《组合图形的面积计算》
“吴遵道”通过精心收集,向本站投稿了6篇《组合图形的面积计算》,下面是小编给大家带来《组合图形的面积计算》,一起来阅读吧,希望对您有所帮助。
篇1:组合图形的面积计算
组合图形的面积计算
篇2:组合图形面积的计算
教学内容
教科书第80页的例题,完成例题下面的“做一做”和练习十九的题目.教学目的使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积.教具准备将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上.教学过程一、复习“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab“第二个图形呢?”……学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算二、新课1.教学例题.教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的.在实际生活中有时需要计算这些组合图形的面积.例如有些房子侧面墙的形状是这样的,出示小黑板,如:“这个图形的面积我们过去学过吗?”再让学生仔细观察一下.“我们虽然没有学过计算这个图形面积的公式,可是能不能把这个图形分成几个我们已经学过的图形呢?”“怎样分?”指名学生到黑板前画一画.教师标出相关尺寸.“现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?”让学生看教科书第80页上的例题,把书上的算式填完全.教师:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、三角形、平行四边形或是梯形组合而成的.计算这些图形的面积,一般是先把它分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求出整个组合图形的面积.2.做例题下面“做一做”中的题目.先让学生读题.“这块菜地可以看成是由哪些图形组合而成?”让每个学生在练习本上列式计算.做完后,集体核对.三、巩固练习做练习十九中的题目.第3题,教师出示一面少先队的中队旗.“要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?”“你是怎样做的?”可以让几个学生说一说自己的想法.一般来讲,可以有以下几种做法:计算两个梯形面积的和;一个长方形和两个三角形面积的和;一个长方形的面积减去一个三角形的面积.让学生选一种做法,量出所需尺寸,再计算出中队旗的面积.第4题,先让学生读题,再提问:“这个机器零件的横截面图的面积怎样计算?”让几个学生说一说自己的想法.“根据题目中标出的尺寸,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积)让学生在练习本上列式计算,再集体核对.四、作业练习十九的第1、2题.篇3:组合图形面积计算说课稿
数学五年级上学期组合图形面积计算说课稿
本节内容在本单元中起着承上启下的作用,从简单的图形向不规则图形和组合图形的知识转化。组合图形面积的计算是在学生已经学习了平行四边形、三角形和梯形面积基础上学习的,为即将要学习的计算不规则图形的面积打下了基础。学习组合图形的面积的计算,一是可以巩固已经学过的基本图形的面积计算;二是将学过的基本图形进行综合应用,培养学生的应用能力,进一步发展学生的空间观念。根据教学内容,我设计了以下几点教学目标:
1、认识简单的组合图形,能够把组合图形分解成已学过的平面图形。
2、在自主探索的活动中,理解组合图形面积的多种计算方法,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、感受计算组合图形面积的必要性,产生积极学习的兴趣。
教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。
教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐藏条件,选择最适当的方法求组合图形的面积。
五年级学生已经掌握了五种基本图形的面积计算方法,但在我们的日常生活中,更多见到的是组合图形,学生对于这些组合图形并不陌生,对于根据基本图形计算组合图形面积也不太困难,但怎样选择更好的方法去转化成基本图形是关键。针对这些问题,创设的教学活动,更多的是通过学生尝试与交流,逐步让学生找到计算组合图形面积的方法。在交流中理解解决同一个问题可以从不同角度出发,都能得到相同的结果,从而使学生在求组合图形面积的多种方法中选择最优的方法。让学生不但能掌握好书本知识,而且把这些知识也能够应用到实际生活中去。
1、本节课通过组织学生活动,激发了学生主动学习和参与的兴趣,学生通过动手操作在图形上画分割线,实现了由具体到抽象的跨越,继而探索出多种解决问题的方法,无论学生用哪种方法解决这个问题,我都给与肯定、不强求学生思维的一致性,充分发挥学生个体特色。
2、本节课的重点是让学生探索计算组合图形的方法,引导学生通过添加分割线的办法,把组合图形分解为基本图形再计算。课上在对方法的比较上还存在一些欠缺,还应加强方法之间的.横向和纵向比较。如:同是分割法,学生一共出现了三种分法,我可以引导学生比较,发现把它分成一个三角形和一个长方形更简便,因为相应的数据比较容易找到。再如,在练习一的处理上,我应加强1、2两题与第3小题的比较,让学生感知到:有些图只能用分割法,有些图只能用添补法,我们在选择方法时,要根据图形的特点,以及提供的数据,选择最合适的方法。
3、在课堂上,对细节的处理还不够细致。如辅助线的画法,应要求学生用直尺画,并且要画虚线。其次,教师的语言要规范,包括对学生语言表达得指导,还要加强。
4、加强“系统”备课,对知识的前后联系要学会沟通,让学生对所学内容有似曾相识的感觉,这样也能降低学生学习的压力。比如今天的组合图形,其实都可以转化成学过的基本图形,它是可以转化成规则图形的不规则图形。这样学生学习的效果会更好些。同时,也为下节课学习不可以转化成规则图形的不规则图形的面积计算打好基础。
篇4:《组合图形的面积计算》
教学内容:
人教版《义务教育课程标准实验教科书》五年级上册第92-93页例4。
教学目标:
1、知识与技能目标:
⑴会把组合图形合理化分成几个基本图形。
⑵会运用基本图形的面积计算公式计算组合的面积。
2、过程与方法目标:
通过小组合作学习,培养学生在协作、交流中获得成功的体验。
3、情感态度与价值观目标:
享受用学会的数学知识解决实际问题而取得的快乐。
教学重难点:
探索计算组合图形面积的计算方法。
案例解析:
组合图形的面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,让学生以原有的知识为基础,通过学生亲手的“拼”、“剪”将组合图形进行分解,根据组合图形的条件,有效地选择简单的计算方法,从而渗透从多种角度思考问题的解决问题策略。
[1] [2] [3] 下一页
篇5:《组合图形的面积计算》
教学目标:
⑴使同学认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。
⑵通过操作、探索、发现、交流等活动,初步培养同学合作意识和创新意识,进一步发展同学的空间观念和交流能力。
⑶通过学习,提高同学对数学的好奇心和求知欲,学会从数学角度认识世界、解释生活,感受数学的魅力。
教学流程:
一、说圆环。
⑴剪圆环活动。
出示一个同心圆环;
让同学用一张白纸剪出同样的一个圆环。
⑵说剪圆环的过程。
让同学介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减小圆面积。
二、算圆环。
1、教学例10
出示例10和图。
师问:从题中你获得哪些信息?要计算它的面积,你有什么好的方法?在小组中说说你的想法。
同学汇报和交流方法。
同学自主尝试练习。
交流解答过程。
同学交流(同学作品放在视频投影仪上向全班介绍):圆环面积的计算方法,大圆面积-小圆面积;圆环面积的计算步骤,可先算大圆面积,再算小圆面积,最后用减法算圆环面积;全班介绍,教师板书解答的全过程。
2、教学“试一试”
出示题目和图形,理解题意。
同学独立计算。
交流解题方法,注意提醒同学半圆的面积必需把整圆的面积除以2。
3、教学“练一练”
考虑:
(1)求涂色局部的面积,需要计算哪些基本图形的面积?
(2)计算这些基本图形的面积分别需要哪些条件?
(3)第一个图形,两个基本图形有什么练习?第二个图形呢?
(4)同学独立完成,并全班交流。 反馈时,注意加法求组合图形面积和减法求组合图形的不同。
三、巩固练习。
1、完成练习十九第6题。
先说说每个组合需要丈量途中哪些线段的长度?再让同学独立完成。
完成后展示同学作业 ,并交流方法。
2、完成练习十九第7题。
同学根据图形作出直观的判断,并说说直观判断的方法。
师追问:你是怎样想到的?
同学通过计算检验所作出的判读。
3、完成练习十九第8题。
(1)观察图,理解题意。
(2)指导分析。
4、完成练习十九第9题。
师问:你能估计出每种花卉分别所占图形面积的几分之几吗?指导用画出辅导线的方法,来估计每种花卉所占圆形面积的几分之几。
同学独立计算每种花卉的种植面积。
完成后交方法。
四、阅读“你知道吗?,并算一算。
五、课堂总结
师:通过今天的学习,你有什么收获?说说缓刑的面积可以怎样求?在计算组合图形的面积时需要注意什么?
六、作业
练习十九第6题、第8题.
篇6:数学 - 组合图形面积的计算
数学 - 组合图形面积的计算
一、教材内容:九年义务教育六年制小学教科书第九册第三单元第五节《组合图形面积的计算》。即P90---91页的例题和练习题。
教学要求:
使学生初步了解组合图形面积的计算方法,会计算一些较简单的组合图形的面积。
使学生掌握组合图形常用的割补方法。
教学重点、难点:
教学重点:利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学过程:
以“寻标追源”为教学模式,以目标教学为基本教学形式,以尝试法为主要教学手段。
前置回顾,展示目标;
在发散思维中探究新知,精讲点拨,完成目标;
概括总结,反馈矫正。
㈠、引标:创设情境,引导探索
⒈旧知辅垫,诱发注意
电脑显示单车、榨栏、阶梯组合图,标出几种已学过的三角形、平行四边形、长方形、梯形,让学生说出名称和面积计算字母公式。
(这里通过实物感知,了解各平面图形的特征,说出面积公式,加深对旧知识的复习,沟通新旧知识的联系,为学习新知识做好铺垫。)
设景感知,激活思考
电脑显示一幅美丽的画面,一位小天使对一面墙提出问题:“你能计算这幢房的侧面墙的面积吗?”从而揭示课题《组合图形面积的计算》。
(这样通过直观并带有趣味的引导,使学生产生好奇心,引起学习动机,迫切“试一试”的愿望。从而吸引了学生的注意力,激发了学生的求知欲,从这里打开学生通道,促使学生想方设法去找组合图形面积的计算方法。)
(二)寻标:提出问题,寻找目标
叫学生齐读课题后,问:读了课题,你们想知道组合图形的什么知识?(组合图形面积如何计算)好,请同学们看书P90---91页,能否自己解决这些知识,看看它对这些知识是怎样讲的。
(在这里老师先不做讲解,让学生带着求知欲看书,这是根据尝试原则,让学生在自我评价中获取新知识,它是教学的一种有效尝试。)
(三)探标:追源问底,引导发现
提出问题:“为了求组合图形的面积,书上是如何讲的?”、“除了书上的`分割方法外,你还有别的分割方法来求这个组合图形的面积吗?”从而引发学生的发散思维。
电脑显示学生可能想到的分割方法:
①分成一个三角形和一个长方形;
②分成两个梯形;
③分成三个三角形。
其它方法给予口头定正正误。
2.展示各种想法,得出组合图形面积的求法。
⒊发散引导,找出新的解法:
让学生观察分的方法后,提出问题:“刚才所讲的都是把组合图形分成几个已学过的平面图形,那还有除了分以外的别的方法吗?”
电脑显示补的方法,并指出平面组合图形求面积的方法,常用的方法就是分、补两种方法。
(这里有目的运用迁移规律,启发引导学生,教给学生获取知识的方法,以旧探新,引导学生看书、讨论、进行观察比较、概括,找到解决问题的方法,培养学生的探索精神。也有利于发挥学生的主体作用,同时使学生在探索规律的过程中发展思维能力。)
(四)、用标:迁移运用、巩固深化
1.新丰小学有一块菜地,形状如图,算出这块菜地的面积多少平方米
⒉有一块土地的形状如下图,它的面积表示正确的算式是( )
A:20×75+75×24
B:(20+24)×75÷2
C: 75×20+75×24÷2
3.比一比谁用的数据最小或最少就能算出中队旗的面积。并动手把你分的方法在图中表示出来。
(通过这种层次分明的练习,有坡度的让学生熟练掌握计算方法,提高学生的判断能力,在练习中进行发散思考,让学生在品尝成功的喜悦,激发学生学习兴趣。)
(五)小结知识,质疑问难
你认为这节课掌握了什么知识,能说出来给大家听吗?
(让学生小结 ,老师电脑显示)
(让学生自己概括所学知识,引导学生质疑问难,是培养学生学习能力的重要方面)
(六)扩标:思考练习,扩展目标
下图是一种机器零件的横截面,在涂色部份面积表示正确的括号里打“ √ ”, 错的打“ × ”
1、5×4+(4+10)×(12-5)÷2 ( )
2、(4+10)×12÷2 ( )
3、12×10-(5+12)×(10-4)÷2 ( )
4、(5+12)×4÷2+10×(12-5)÷2 ( )
在学生解答完后,再提问:“除了上面正确的解法以外,还有没有其它的解法?”
(这道开放题,是对所学组合图形面积知识的综合训练,对学有余力的学生思维能力的培养,使他们“吃得饱”。课虽结束,但仍兴趣盎然。)
【《组合图形的面积计算》】相关文章:
7.绍兴县小学数学上册备课(组合图形面积计算)教学设计 (人教新课标五年级上册)
10.三年级数学图形的面积






文档为doc格式