道延迟时间

FB.Gain L+44%-99--+99%左声道处理后的信号返回的增益

Dly R180ms0.1-332ms右声道延迟时间

FB.Gain R-55%-99--+99%右声道处理后的信号返回的增益

High Ratio0.20.1-1反馈的调频衰减率

ST.Pitch Change 两部分的立体声音高变化器,有独立的声像参数

参数数值范围说明

Pitch0-12--+12音高粗调

Fine 1+10-50--+50变化器1的音高微调

Fine 2-10-50--+50变化器2的音高微调

Out.Lvl 1+100-100--+100变化器1的输出音量

Out.Lvl 2+100-100--+100变化器2的输出音量

Pan 1L100L100--R100变化器1的声像

Pan 2R100L100--R100变化器2的声像

FB.Gain 1+28%-99--+99%处理后的信号返回变化器1的增益

FB.Gain 2-28%-99--+99%处理后的信号返回变化器2的增益

FB.Dly25ms0.1-223ms在开始反馈前的延迟时间

“MALE

VOCAL”男性声音,强调中低音G+3db+1db+2db

F280Hz1.8KHz5KHz

Q3oct3/4oct坡状

“FEMALE

VOCAL”女性声音,强调高中音G-1db+1db+2db

F220Hz2KHz7KHz

Q坡状3oct3oct

CHROUS人声合唱G+1db+2db+5db

F280Hz1.4KHz5.6KHz

Q3oct3/2oct坡状

“MALE

ANNOUCER”男性讲话,增加清晰度G-3db+2db-4db

F100Hz4.5KHz7KHz

Q1oct3oct坡状

“FEMALE

ANNOUCER”女性讲话,强调中音G-3db+3db-1db

F200Hz2KHz8KHz

Q坡状1oct坡状

“TELEPHONE

VOICE”模拟电话声,减少高低音G-15db+12db-10db

F500Hz1.1KHz9KHz

Q坡状2oct3/4oct

“NOTCH

4KHz”在4Hz处滤波以减少反馈啸叫G0db0db-10db

F80Hz2KHz4KHz

Q坡状3/2oct1/6oct

“HUM

REDUCE

50Hz”在50Hz处滤波以减少嗡嗡声G-9db-10db0db

F50Hz160Hz10KHz

Q1/6oct1/6oct坡状

“HUM

REDUCE

60Hz”在60Hz处滤波以减少嗡嗡声G-9db-10db0db

F60Hz180Hz10KHz

Q1/6oct1/6oct坡状

“W.NOISE

REDUCE”为磁带放音减少高频噪音G0db0db-13db

F80Hz2KHz16KHz

Q坡状3/2oct坡状

篇2:混响是什么_如何控制混响

声波在室内传播时,要被墙壁、天花板、地板等障碍物反射,每反射一次都要被障碍物吸收一些。这样,当声源停止发声后,声波在室内要经过多次反射和吸收,最后才消失,我们就感觉到声源停止发声后声音还继续一段时间。这种现象叫做混响。混响的第一个声音也就是直达声(Directsound),也就是源声音,在效果器里叫做 dry out (干声输出),随后的几个明显的相隔比较开的声音叫做“早反射声”(Earlyreflectedsounds),它们都是只经过几次反射就到达了的声音,声音比较大,比较明显,它们特别能够反映空间中的源声音、耳朵及墙壁之间的距离关系。

篇3:混响是什么_如何控制混响

抛砖引玉,之前因为有合作的活儿,所以上到好莱坞大师下到国内的前辈高人的工程都拆解过,这个答案的方式不会距离一线很远,或者说本身就是一线最常见的工作方式。

在使用混响器的从始至终贯穿着几个逻辑,我需要什么样的声音,我需要什么样的空间,我的设计是否能被感知到,他可以分解成什么样的混响元素。

变化的单混响模式

最传统的思维,理念上是基于统一的空间,但是往往一个效果器预置并不能满足。单混响往往会搭配DELAY来构建空间,DELAY或者与混响串联或者并联。 也可以搭配很多的DELAY。比如十六分音符的3D DELAY,或者32分音符的3D DELAY,往往是作为构建早期反射和声音体积来添加。或者2拍或者4拍的DELAY用来增加宽度于持续感,而本身混响也可以有很多的玩法,混向后添加均 衡器来更好的控制混响的频响,或者将一个混响套用到另一个混响中(串联),一个提供早期反射和RT15一类的部分,而另一个混响则是“混响进入混响”的很 发散的混响尾音。但是原则是是你知道你需要什么,而又足够的效果器功底来改造一个作为基本素材的单一混响。

采样混响在单混响模式中非常常见,粗略介绍一下。

采样卷积――这是很时兴的一种玩法,采样卷积简单说是采样的混响脉冲曲线。他可以很容易的构建一个与原始厅堂类似的反 射类型,由于所有的反射方式全部是实地采样而成的混响脉冲曲线,但是采样混响并不能很好的解决参数问题,就是当你调整参数的时候,原本的IR脉冲被扭曲变 形,往往这样做得不偿失。我很喜欢使用IR混响作为环境混响或者特效,但是作为音乐制作中,我总习惯使用可调性更高的算法混响,可能世界上使用最多的混响 厂牌是TC与lexicon都是算法混响也是有一定道理的吧。同时,采样混响往往会比算法混响占据更多的系统资源和更高的延迟,比如天杀的缺心眼的PRO TOOLS HD的延迟补偿,最多只提供4000多个采样点的补偿,我的发送轨使用一个采样混响再加上一个串联的均衡器就直接超出了延迟补偿范围,于是一片混乱……

我用waves的IR 采样卷积混响作为例子,看看混响脉冲是如何采集的。

这个采样来自悉尼歌剧院

使用了左中右三只音箱来播放信号源

使用了三种mic制式来采集,分别是Neumann SKM-140 (ORTF),Soundfield SPS-422B 以及仿真人头Neumann KU-100 dummy head 如下图

以上就是一个悉尼歌剧院的音乐厅采样,听上去也是那样的,但是舞台上的点是无数多的,而每一个特定位置的发声都会造成反射建立的不同,而厅堂采样不可能考虑所有的可能性,所以作为采样混响只能是像,而不可能是。

多混响模式

这会是一个庞杂的课程,我会顺便介绍一些常见的混响特性。如果我们百无禁忌的使用混响,那么我可以用ROOM来提供整齐的早期反射,用来造成距离感与特定 的空间感。我们的HALL可以作为主混响提供统一的空间,同样看,短PLATE给我们带来了没有空间感的早期反射,而长的则带来了华丽的扩散度色彩,门混 响让我们的军鼓体积膨胀,弹簧混响却有他独有的时代感。DELAY?就像上边说的,没有任何限制。我也可以不使用那么多的混响,有的时候混电子舞曲,我只 是用各种DELAY,而如果是一个很纷杂的大编制乐队我可能会用的混响种类很多。拆过的工程从几个到十几个到二十几个混响的都有,所以其实当你需要某个元 素来构建你的想法就去做,没什么不可以的。

顺手介绍几种复古音乐上常用的比较特色的混响

弹簧混响:一根简单的弹簧也可以用来产生混响信号。施加给弹簧的声波会走过弹簧长度的路程。沿着弹簧行进的声波在到达 弹簧某段或者遇到任何阻抗变化时,声波就会沿着刚才走过的路程反射回来。这样,声波在弹簧内部来回反弹,声波的能量会转化为热能,通过摩擦消耗掉。将一些 长度,粗细不同的弹簧组合起来形成一个网络,那么反射模式就可以更加复杂。弹簧混响的声音很独特,但是混响时间比真实的混响空间要短很多,当然也会出现一 些缺点:频响有限,不能满足音频带宽的要求;即使是多弹簧系统的拾音系统的反射声数量也非常有限,无法很好的模拟真实空间中几乎无限的反射声;具有强烈的 声染色现象;反射声密度的建立无法像真实空间那样随时间成倍增长,但是弹簧混响相对简单的反射声体系统治了很长一段时间的吉他领域。所以需要复古的吉他声 音吗,弹簧混响往往会给你一个绝对有时代性的声音。我记得Amy Winehouse的音乐制作中就曾经通过reamp(将录制完成的吉他信号二次经过音箱)技术,对吉他施加了FENDER最自豪的弹簧混响效果。时代感 的声音就此来临。

PLATE(板式混响): 弹簧混响的缺点可以通过用金属板代替弹簧得到改善,板式混响是个用的很多讲得很少的混响,其实是很有用处的,我们先讲讲PLATE的历史,最早板式混响是 使用金属板进行早期反射来在反射轴向上设置混响声MIC建立的,多用于军鼓。这类反射早期反射密集,而且尤其的高频华丽突出,因为金属板对高频的反射好, 而在空气中损失的高频也少。后来做成了板式混响机器,利用在一个框架内固定在四角上的弹簧或夹子将一块薄的金属板拉伸。使用与扬声器的音圈部分类似的“换 能器”将音频信号(声音信号)变为振动,传导到板内或传导到固定于板表面的两个或两个以上拾音器中,拾取振动,再将它们发送到与控制台效果返回相连接的放 大器中,将声音发送到左右两个通道中,立体声混响就产生了。金属板对外界的声音和震动非常敏感,所以需要把它放在一个隔音盒或防震支架上。由于声音在金属 中的传播速度要比在空气中快的多,所以板内部的反射密度在一个脉冲之后很快就建立起来了。从输入换能器发出的声音很快就会沿着板的表面向各个方向传播,直 到板的边缘,然后经过反射和再次反射回到金属板上。然而这类金属板混响还可以使用阻尼来控制其衰减时间,可以塑造建立快,高频响应好,衰减速率可变,早期 反射密集平滑而且不具备特定空间感的色彩混响,因此被广为使用。

我们通常使用板式混响很多时候是在修饰音色,而这其中也有章可循。

作为板式混响最特殊的地方在于不具备房间特性的反射方式,我们如果需要声音拥有更大的体积以及包围感,使用ROOM混响会让声音有太过明确的房间感,从而 缺少美感,但是早期反射建立超快的短PLATE可以帮助我们模仿厅堂中特殊的云板反射和侧墙反射这类来的快具有包围感而又不存在特定房间感的声音。同时也 有助于和一个又长密度又很大的hall混响衔接。同样,长PLATE就像化妆品一样,他特殊的高频延展性会让声音有更多的活力。歌手往往很喜欢(个人意见 一定要适度,虽然歌手往往喜欢PLATE加的高频满天飞)而如果你要塑造一个圣洁的空间,一个6~8S的PLATE会给一个采样的教堂混响带来更多的迷幻 色彩。当你了解了特性的时候,使用只是发散思维的事情,所以用法上其实是百无禁忌。只要对音乐有帮助,那么没有什么是错的。

ROOM(房间混响):这种混响的早期反射层密集清晰并且有典型的房间空间特性。在混音中往往被用来摆层次,发送典型 的中小型房间的ROOM混响可以有效的增加距离感,就是把声音往后推,ROOM同样也是对音色美化最少的混响,但可以左右声音的清晰度及亲切感。但是在历 史上有一种ROOM是如此的深入人心,声音也是如此的迷人,那个声音叫做鼓房。

那是在想当初,一个没有混响器,连磁带DELAY都是新锐手段的时代,如何体现鼓的纵深与空间感?答案只有一个―真―实空间,鼓房应运而生,往往鼓房不是 一个非常大的房间,但是拥有更多的反射,可以提供抱团的房间感,把鼓组各个声音糅合到一起,同时更多的反射声让我们感觉到了鼓体积的膨胀感,而这种声音也近似于在那个不列颠入侵时代的CLUB里边的声音,房间声有的时候并没有那么讨厌,她有自己的韵味,他是一种独特的STYLE.

门混响: 门混响对声音的处理是严重违反室内声学规律的。混响声先进入压缩器,然后再进入噪音门,得到的结果是非常激进地改变了混响的衰减,得到一种突然的且具有两 种斜率的衰减特性。以军鼓为例,将混响加入军鼓信号,再将混响信号送进压缩器,压缩器的作用是对混响声较强的部分进行衰减处理,较弱的部分进行提升处理, 使军鼓的混响信号的频响曲线拉平,可感知的混响时间变长,然后噪音门切除某些混响尾音,使混响时间变短。这样的处理,使得军鼓的每一次敲击都会出现短促 的,突发的混响,但会使军鼓的音色更紧凑,振奋,而且每一次军鼓的敲击都会感觉得到了拉伸,使得军鼓声更容易被听到。同时,这还补充了一部分近似鼓腔的声 音,如果素材只有鼓皮的声音,而你却想要一个传统的胖头胖脑的鼓声,那么门混响可能可以帮到你。

[混响是什么_如何控制混响]

篇4:混响是什么_混响的要求

混响是什么_混响的要求

混响是什么

(reverberation)混响时间的长短是音乐厅、剧院、礼堂等建筑物的重要声学特性。声波遇到障碍会反射,所以我们这个世界充满了混响。

混响的要求

声波在室内传播时,要被墙壁、天花板、地板等障碍物反射,每反射一次都要被障碍物吸收一些。这样,当声源停止发声后,声波在室内要经过多次反射和吸收,最后才消失,我们就感觉到声源停止发声后还有若干个声波混合持续一段时间。这种现象叫做混响,这段时间叫做混响时间。

对讲演厅来说,混响时间不能太长.我们平时讲话,每秒钟大约发出2~3个单字,假定发出两个单字“物理”,设想混响时间是3秒,那么,在发出“物”字的声音之后,虽然声强逐渐减弱,但还要持续一段时间(3秒),在发出“理”字的声音的时刻,“物”字的声强还相当大。因而两个单字的声音混在一起,什么也听不清楚了。但是,混响时间也不能太短,太短则响度不够,也听不清楚。因此需要选择一个最佳混响时间.北京科学会堂有一个学术报告厅,混响时间为1秒。

不同用途的厅堂,最佳混响时间也不相同,一般来说,音乐厅和剧场的最佳混响时间比讲演厅要长些,而且因情况不同而不同。轻音乐要求节奏鲜明,混响时间要短些,交响乐的混响时间可以长些。难于听懂的剧种如昆曲之类,混响时间一长,就更难于听懂.节奏较慢而偏于抒情的剧种,混响时间则可以长些。总之,要有一定的、恰当的混响时间,才能把演奏和演唱的感情色彩表现出来,收到应有的艺术效果。北京“首都剧场”的混响时间,坐满观众时为1.36秒,空的时候是3.3秒。这是因为满座时,吸收声音的物体多了,所以混响时间缩短,上面所说的最佳混响时间是指满座时的混响时间。高级的音乐厅或剧场,为了满足不同的要求,需要人工调节混响时间.其中一种办法是改变厅堂的吸声情况。在厅堂内安装一组可以转动的圆柱体,柱面的一半是反射面,反射强、吸收少;另一半是吸声面,反射弱、吸收多.把反射面转到厅堂的内表面,混响时间就变长;反之,把吸收面转到厅堂的内表面,混响时间就变短。

高水平的音乐会都不使用扩音设备,为的是使听众直接听到舞台上的声音.为了让全场听众都能听到较强的声音,音乐厅的天花板上挂着许多反射板,这些反射板的大小、形状、安放位置和角度都经过精确设计,以便把舞台上的声音反射到音乐厅的各个角落。

处理好不同建筑物的声响效果,取得好的音质,这是一门很重要的学问,叫做建筑声学。上面介绍的混响只是其中的一个方面,希望能引起同学们对声学的兴趣,钻研这门与我们生活关系密切的科学。

拓展阅读:录音中的混响

真实世界中的混响

在这个世界中,是否存在没有混响的地方呢?有!你坐上飞机,飞到一万米高空,然后往下跳,这时你大喊大叫,就是没有混响的,因为你在空中,周围没有任何障碍物,你的声音将会无限扩散出去而不会被反射回来。所以就没有混响。

另一个没有混响的地方就是声学实验室。声学实验室的墙壁、天花板、地面是经过特殊处理的,声音到达墙壁后将会被墙壁吸收而不会被反射回来。为什么会被吸收?你可以做一个小实验,找100根针,就是缝衣服的针,把它们捆在一起,弄齐,然后你可以看看这一捆针的针头面,你会发现它是黑的,因为光线到达这一面后,经过多次反射,一直射到里面去,出不来,所以就没有光被反射出来,就好像光都被吸收了一样。声学实验室的布置也是类似于此,把声音吸收。

录音棚是半个声学实验室,能做到吸收大部份的混响。录音棚的墙壁排列都是不规则的,表面是用松软的棉制品构成,虽然比不上那捆针头,但声音到达墙壁后进入那乱糟糟的棉花里,七反射八反射就留在棉花里出不去了,所以录音棚里的混响也很小。

在一个房间里大吼一声,会有多少反射声,答案是无数。

在这个房间里,你拍一下巴掌,得到的声音是另一个样子

是不是很多?这其实是比较简单的一个反射过程。如果这个房间里再摆上一些桌子椅子, 反射会更加复杂。

闭上眼睛,大吼一声,你就可以知道你大概处在一个什么样的环境中,在外面,还是在家里。甚至你在家里大吼一声,就可以知道你在哪个房间里,在这个房间的哪个位置上。这是因为各个房间由于空间大小不一样、家具的摆放不同、墙壁的材料不同,所以具有各自不同的混响特征;同一个房间里不同的位置上,由于你距离墙壁的远近不同,所以也具有不同的混响特征。你熟悉这些特征,所以你就能光凭声音就能分辨你在什么位置上。

一个看起来很菜鸟的问题:为什么录音和混音要加混响?

为什么录音和混音要加混响?答:因为录音时是没有混响的。

为什么录音时是没有混响的?答:因为录音棚是无混响的。

为什么录音棚是无混响的?

其实专业的录音棚是有混响的,他们有很多板状的材料,可以灵活把房间改造成各种混响特征。但随着数字录音技术的飞速发展,数字混响效果器能够模拟真实情况下的混响,所以大家就干脆把录音棚弄成无混响的,录完音后再用效果器来模拟混响效果,想要什么混响就有什么混响……这就是为什么录音棚,尤其是中小录音棚和个人工作室,都做成无混响的原因。

人造混响原理

在这样一个房间里,教师的声音经过多次反射,假如有5条声音反射线到达学生耳朵,

以上只列举出了 5 条声音反射路线,实际上是几千几万条到无数条。为了讲解方便,我们就说这 5 条。

教师每讲一句话,学生实际上就听到了 6 句:第一句是直接传到了学生的耳朵里,没有经过反射,后面 5 句是经过各种反射线路到达学生耳朵的声音。这 6 句话时间隔得非常近,图中声音到达有时间表,注意时间单位是毫秒(1 毫秒等于 0.001 秒)。

由于这些反射声到达的时间间隔太近了,所以学生就听不出来是 6 句话,而是 1 句带有混响感觉的话。

学生听到的声音是这 6 个声音的叠加。

这只是为了讲解方便,真实情况是几千几万个声音的叠加。

混响效果器就是这样工作,把声音进行很多很多次的重复叠加,就得到了混响效果。

有了这样一个东西,以后计算起来就方便了,无论教师说什么话,只要把教师的声音,进行某种计算,就可以得到 6 个声音叠加的效果。

那么,这个“某种”计算,到底是什么计算呢?在数学中这个叫做“卷积”计算,英文是“convolution”,就是把教师的声音,根据上面那张 6 个脉冲的图,进行叠加计算。

这种计算是不分先后的,你既可以认为是把教师的声音,根据那个脉冲图(声波),进行叠加计算;也可以认为是把那个脉冲声波,根据教师的声音(把教师的声音考虑成由无数个脉冲组成的声波),进行叠加计算。

这个脉冲图,也就是这个含有 6 个脉冲的声波,就是这个房间的从教师讲台到学生座位的混响特征。在声学上,由于这个混响特征是由脉冲得到的,所以就很形象把它称作“脉冲反应”―― impulse response ,简称 IR。

混响效果器的工作原理,就是拿源声音,与 impulse response 做卷积计算。

上面的那个具有 6 个脉冲的 IR ,在现实中是不可能有的。现实中的 IR 往往具有几百、几千、几万个脉冲。

由于各种类型的房间的 IR 都有一些共同的特点,因此声学上又作了一些规定。

首先规定 IR 的第一个脉冲叫做“直达声”,因为这个脉冲是未经过反射的直接从声音源到达人耳的声音;

其次规定 IR 的后面几条明显的脉冲叫做“早期反射”early reflections,这几个声音都是声音源经过一次或者两三次反射后到达人耳的,由于反射次数少,声音线路不长,所以具有较强的能量和较短的延迟。

最后规定 IR 的后面无数条脉冲叫做“迟反射”late reflections,这些声音都是声音源经过无数次反射后才到达人耳,反射次数多,声音线路长,所以具有较弱的能量和较长的延迟。但是它们数量极多,有如滔滔江水连绵不绝。

效果器里的 IR

上一节说道,混响效果器就是用 IR 与声音源进行卷积计算。那么,有人就会问了,混响效果器里有 IR 吗?每个效果器的 IR 都是一样的吗?这个 IR 是放在哪里的?以什么形式存在?如果不一样,这些 IR 是怎么得来的?

前面说了,混响就是 IR 与声音源进行卷积计算,所以混响效果器里当然就有 IR。

众所周知,不同的效果器的混响效果是不同的,所以 IR 肯定不一样。

IR 放在哪里?以什么形式存在?这些 IR 是怎么得来的?下面要具体说说了。

混响效果器,象合成器一样分为三种类型:采样混响、“算法”混响、模拟合成混响。

(一)采样 IR 混响

Sony ,Yamaha 都出过采样混响,价格不菲。软件的采样混响效果器有著名的 Sonic Foundry 的 Acoustic Mirror ,还有 Samplitude 的 Room Simulator。

采样混响的 IR ,全部是真实采样得来 wave 文件。可以存放于任何存储器,例如硬盘、光盘、软盘等等。Sony ,Yamaha 的硬件采样混响器,里面也带有容量较大的存储器。

采样混响的 IR 都是录音采样得来,最简单的获取 IR 的方式是:在下图中教师的位置放置一个音箱,学生的位置放置一个话筒。音箱播放一个脉冲,话筒进行录音。录到的声音就是 IR ,也就是这个房间的从讲台到学生座位的混响特征曲线。

Sony 、Samplitude 等所采用的具体方式是:

在想要获得混响特征的地方,例如下面这个著名的音乐厅,舞台上安置音箱(当然会是极好的音箱),座位席中安置立体声话筒(极好的话筒)。然后播放一系列测试信号,这些信号以脉冲为主,各种速度的全频段正弦波连续扫描为辅,录得声音,然后经过一些计算得到 IR。

用这种采样方法得到的 IR ,极为真实。

采样混响的 IR ,不但厂家可以预置给你,你自己也可以根据厂家提供的工具进行制作。因此从数量上来说是无限的。

采样混响还可以对其他任何混响效果器的效果进行完全复制。

混响特征和各种参数

为了研究的方便,声学上把混响分为几个部份,规定了一些习惯用语。混响的第一个声音也就是直达声(Directsound),也就是源声音,在效果器里叫做 dry out (干声输出),随后的几个明显的相隔比较开的声音叫做“早期反射声”(Earlyreflectedsounds),它们都是只经过几次反射就到达了的声音,声音比较大,比较明显,它们特别能够反映空间中的源声音、耳朵及墙壁之间的距离关系。后面的一堆连绵不绝的声音叫做 reverberation。

大多数的混响效果器会有一些参数选项给你调节,接下来讲讲这些参数具体是什么意思。

(一)衰减时间(Decay time)

也就是整个混响的总长度。不同的环境会有不同的长度,有以下几个特点:

空间越大,decay 越长,反之越短。空间越空旷,decay 越长,反之越短。空间中家具或别的物体(比如柱子之类)越少,decay 越长;反之越短。空间表面越光滑平整,decay 越长,反之越短。

因此,大厅的混响比办公室的混响长;无家具的房间的混响比有家具的房间长;荒山山谷的混响比森林山谷的混响长;水泥墙壁的空间的混响比布制墙壁的空间的混响长 ……

一般很多人喜欢把混响时间设得很长。其实真正的一些剧院、音乐厅的混响时间并没有我们想象得那么长。例如波士顿音乐厅的混响时间是 1.8 秒,纽约卡内基音乐厅是 1.7 秒,维也纳音乐厅是 2.05 秒。

这里给一个混响时间计算公式,大家可以用来算算某房间的混响时间 打开页面

(二)前反射的延迟时间(Predelay)

就是直达声与前反射声的时间距离。有以下几个特点:

空间越大,Predelay 越长;反之越短 空间越宽广,Predelay 越长;反之越短

因此,大厅的 Predelay 比办公室的长;而隧道的空间虽然大,但是它很窄,所以 Predelay 就很短。

想要表现很宽大空旷的空间,就把 Predelay 设大一点。

(三)wet out

也就是混响效果声的大小。有以下几个特点:

wetout 与空间大小无关,而只与空间内杂物的多少以及墙壁及物体的材质有关 墙壁及室内物体的表面材质越松软,wet out 越小;反之越大空间内物体越多,wet out 越小;反之越大 墙壁越不光滑,wet out 越小,反之越大 墙壁上越多坑坑凹凹,wet out越小,反之越大

因此,挤满了人的车厢的混响就比空车要小得多;放满了家具的房间的混响就比空房间要小;有地毯的房间的混响比无地毯的小;森林山谷的混响比荒山山谷的混响要小

(四)高低频截止(low cut / high cut)

这个参数在有些效果器里是以 EQ 的形式来表现的,例如 Waves 的 RVerb。

这项内容实际上跟现实情况没有太直接的联系,它只是为了我们做混响处理时声音好听而设计的。不过它也能表现高频声音在传播中损失比较厉害的现象。后面我们有具体的解释。

一般在做处理的时候,为了混响声的清晰和温暖,都会把低频和高频去掉一部份。只有在表现一些诸如“宇宙声”等科幻环境时,才把高低频保留。

另外有些效果器也把这个叫做“color”(色彩)。例如 TC 的效果器就是 color。color也就是“冷”和“暖”的感觉,高频就是冷,低频就是暖。所以这些效果器用颜色来表示高低频截止,暖色(红)表示混响声偏向低频,冷色(蓝)表示混响声偏向高频。上面给大家看的 Waves 的 RVerb 的 EQ ,它分别用橙色和蓝绿色来做那两个点,也是出于此目的。

补充:

高低频截止实际上在现实中是不存在的,现实中的普遍现象是:低频声音的混响无论是声音大小还是衰减时间,都要比高频声音大。这是因为不同频率的声音由于波长不同,因此绕过障碍的能力不同,高频声音波长短,不容易绕过障碍,低频声音波长长,容易绕过障碍。加上它们在空气中传播时的衰弱程度不同(频率越高越容易衰弱),被墙壁吸收的程度不同(频率越高越容易损失),所以不同频率的声音的混响时间和大小是不相同的。在真实世界中,在大多数中小空间里,越低的声音具有越长的混响时间,越高的声音具有越短的混响时间,而不可能做到反过来。如何做到降低低频混响是任何一个录音棚头疼的难题。唯独有一种情况,是低频混响小于高频混响的,那就是很大的空间,并且里面布满了由硬质材料制成的障碍和表面,比如采用硬塑料凳子和水泥墙壁地板的室内体育馆。

我们从某音乐厅的真实 IR 的频谱中可以很清楚地看到这个规律。

因此,有的混响效果器还会有不同频率的声音的衰弱程度的设置项目。但是也有很多效果器却没有这项内容。

(五)不同频率的不同衰弱程度(Damp)

接着上面说。这个项目在有些混响效果器里没有提供。另外在采样混响器里也基本上不提供这个项目,因为采样混响的不同频率的不同衰减程度的特性已经包含在 IR 里面了。例如 Waves RVerb 提供了这个项目。另外有的效果器只有一个参数设置,就是“damp”或者“damping”,就是让高频更快地衰减。8zo Uw$iF-一般来说混响中的高频是很容易大幅度衰减的。空间越大,空间内物体越多,物体和墙壁表面越不光滑,高频的衰减就越厉害。只有在中小空间中,并且空间表面比较光滑的情况下,高频的衰减才与低频接近。但我们做音乐混音的时候,有时为了声音的好听,也并不一定要遵循高频更容易衰弱的自然规律。

(六)不同频率的不同的混响时间

有的效果器也提供了不同的衰减时间给你调节,英文是 High-frequency decay and low-frequency decay ,或者别的叫法,例如 Ultrafunk Reverb 就可以设置不同的衰减时间。这个特性与前面的 damp 基本一致。一般来说混响中的高频的持续时间肯定比低频要短。空间越大,空间内物体越多,物体和墙壁表面越不光滑,高频的持续时间就短,与低频的差距就越大。只有在中小空间中,并且空间表面比较光滑的情况下,高频的时间才与低频接近。以上的三个与频率有关的参数,并不是所有的效果器都提供,有的全部提供,有的提供了其中两个甚至一个。如果没有全部提供的话,你可以用其他参数之一来代替没有提供的参数,因为它们之间的特性比较接近。

(七)散射度(diffusion)

传统上是叫做 Early reflections diffusion(早反射的散射度)。我们知道早反射就是一组比较明显的反射声。这些反射声的相互接近程度,就是 diffusion。墙壁越不光滑(例如铺上了地毯的),声音的散射度就越大,反射声越多,相互之间越接近,混响是连声一片的,声音很温和;墙壁越光滑(例如玻璃),声音的散射度就越小,反射声越少,相互之间隔得越开,混响声听起来就比较接近回声了,声音很清晰。因此,对于一些延音类的声音,比如 organ ,合成弦乐,可以使用较小的 diffusion ,声音就比较漂亮清楚;对于脉冲类的声音,比如打击乐、木琴等,可以使用较大的 diffusion ,混响就比较 smooth。有些效果器里也有 diffusion 这个参数,但是具体的定义不太一样。在某些效果器里,diffusion 是指反射声的无规律程度,空间的形状越不规则(例如山洞、教堂里),墙壁越不光滑,反射声音的出现越没有规律,diffusion 越大;空间的形状越规则(例如无家具的住宅、空的教室),墙壁越光滑,反射声的出现越有规律,diffusion 越小。

(八)混响密度(Reverb density)

这个参数的意思跟 diffusion 差不多,只是针对早反射之后的混响部份的。很多效果器并不提供 density ,而是用 diffusion 来控制整个混响。

(九)空间大小(Room size)

这个应该很好理解,空间可以体现出声场的宽度和纵深度。不过不同的效果器在这个上面会有不同的算法。另外,采样混响器不会提供这个参数,因为空间大小已经体现在 IR 中了。

(十)早反射音量(Early reflections level)

也就是早反射的声音大小。很多效果器可以让你独立调节早反射和后面的混响的声音大小。

(十一)立体声宽度(Width)

有的混响效果器有这样的参数,如果把这个值设大,那么效果器会做手脚使 IR 的左右差异变得很大,立体声感觉就出来了。

[混响是什么_混响的要求]

篇5:浅底远程海底混响

浅底远程海底混响

The method of coupled mode is introduced for investigation of bi-static distant bottom reverberation of impulsive source in shallow water, which will not contradict with principle of reciprocity in all cases. And the method of multi-pole for directional source is also introduced. It shows that in case of layered medium, intensity of bi-static bottom reverberation will decease according to the cubic power of receiving time t, and the transverse spatial correlation of bottom reverberation is a little greater than longitudinal correlation for equal separation of receivers, and both vary in form with the receiving time.

作 者:杨士莪 Shi-e Yang  作者单位: 刊 名:船舶与海洋工程学报(英文版) 英文刊名:JOURNAL OF MARINE SCIENCE AND APPLICATION 年,卷(期):2010 9(1) 分类号:U6 关键词:shallow water   bi-static bottom reverberation   spatial correlation of reverberation  

【Cool Edit混响参数】相关文章:

1.电脑显卡参数介绍

2.诺基亚N79参数配置

3.Excel函数应用:函数的参数

4.Android 代码中设置Color参数

5.运输机总体参数和性能统计分析

6.磁性薄膜电磁参数测试技术

7.系杆拱桥设计参数讨论

8.BERNESE光压模型参数的统计分析

9.《直线的参数方程》教学反思

10.UNIX系统开发gcc参数详解Windows系统

下载word文档
《Cool Edit混响参数.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部