欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上)

2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上)

2024-01-20 08:46:24 收藏本文 下载本文

“琳奇育”通过精心收集,向本站投稿了4篇2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上),以下是小编为大家整理后的2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上),希望能够帮助到大家。

2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上)

篇1:(2.3从“买布问题”说起---一元一次方程的讨论(三)新人教七上)

2.3从“买布问题”说起---一元一次方程的讨论(2)(三)

【教学目标】1.会去分母,并通过去分母了解化归思想;2.让学生了解数学的渊源及辉煌的历史,激发学生的学习热情;3.熟练掌握一元一次方程的解法;4.培养学生的建模能力及创新能力.【对话探索设计】〖探索1〗p90问题中的方程怎么解?(1)解方程 教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯. +++x=33时,如果先合并,得到方程______________________,把系数化为1,就得到方程的解_____________.(2)解方程+++x=33时,如果先去分母,方程的两边同乘___________,就得到方程_________________;再合并,得到方程___________;把系数化为1,就得到方程的解________.(3)比较上面两种解法,你能得出什么结论?〖探索2〗解方程4-=13时,如果不先去分母怎么解?如果先去分母呢?试比较两种解法.  〖归纳〗有的方程中有些系数是分数,如果化去分母把系数化为整数,一般可以使解方程中的计算简便.〖探索3〗解方程(y+1)+(y+2)=3-(y+3)时,一般要先去分母,你知道方程的两边应该同乘一个什么样的数吗?〖探索4〗可以看作是3÷7;类似地, 可以看作是________;可以看作是_________.〖探索5〗解方程-2=-时,正确的做法是两边同乘方程中各分母的最小公倍数20,去分母得5(3x+1)-40=2(3x-2)-4(2x+3).议一议,所得方程中有三处用了括号,这是为什么?不用括号行吗?请继续解这个方程.〖探索6〗小英同学解方程-=1时,去分母,把原方程化为:2x-1-x+2=1.你能指出它犯了哪两个错误吗?你能帮她改过来吗?〖探索7〗学了”去分母”以后,民辉同学在计算时,把分母去掉得3+2=5.对吗?〖归纳〗1.方程去分母的两个要点.2.一元一次方程解法的一般步骤.〖例题学习〗    p91.例4〖练习〗p92.练习(1)〖作业〗p92.练习(2),p93.习题3(1),(2).〖补充练习〗a、b两地相距15千米,甲步行从a出发去b,2小时后乙骑自行车也从a出发去b,两人同时到达b地.回来时,甲、乙两人同时出发,甲仍步行,乙仍骑自行车,乙回到a地时,甲离a地还有10千米.求甲步行,乙骑自行车的速度.

篇2:2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上)

2.3从“买布问题”说起---一元一次方程的讨论(2)(四)【教学目标】1.熟练掌握一元一次方程的解法;2.进一步感受列方程的一般思路;3.进一步培养学生的建模能力及创新能力.4.通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程.【对话探索设计】〖探索1〗一项工程,甲要做12天才能做完.如果把总工作量看作1,那么,根据工作效率=________÷________,得甲一天的工作量(工作效率)为________.他做3天的工作量是__________.〖探索2〗一项工程,甲单独做要6天,乙单独做要3天,两人合做要几天?(1)你能估算出答案吗?(2)试一试,怎样用直线型示意图寻求答案:如图,线段ab表示总工作量1,怎样在线段ab上分别表示甲、乙一天的工作量?通过示意图,能够很直观地看出答案吗?如图,用整个圆的面积表示全部工作量1,怎样用扇形的面积分别表示甲、乙两人一天的工作量? 通过示意图,能够很直观地看出答案吗?与直线型示意图相比,你更乐意用哪一种图形分析?〖探索3〗一项工程,甲单独做要12天,乙单独做要18天,两人合做要几天?解:把总工作量看作1,那么,根据工作效率=________÷________,得甲一天的工作量(工作效率)为______;乙一天的工作量为______;设两人合做要x天,那么,甲的总工作量为________;乙的总工作量为________;这工作由两个人完成,根据两人完成的工作量之和等于1,可列方程:_____________________.解这个方程得________________.答:_____________________.把这道题的解法与小学时的算术解法进行比较,你有什么发现?〖探索4〗整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作? (p92例5)  解:把总工作量看作1,那么,根据工作效率=________÷________,得人均效率(一个人1小时的工作量)为________.设先安排x人工作4小时, 那么,这x个人4小时的工作量为_______________(可化简为_________).显然,再增加2人后,参加工作的人数为x+2,这(x+2)个人工作8小时的工作量为___________________(可化简为_________).这工作分两段完成,根据两段完成的工作量等于1可列方程:________________________.解得_______.答:_________________.想一想:如果不是把总工作量看作是1,而是把一个人一小时的工作量看作是1,该如何解这道题?比较两种解法,你有什么感受?教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯.〖作业〗p93.习题3(3),(4);p94,8,9

篇3:2.2从古老的代数书说起---一元一次方程的讨论(新人教七上)

2.2从古老的代数书说起---一元一次方程的讨论(2)

【教学目标】1.进一步经历运用方程解决实际问题的过程,初步体会方程是刻画现实世界的有效数学模型;2.学会合并(同类项)及移项,会解“ax+bx=c”及“ax+b=cx+d”类型的一元一次方程;3.初步体会一元一次方程的应用价值,感受数学文化;4.理解解方程的目标,体会解法中蕴涵的化归思想.〖探索1〗等式一边的项可以移到等式的另一边吗?例如:3+5=8这是一个等式.把左边的一项“3”移到右边,得到什么式子?这时等式成立吗?如果把“3”变号后移到的另一边呢?换一个等式-6-7=-13试一试.任写一个等式再试一试.〖探索2〗(1)方程x+3=-1的解是多少?(1)把方程x+3=-1中左边的常数项”3”移到右边,就得到方程x=-1+3.所得的方程的解与原方程的解一样吗?〖探索3〗怎样求方程x-7=5的解?有的学生可能还是乐意用算术解法,教师要有足够的耐心.甲的解法是:这是一个表示减法运算的式子,x是被减数,7是减数,5是差.所以有x=5+7(理由是_______________________),于是x=12.乙的解法是:这是一个等式,根据等式的性质1,等式两边________,结果仍相等,把方程的两边都加7,得x-7+7=5+7,于是x=12.丙的解法是:把方程左边的项-7,变号(即变成+7)后移到方程的右边,得x=5+7,于是x=12.议一议,三种解法,你乐意用哪一种?〖归纳〗解方程时,把方程一边的某项变号后移到另一边,这种变形叫移项.注意:移项的要点不在移动,而在于变号. 想一想:移项为什么要变号?移项的根据是什么?〖探索4〗以下各方程的“移项”对不对?为什么?(1)x+5=7,移项得x=7+5;(2)3-x=7,移项得-x=7-3;(3)2x=7x,移项得2x+7x=0;(4)2x=7x-6,移项得2x-7x=-6.〖探索5〗移项的目的是把方程化为ax=b的形式,以下的“移项” 都达不到预期的目的.你认为应该怎样做才对?(1)3x+6=0, 移项得0=-3x-6;(2)3x=5x-7,移项得3x+7=5x;(3)3-x=5x, 移项得3-x-5x=0;(4)3x+20=7x-18, 移项得-7x+18=-3x-20.〖例题学习〗p81.例1〖练习〗p81.练习〖作业〗p84.习题2,3,9〖补充作业〗1.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得到的两位数比原两位数大36.求原两位数.解:设原两位数十位上的数为x ,那么,根据个位上的数是十位上的数的2倍,得个位上的数是________,   则原两位数记为___________.因为对调后所得到的新两位数的十位上的数为______,个位上的数为______,新两位数应记为___________________.根据新两位数比原两位数大36,列方程:_____________________.解这个方程得__________.答:______________________________.2.〖小调查〗今年6月份你家的固定电话的收费是多少?找出发票,看看费用当中具体分为哪几项?

篇4:2.2从古老的代数书说起---一元一次方程的讨论(新人教七上)

2.2从古老的代数书说起---一元一次方程的讨论(3)

【教学目标】1.熟练应用合并(同类项)及移项,解“ax+bx=c”及“ax+b=cx+d”类型的一元一次方程;2.进一步感受如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;3.初步体会一元一次方程的应用价值,感受数学文化.〖练习〗p85.习题9〖探索1〗(1)有一列数,按一定的规律排成1,-3,9,-27,81,-243…,如果其中有一个数是x,那么跟在它后面的两个数依次为______,______.如果其中有一个数是y,那么它前面的哪个数是______,后面的那个数是______.(2)有一列数,按一定的规律排成1,-3,9,-27,81,-243…,其中某三个相邻数的和是567,这三个数各是多少?相信你能自己解决这个问题了!〖例题学习〗p81.例2想一想:如果设这三个相邻数中的第二个数为y,怎么列方程?解是多少?〖探索2〗(1)“全球通”移动电话的计费方法是:月租费50元/月,本地通话费0.40元/分.一个月内,若通话200分,需交费_________元;若通话x分,需交费__________元.(2)李老师5月份“全球通”移动电话消费130元,求通话的时间是多少分. 全球通神州行月租费50元/月0本地通话费0.40元/分0.60元/分〖探索3〗“全球通”和“神州行”两种移动电话的收费方式如表:用“全球通”每月收月租费50元/月,此外根据累计通话时间按0.40元/分加收通话费. 用“神州行”,不收月租费, 根据累计通话时间按0.60元/分收通话费.(1)若一个月内在本地通话100分,按两种计费方式各需交多少元?选择哪一种计费方式比较便宜?通话时间若是300分呢?(2)若累计通话t分,则用“全球通”要收费__________元; 用“神州行”要收费__________元.(3)当本地通话时间是多少分时,两种收费方式的收费一样?(4)你认为在什么条件下选择“神州行”更便宜?(5)请为你的家长在“全球通”和“神州行”两种移动电话的收费方式中选择一种,并说明理由.〖补充作业〗1.国庆节前几天,两家商店的同一种彩电的价格相同. 国庆节两家商店都有降价促销活动.甲商店的这种彩电降价500元,乙商店的这种彩电打9折.若原价是2 000元/台,到哪一家商店买便宜?若原价是20 000元呢?当原价是多少时,降价后的价格仍然相等?2.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问当一年内累计消费多少元时,买卡与不买卡要花一样的钱?什么情况下买卡合算?

【2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上)】相关文章:

1.苏教七上语文文学常识

2.稍复杂方程 第三课时(新人教五上)

下载word文档
《2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

2.3从“买布问题”说起---一元一次方程的讨论(四)(新人教七上)相关文章
最新推荐
猜你喜欢
  • 返回顶部