欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>一次函数教案

一次函数教案

2023-02-04 08:19:10 收藏本文 下载本文

“洋阳娜京”通过精心收集,向本站投稿了20篇一次函数教案,下面是小编精心整理后的一次函数教案,仅供参考,大家一起来看看吧。

一次函数教案

篇1:一次函数教案

教学目标

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。教学重点 1、一次函数、正比例函数的概念及两者之间的关系。

2、会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、课件教学过程一、创设问题情境,引入新课 1、简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果

,那么我们称Y是X的函数,其中X是自变量,Y是因变量) 2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么? 3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习1、做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。 2、一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

三、随堂练习

1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。

A、y= +x B、y=-0.8x C、y=0.3+2x2 D、y=6-

2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)五、课堂小结

让学生归纳本节课学习内容:1、一次函数、正比例函数概念以及它们之间的关系。2、会根据已知信息写出一次函数的关系式。

六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、3题选做题:161页试一试

篇2:一次函数教案

一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0(当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)

需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

课堂练习:

教科书13、4节练习第1题.

篇3:一次函数教案

一、教材的地位和作用

本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

(一)教学目标的确定

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

1、知识目标

(1)能用“两点法”画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

2、能力目标

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

3、情感目标

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

(二)教学重点、难点

用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k≠0)常数k和b的`取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

二、学情分析

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教学方法

我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

四、教学设计

一、设疑,导入新课(2分钟)

师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?

生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。

生3:正比例函数也是一次函数。

师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?

这节课让我们一起来研究“一次函数的图象”。(板书)

二、自主探究——小组交流、归纳——问题升华:

1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)

生:不知道。

师:那就让我们一起做一做,看一看:(出示幻灯片)

用描点法作出下列一次函数的图象。

(1)y=0.5x(2)y=0.5x+2

(3)y=3x(4)y=3x+2

师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?

然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?

小组汇报:一次函数的图象是直线。

师:所有的一次函数图象都是直线吗?

生:是。

师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。(板书)

师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)

讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

小组1:正比例函数图象经过原点。

小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

师出示幻灯片3(使学生再一次加深印象)

师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?

(一边思考,可以和同桌交流)(2分钟)

生1:用3个点。

生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!

生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

师:我们都认为画一次函数图象,只过两个点画直线就行。

(幻灯片4:师,动画演示用“两点法”画一次函数的过程)

师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)

师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?

组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,

1)点。这样找的坐标都是整数。

组2:我们组认为尽量都找整数。

组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)

组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

师:同学们说的都很好。我觉得可以根据情况来取点。

2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?

问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟)

①y=0.5x与y=0.5x+2;

②y=3x与y=3x+2;

③y=0.5x与y=3x;

④y=0.5x+2与y=3x+2。

生1:①y=0.5x与y=0.5x+2;两直线平行。

生2:②y=3x与y=3x+2;两直线平行。

生3:③y=0.5x与y=3x;两直线相交。

生4:④y=0.5x+2与y=3x+2;两直线相交。

师:其他同学有没有补充?

生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

篇4:人教版一次函数教案

学习目标:

1、掌握一次函数解析式的特点及意义

2、理解一次函数与正比例函数的关系.

3、会画一次函数的图象

学习重点:理解和掌握一次函数解析式特点.

学习难点:一次函数与正比例函数关系的正确理解.

学习过程

一. 课前预习,细心认真。

1.写出下列问题的解析式

(1)某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.(1)试用解析式表示y与x的关系.

(2)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C的值约是t的7倍与35的差.

(3)某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1分收取).

(4)把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.

上面这些函数的形式都是自变量x的k(常数)倍与一个常数的和. 如果我们用b来表示这个常数的话.这些函数形式就可以写成:y=kx+b(k≠0)

2.一次函数的概念

一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.

1.对一次函数概念内涵和外延的把握:

(1)自变量系数(常数)k≠0;

(2)自变量x的次数为1;

2.一次函数与正比例函数的辨证关系可以用下图来表示:

二. 小试身手,我是最棒的!

3:下列函数关系式中,哪些是一次函数,哪些又是正比例函数?

(1)y=-x-4 (2)

(3) (4) y=-8x

4.若函数y=(m-1)x+m是关于x的一次函数,试求m的值.

分析:一次函数的条件:

(1)、自变量次数为1; (2)、自变量系数k ≠0

5、下列说法不正确的是( )

(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数

(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数

6.已知函数y=(2-m)x+2m-3.求当m为何值时,

(1)此函数为正比例函数?

(2)此函数为一次函数?

.三 小组合作,展示提升。

7、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度?

8.汽车油箱中原有油50L,如果行驶中每小时用油5L,求油箱中油量y(L)随行驶时间x(小时)变化的函数关系式,并写出自变量x 的取值范围。y是x 的一次函数吗?

9、梯形的上底长x,下底长15,高8;

(1)写出梯形的面积y与上底x的关系式,是一次函数吗?

(2)当x每增加1时, y是如何变化的?

(3)当x=0时, y等于多少?此时y的意义是什么?

10.若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是______函数.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=______,此时函数是______函数.

11.在同一坐标系中作出函数Y=2X+3和y=-2x+3的图像。

篇5:一次函数的的教案

一次函数的的教案

一、教学目标 1、理解一次函数和正比例函数的概念,以及它们之间的关系。 2、能根据所给条件写出简单的一次函数表达式。 二、能力目标 1、经历一般规律的探索过程、发展学生的抽象思维能力。 2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。 三、情感目标 1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。 2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。 四、教学重难点 1、一次函数、正比例函数的概念及关系。 2、会根据已知信息写出一次函数的表达式。 五、教学过程 1、新课导入 有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看: 某弹簧的自然长度为 3厘米,在弹性限度内,所挂物体的质量x每增加 1千克、弹簧长度y增加 0.5厘米。 (1)计算所挂物体的质量分别为 1千克、2千克、3千克、4千克、5千克时弹簧的长度,(2)你能写出x与y之间的关系式吗? 分析:当不挂物体时,弹簧长度为 3厘米,当挂 1千克物体时,增加 0.5厘米,总长度为 3.5厘米,当增加 1千克物体,即所挂物体为 2千克时,弹簧又增加 0.5厘米,总共增加 1厘米,由此可见,所挂物体每增加 1千克,弹簧就伸长 0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。 2、做一做 某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000.18x或y=100 x) 接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。 3、一次函数,正比例函数的概念 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。 4、例题讲解 例1:下列函数中,y是x的一次函数的是(  ) ①y=x6;②y= ;③y= ;④y=7x A、①②③ B、①③④  C、①②③④  D、②③④ 分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

篇6:苏教版一次函数教案

【案例背景】:

《数学课程标准》中强调:数学知识与学生生活实际的相联系,在教学过程中不仅注重教师的创造性教学,而且更加关注学生获取知识的主动性。本节课通过画图让学生总结一次函数的性质,引导学生通过自主学习、分组合作探究学习两种不同角度分析归纳一次函数的性质,体现“数”、“形”结合的数学思想。

这节课的知识是学生以前从未接触过的内容,而且在今后二次函数的学习中经常会用到,它的重要性不言而喻。如何在课堂教学中落实新教材的理念,让学生通过活动、探究体验数学发现的过程?如何让“问题串”贯穿于课堂?将是我们这些一线教师不断探索的课题,我在这节课的教学实践中做了一些尝试,收到了较好的效果。

【课堂实录】

教学片断一:问题情景引入,驱动学生求知

问题:师:我每天上班都是以60千米∕时的速度匀速行驶,现在老师的问题是:如果我行驶里程为S千米,行驶时间为t小时,那么,你能说明S= (用含t的式子表示S)?

学生1:S=60t

掌声……

师:你很了不起,帮了老师一个忙。那么在导学卡上的问题你们能自主解决吗?

学生完成导学卡问题。

1、某城市的市内固定电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分钟的计时费(按0.1元/分钟收取),y= (用含x的式子表示y)

2、正比例函数、一次函数的概念:

像y=0.1x+22,形如y=kx+b(k.b为常数k≠0)的函数叫做 。特别地,当k=0 时,一次函数 y=kx叫做 ,例如 y=0.1x。

3、练习:

(1)下列函数中 ① y=-8x ② y=-8/x ③y=x² +1 ④ y=2x-1 ⑤ x/2 ⑥ y=x/2+1。其中 是一次函数, 是正比例函数(填编号)

(2)在一次函数y=kx+b(k.b为常数k≠0)中,k= ,b=

很快完成,以小组进行组内交流,然后以汇报形式完成,学生兴趣高涨。

教学片断二 :画一次函数图像

师:请同学们依据老师的提示,画出下列两个一次函数的图像。

y=x+1; y=2x

(1)列表:

x

-2

-1

0

1

2

y

x

-2

-1

0

1

2

y

(2) 描点

(3 )连线

学生画图像。几分钟后,教师提出问题:

师:由上面两个图观察看出,一次函数的图像是一条 。

生:一次函数的图像是一条直线。

师:画一次函数的图像至少需要几个点?

生:两个

师:你能用两点法画出下列函数的图像吗?

(1)y=-x-1 (2) y=-3x

(学生画图)

教学片断三:探析一次函数的性质

在学生画完图之后,提出问题:

师:一次函数的一般表达式是y=kx+b(k、b为常数,k≠0),下面请各个小组选出两个代表在黑板上写出一些常数较简单的一次函数表达式。

师:观察你们在黑板上写的这些一次函数大致有几个类型?

(分组探究讨论生得到四类,即k>0,b>0;k>0,b<0;k<0,b>0;k<0,b<0。)

师:请同学们仔细观察刚才画出的图像,你有什么发现?

(学生讨论,气氛热烈。几分钟后……)

师:请各个小组之间比较一下,你们画的图像位置一样吗?

生;不一样。

师:有什么不一样?

(有的说走向不一样,有的说经过的象限不一样。)

师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?

生:是由k、b的取值确定的。

师:好,根据同学们的回答,能得到图像或函数的那些结论?

分组探究后,请各个小组把你们探究的结论板书在黑板上。

(学生急忙写到自己的黑板上,几分钟后……)

师:刚才你们是研究图像的性质,你们能否由图像性质得出相应的函数的性质?请看黑板各函数的图像,能说说“走向”的意思吗?

生:当k>0时,图像右端翘起来,k<0时,图像左端落下来。

师:好,你们从图像的直观形象来理解的图像性质,很贴切,你们还能从其他角度来说明函数的性质吗?

(学生七嘴八舌议论纷纷,有的说当k>0时,x与y同向变化;有的说当k<0时,x与y异向变化。 也有的说x增大,y减小;x减小,y增大。)

师:好了,你能用x与y之间的变化规律来表述一次函数的性质吗?请同学们打开课本P117再次熟悉一下一次函数的性质。

……

就这样,在同学们的积极发言、表达之下很快就下课了。回到办公室,静下心来思考本节课的教学,我认为:

1、在本节课的教学中多次组织学生合作交流探究,学生通过画图,知道了一次函数的图像是一条直线,观察归纳出一次函数的四个基本类型;在一次函数的性质的总结中,先通过观察图像的规律,后又引导学生类比正比例函数y=kx中k的正负对图像的影响,得出函数值随自变量的变化而变化。在这些探究活动中学生积极参与,学生之间、小组之间、师生之间大家七嘴八舌,你说我记激烈探讨,最后总结出一次函数的性质。做到了让学生在探究活动中去经历、体验、感知、观察、归纳、类比完成学习任务,体会到合作探究的快乐。

2、采用了启发式教学,自主学习和合作探究学习相结合的方式,在教学中放手让学生在探究活动中去经历、体验、观察、类比、归纳。通过充分的过程探究,借助直观图像的性质而得到一次函数的性质。虽然花去了不少的时间,但比直接让学生接受一次函数的性质还是比较轻松的。只有放手探究,适当放开学生的手、口、脑,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。教师在学生探究学习过程中是一个引导者、合作者、组织者。要善于点燃学生探究的欲望,成为学生的合作伙伴,组织好教学流程,数学教学的过程是师生共同活动、共同成长与发展的过程。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识,真正让“不同的人在数学上得到不同的发展”。

3、一节课45分钟在画一次函数图像时个别学生速度比较慢,以致于后面的教学环节时间比较紧张,学生探讨交流不能有充足的时间。最后的反馈练习也不能达到预期的效果,有点草草收场的感觉。同时在结束一次函数的性质的教学后,如果列一个表格把一次函数的各种类型图像的性质表示出来会更好。

篇7:苏教版一次函数教案

通过对这节课的教学研究,我深刻地认识到新课程背景下的数学课堂教学应注意:

1、教师要“放得开”,做一个边缘人。我们应该充分相信学生,给学生成长的机会和空间。不再搞“包办代替”,不能急性子。凡是学生能做的,就应该让他们自主去做;凡是学生之间能合作完成的,就应该让他们自主探究。给学生一滴水的机会,也许他会收获一片海洋。

2、要做到“问题引领”,用问题牵引学习。本节课的设计给予学生的基础,设计了多个学生容易解决的问题串,这样,能够在循序渐进中学到知识。

3、要创造性地使用教材。教学过程中,不应局限于教材,而应充分利用教材这个平台,伸向与教材有关的领域。数学是思维的体操,因此,若能对数学教材科学安排,对问题妙引导,有意识地引导学生有意识地主动学习更多更全面的数学知识,变“传授”为“探究”,充分暴露知识的发生发展过程,以探索者的身份去发现问题、总结规律。

4、注重探究,体验知识的形成过程。数学教学从本质上讲,是教师和学生以课堂为主渠道的交流活动,是教师和学生在某种教学情境中的探究活动。这节课教师本着“让学生充分经历知识的形成、发展和应用过程,充分体验数学的发现和创造历程”的教学理念,对教学过程和教学手段作了充分的准备。整节课学生在教师的引导下逐步探索、不断发现,品尝到了数学学习的乐趣,教师的主导作用和学生的主体地位都得到了很好地体现。

总之,我们的教学工作是一项内涵丰富的系统工程。教学中用问题引领学生,提升效率,不是一朝一夕就可以取得明显成效的,它更是一个复杂的课题。“冰冻三尺,非一日之寒”,在教学中必须循序渐进,长期实践,与时俱进,争取做教学改革的有心人,只有这样才能在教学研究工作中有所作为。因此,在实际教学中,我们应时刻以学生为中心,充分给予学生成长的时间,鼓励学生自主探究,采用适时激励与点拨的方法使学生的思维活跃起来,让课堂真正成为学生学习、发现的乐园。

篇8:一次函数

〖教学目标〗◆1、理解正比例函数、一次函数的概念。◆2、会根据数量关系,求正比例函数、一次函数的解析式。 ◆3、会求一次函数的值。〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。 〖教学过程〗 比较下列各函数,它们有哪些共同特征?        提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。 定义:一般地,函数 叫做一次函数。当  时,一次函数 就成为 叫做正比例函数,常数 叫做比例系数。 强调:(1)作为一次函数的解析式 ,其中 中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中 符合什么条件? (2)在什么条件下, 为正比例函数? (3)对于一般的一次函数,它的自变量的取值范围是什么? 做一做: 下列函数中,哪些是一次函数?哪些是正比例函数?系数 和常数项 的值各为多少?           例1:求出下列各题中 与 之间的关系,并判断 是否为 的一次函数,是否为正比例函数: (1)       某农场种植玉米,每平方米种玉米6株,玉米株数 与种植面积 之间的关系。 (2)       正方形周长 与面积 之间的关系。 (3)       假定某种储蓄的月利率是0.16%,存入1000元本金后。本钱 与所存月数 之间的关系。 此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。 解:(1)因为每平方米种玉米6株,所以平方米能种玉米 株。得 , 是 的一次函数,也是正比例函数。 (2)由正方形面积公式,得 , 不是 的一次函数,也不是正比例函数。 (3)因为该种储蓄的月利率是0.16%,存 月所得的利息为 ,所以本息和 , 是 的一次函数,但不是 的正比例函数。 练习:1.已知 若 是 的正比例函数,求 的值。 2.已知 是 的一次函数,当 时, ;当 时, (1)       求 关于 的一次函数关系式。 (2)       求当 时, 的值。 例2:按国家8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)       设全月应纳税所得额为 元,且 。应纳个人所得税为 元,求 关于 的函数解析式和自变量的取值范围。 (2)       小明妈妈的工资为每月2600元,小聪妈妈的工资为每月2800元。问她俩每月应纳个人所得税多少元? 提示:此题较为复杂,而有关个人所得税的计算方法和一些专有名词学生可能很生疏。所以讲解时,首先要帮助学生理解问题,对个人所得税,应纳税所得额这些名词的含义要予以说明。尤其是根据累进税率计算个人所得税的方法,要举例说明。例如,某人某月工资收入为2400元,则应纳税所得额为 ,应纳个人所得税为 。讲解第(2)题时,要提醒学生注意函数解析式 中自变量 的意义, 表示的是工资中应纳税的部分,所以不能把题设中的工资额直接代入函数解析式计算个人所得税。 解:(1)   所求的函数解析式为 ,自变量 的取值范围为 。 (2)小明妈妈的全月应纳税所得额为 将 代入函数解析式,得 小聪妈妈的全月应纳税所得额为 将 代入函数解析式,得 答:小明妈妈每月应纳个人所得税155元,小聪妈妈每月应纳个人所得税175元。 练习:教科书 ,1,2。 作业:教科书 a组 ,b组;作业本(2)。

篇9:一次函数

一次函数

一次函数【目的要求】1、使学生初步理解一次函数与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。【教学重点、难点】一次函数以及正比例函数的解析式【教学过程】一、复习提问:    1、什么是函数?    2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的.解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)   (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)   (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)    (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)    由以上的层层设问,最后给出一次函数的定义。    一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。    对这个定义,要注意:    (1)x是变量,k,b是常数;    (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)    由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。    在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:    两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。    写成式子是      (一定)    需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。    其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。三、课堂练习:    课本后练习第1题.四、答疑(老师在下面巡视,学生提问题)五、小结1)              什么是一次函数?它的解析式是什么?2)            正比例函数呢?六、课后作业课本后习题1、2两题

篇10:初二数学一次函数教案

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

篇11:初二数学一次函数教案

教学重点:

1、一次函数、正比例函数的概念及两者之间的关系。

2、会根据已知信息写出一次函数的表达式。

教学难点: 一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

八年级数学一次函数教案(课件教学过程)

一、创设问题情境,引入新课

1、简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习

1、做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

2、一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

三、随堂练习

1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。

A、y= +x B、y=-0.8x C、y=0.3+2x2 D、y=6-

2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)五、

让学生归纳本节课学习内容:

1、一次函数、正比例函数概念以及它们之间的关系。

2、会根据已知信息写出一次函数的关系式。

六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、3题选做题:161页试一试

篇12:《一次函数解析式》教案

《一次函数解析式》教案

材分析:本节主要是由两个点的坐标确定函数解析式。通过例题以解析式、图象、等不同形式讨论函数解析式的求法及一次函数的应用,其中又涉及了求函数图象与坐标轴围成的三角形面积,初步反应了以一次函数为数学模型解决实际问题的过程。 教学目标:(一)教学知识点: 1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数。 2.能由两个条件求出一次函数的表达式,并解决有关现实问题。 (二)能力训练要求:能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力。 (三)情感态度与价值观要求:能把实际问题抽象为数学问题,也能把所学的知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用 重点与难点:根据所给信息确定一次函数的解析式 课时设计:第1课时,共两课时 教学策略:(1)教学方法:引导法,探究法,分析法,归纳法 (2)媒体教学:多媒体  教学过程设计: 主体、主导活动 设计思想:   一、  复习1、一次函数的图象所在象限由哪些值的符号决定?有几种情况? 2、点与函数图象有何关系? 3、画一次函数图象可以用两点法作图,通常选哪两点? 二、  新课 1、  确定一次函数解析式 (1)已知正比例函数的图象过点(3,4),求这个正比例函数的解析式。 师:请大家先思考解题的思路,然后和同伴交流。 生:因为函数是正比例函数,可设函数表达式为y=kx,又因为图象过点(3,4),把其代入上式,求出k,就可以知道的y与x关系了。 学生活动:由学生板演,后教师订正。 (2)已知一次函数y=kx+2,当x=5,时y=4,求k的值 师:仿照上一题,同组讨论解题思路后,独立完成。 学生活动: 由学生板演,其他同学完成后互相交流。 师:通过这两道题,你发现它们有什么特点? 生:它们都含有一个未知数,只要利用一点坐标列出关于k或b的一元一次方程即可。 (3)已知一次函数的图象过点(3,5),与(-4,-9),求这个函数的解析式。 师分析:求一次函数y=kx+b的解析式,关健在于求出k、b的值,从已知条件列出关于的k、b解析式。 解:设这个一次函数的解析式为y=kx+b, ∵直线y=kx+b的图象经过点(3,5)和(-4,-9)则有 3k+b=5  解得  k=2 -4k+b=-9  b=-1   ∴这个一次函数的解析式为y=2x-1 师:通过以上各题,你认为应该怎样求函数解析式? 生:当题目中只含有一个未知数时,利用一点坐标列出关于k或b的一元一次方程;当题目中含有两个未知数时,利用两点坐标列出关于k,b的二元一次方程组,求出的k,b值。求函数解析式关键在于求出k,b的值。 三、  巩固拓展 已知直线y=kx+b经过点(9,0),和(24,20),求k、b的值 . 学生活动:由学生板演,其他同学独立完成。  (1)  分别求出这个函数的解析式 (2)   (2)  求这个函数的图象与x轴围成的三角形面积   师:请各组同学思考解题思路,然后和同伴交流。 师:那么图象与x轴围成的三角形的面积又该如何确定呢? 生:图象与x轴围成的三角形面积需求出D点坐标及线段OD的'长度,以PE(即P点与X轴的距离)为高,以OD为底。 活动:学生完成,教师指导。 3、直线y=kx+b经过点A(-1,5)且平行于直线y=-x ①求这条直线的解析式 ②若点B(3,5)在这条直线上,O为坐标原点,求m及△AOB的面积。 师:两直线平行,说明什么? 生:两直线平行,说明K的值相等。再利用一点坐标,即可求出函数解析式。 学生活动:因为(2)题难度较大,由教师带领,共同完成 。 4、一次函数的图象经过点(2,-1),且与直线y= 相交于y轴上的一点,求该函数解析式。 师:直线与y轴交于一点,可以求出哪个量? 生:可以求出b的值。然后再利用点(2,-1),列出关于k,b的二元一次方程组。即可求出的k,b值及函数解析式。 学生活动:教师指点,学生完成。 5、某一次函数的图象与直线y=2x-1的交点纵坐标为3,且与直线y=8x-5无交点,求这个函数的解析式。 师:读完题目,你能得出什么结论? 生:与一条直线无交点,说明两直线平行,与直线y=2x-1交点纵坐标为3,可代入解析式,求出横坐标的值。再利用两点坐标列方程组,求出函数表达式。 学生活动:同组讨论交流,共同完成。 6、一次函数y=kx+b,当-3≤x≤1时,1≤y≤9求这个函数的解析式。  师:大家先分析这道题的可能情况,然后同组交流。 生:这道题有两种可能情况:y随x的增大而;y随x的增大而减小。 学生活动:由学生板演,其他同学分组完成。 选取 四、  小结 五:作业:P35 5,6,7. 课后反思:通过本节课的学习发现,如果直接给出两点坐标求函数解析式,效果很好,但如果设置难度,如给出平行或两直线交于y轴或x轴上一点或两直线交点的横、纵坐标时,容易出现错误,应加强学生分析能力及计算能力的训练。另外,当题目中没有图时,应让学生先画图。  

篇13:初中数学一次函数教案

初中一次函数教案

教学目标

1、经历一般规律的探索过程,发展学生的抽象思维能力。 2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

教学重点 1、一次函数、正比例函数的概念及两者之间的关系。 2、会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

课件教学过程

一、创设问题情境,引入新课 1、简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量) 2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么? 3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习1、做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。 2、一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

三、随堂练习

1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。

A、y= +x B、y=-0.8x C、y=0.3+2x2 D、y=6-

2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)五、课堂小结

让学生归纳本节课学习内容:1、一次函数、正比例函数概念以及它们之间的关系。2、会根据已知信息写出一次函数的关系式。

六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、3题选做题:161页试一试

一次函数教学反思

“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。

精心备课

备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。

一:教材课时安排过紧有关。初二教材的教学时间不够,教参函数第一节 第二节二节课,第三节一次函数节,课时太少,本节要加一个复习课

二:教学内容不好处理。

“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲

环节二:概括一次函数图象的性质

一次函数y=kx+b有下列性质:

(1) 当k>0时,y随x的增大而______,这时函数的图象从左到右_____;

(2) 当k<0时,y随x的增大而______,这时函数的图象从左到右_____.

(3)当b>0时,这时函数的图象与y轴的交点在:

(4)当b>0时,这时函数的图象与y轴的交点在:

待定系数法的引入上用“弹簧的长度 y(厘米)”来讲的,太难,要先讲书上的“做一做:“已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),”

三:难度不好处理:

如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y= 当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数。”

学生难以理解,我个人认为太难,超出了学生的理解能力。反而对一个具体的一次函数y=-2x+3中k,b是多少强调的不多。

满意之笔

一次函数有以下令自己较满意的地方:

一. 结合生活实例,充分调动学生学习的激情,恰当的过渡,点燃其求知的欲望。

在本节课的引入部分采用班级里的真人真事(运用校运动会的具体事例) “在此跑步过程中涉及到哪些量?”“假定每位选手各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问句既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。

二.大胆对教材作大幅度调整、修改

对知识内容的完整性作了补充。

(附一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。)教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。虽然在课后的习题与作业本中都有涉及到:当一次函数的自变量限制在某一范围时如何画此一次函数的图象,但在教材中似乎没有涉及到此类问题,对于B班的学生需要教师对此类问题做相关示范解决。(1)求 y1 关于 x 的函数关系式及自变量x的取值范围;(2)画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:对于射线,取起点与另一个异于起点的任一点画出射线;对于线段,取线段的两个端点然后连接即可。

不足之处

一、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开两节课来上。

二、部分内容上处理出现失误:初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2), (-1,-1) , (0,0) , (1,1) , (2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)

在以后的教学工作中,我要再接再厉,以能更好的体现数学课堂教学的有效性。

篇14:初二数学一次函数教案

一、创设情境

问题画出函数y=的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y始终大于零?

二、探究归纳

问一元一次方程=0的解与函数y=的图象有什么关系?

答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.

问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?

答不等式>0的解集就是直线y=在x轴上方部分的x的取值范围.

三、实践应用

例1画出函数y=-x-2的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y始终大于零?

解过(-2,0),(0,-2)作直线,如图.

(1)当x=-2时,y=0;

(2)当x<-2时,y>0.

例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.

解设y1=2x-5,y2=-x+1,

在直角坐标系中画出这两条直线,如下图所示.

两条直线的交点坐标是(2,-1),由图可知:

(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;

(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.

四、交流反思

运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.

五、检测反馈

1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?

2.画出函数y=3x-6的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y大于零?

(3)x取什么值时,函数值y小于零?

3.画出函数y=-0.5x-1的图象,根据图象?

篇15:教案《求一次函数的关系式》

教案《求一次函数的关系式》

长春市优质课(微型课)教案 求一次函数的关系式 长春市第八十七中学胡鹏龙 教学目标 知识与技能: 能用待定系数法求一次函数的关系式 过程与方法: 1.感受待定系数法是求函数关系式的基本方法, 体会用数和形结合的方法求函数关系式; 2.结合图象寻求一次函数关系式的求法,感受求函数关系式和解方程组间的转化。 情感态度与价值观: 通过探究,引出一次函数关系式,培养学生的逆向思维。 教学重点    用待定系数法求一次函数的关系式 教学难点 用待定系数法求一次函数的关系式在实际生活中的应用 教学设备 多媒体课件 教学过程 一、创设情境 一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数关系式就确定了,那么有怎样的条件才能求出k和b呢? 二、探究归纳 例  已知一次函数y=kx+b的图象经过点(-2,0)和(0,2),求此一次函数的关系式。 解:∵该函数图象经过点(-2,0)和(0,2)两点,   根据题意,得   解得   -2k+b=0 k=1     b=2 b=2 ∴该函数的关系式为:y=x+2 “待定系数法”:根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。 练习  已知某一次函数,当x=1时,y=3,当x=-1时,y=7。求这个一次函数的关系式。 解:设这个一次函数的关系式为y=kx+b. 把x=1,y=3与x=-1,y=7代入,得,   解得  k+b=3  k=-2     -k+b=7  b=5 ∴这个一次函数的关系式为y=-2x+5 例 已知弹簧的'长度y(厘米)在一定的限度内是所挂重物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是30厘米,挂3千克质量的重物时,弹簧的长度是36厘米.求这个一次函数的关系式. 解:设所求函数的关系式是y=kx+b(k≠0),由题意,得:   解得   b=30 k=2     3k+b=36  b=30   ∴该一次函数的关系式为:y=2x+30. 三、课时总结 求一次函数的关系式往往用待定系数法,即根据题目中给出的两个条件确定一次函数系式y=kx+b(k≠0)中两个待定系数k和b的值。 四、布置作业 课本第48页第9、10题。

篇16:一次函数复习课教学教案

一次函数复习课教学教案

一、学习目标:

1、知道什么是函数,并能判断某变化过程中两个变量之间的关系是否函数关系;

2、知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数;

3、会运用一次函数图像及性质解决简单的问题;

4、会用待定系数法确定一次函数的解析式。

二、基本知识点突破:

1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 ,如果给定一个x值, 相应地就唯一确定了一个值,那么就 是_____ 的函数;

2、一次函数的概念:若两个变量x,间的函数关系式可以表示成 的形式,则称 是 的一次函数, 为自变量, 为因变量。特别地, 时,称 。

正比例函数是_____________的特殊形式,因此正比例函数都是_______,而 一次函 数不一定都是_________.

3、判断一个函数是不是一次函数的条件:

(1)、的个数;(2)、自变量的 和 ;(3)、分母中是否含有

4、一次函数图像、性质及其解析式的确定:

函数

类型

、b的

取值范围

图像

增减性

经过特殊点

函数解析式的确定

(基本思路)

=x+b

(≠0,

b为常数)

﹥0

b﹥0

与x轴的交点坐标是( , ),与轴的交点坐标是( , )

1、设函数解 析式为

2、代入已知两点的坐标或者x,的两组对应值,得到

3、解

4、写出函数解析式

b﹤0

﹤0

b﹥0

b﹤0

= x

(≠0)

﹥0

正比例函数的图像都经过( , )

1、设函数解析式为

2、代入已知一点的坐标或者x,的一组对应值,得到

3、解

4、写出函数解析式

﹤0

三、整训

目标1 知道什么是函数,并能判断某变化过程中两个变量之间的的关系是否函数关系

已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积随上底x的变化而变化。

(1)梯形的面积与上底的长x之间的关系是否是函数关系?为什么?

(2)若是x的函数,试写出与x之间的函数关系式 。

目标2 知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数

1.函数:①=- x x;②= -1;③= ;④=x2+3x-1;⑤=x+4;⑥=3. 6x, 一次函数有___ __;正比例函数有____________(填序号).

*2.函数=(2-1)x+3是一次函数,则的取值范围是( )A.≠1 B.≠-1 C.≠±1 D.为任意实数.

*3.若一次函数=(1+2)x+2-1是正比 例函数,则=_______.

目标3 会运用一次函数图像及性质解决简单的问 题

1 . 正比例函数= x,若随x的增大而减 小,则______.

2. 一次函数=x+n的图象如图,则下面正确的是( )

A.<0,n<0 B.<0,n>0 C.>0,n>0 D.>0,n<0

3.一次函数=-2x+ 4的图象经过的象限是_______,它与x轴的交 点坐标是_____,与轴的'交点坐标是_______.

4. 已知一次函 数 =(-2)x+(+2),若它的图象经过原点,则=_____;若随x的增大而增大,则__________.

*5.若一次函数=x-b满足b<0,且函数值随x的减小而增大,则它的大致图象是图中的( )

目标4 会用待定系数法确定一次函数的解析式。

1、正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.

2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .

3、一次函数=x+b的图象如上图所示,求此一次函数的解析式。

四、小结提高(谈谈本节课的收获)

五、作业:

1、已知一次函数=x+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。

2、已知-1与x成正比例,且 x=-2时,=-4.(1)求出与x之间的函数关系式;(2)当x=3时,求的值.

篇17:一次函数说课稿

一次函数说课稿

一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。以下是一次函数说课稿,欢迎阅览!

我今天说课的内容是***版八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

一、教材分析

1、教材地位和作用

本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

2、教学目标分析

根据新课程标准,我确定以下教学目标:

知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

3、教学重难点

本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

二、教法学法分析

八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术----多媒体和实物投影。

三、教学过程分析

本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:

(1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为 m=6t .

(2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为 y=-2x .

(3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为 y=2x+3 .

(4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为 Q=936-312t .

然后请学生观察这些函数,它们有哪些共同特征?

m=6t;y=-2x;y=2x+3;Q=936-312t

学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

然后再问:你们能否用一条一般式来表示它们的共同特点?学生可能用两条一般式来表示:y=ax与y=bx+c(因为这节课我已上过)。教师对两条都进行肯定,同时追问;这两条能否选择一条呢?经过讨论,最后确定式子y=kx+b为能代表共同特征的解析式,我们称之为一次函数,今天这节课我们就来学习一次函数。

这样通过创设问题情境,让学生通过比较函数解析式的具体特征,引出一次函数,提出了课题,让学生感受到一次函数存在于生活中,与我们并不陌生,增强了学生学好本节课的信心,同时也为一次函数概念的落实打下基础。

提出课题后,教师说明:一般地,函数y=kx+b就叫做一次函数。然后问学生:作为一次函数的解析式y=kx+b,在y、k、x、b中,哪些是常量,哪些是变量?哪一个是自变量?哪个是自变量的函数?很明显, x、y是变量,其中自变量是x,y是x的函数,k、b是常量。那么对于一般的一次函数,自变量x的取值范围是什么?k、b能取任何值吗?很明显,x可取全体实数,k、b都是常数,但k≠0,因为如果k=0,那么kx=0,就不是一次函数了,所以一次函数的一般式后面应添上k、b都是常数,且k≠0,这里的k叫做比例系数。那么b可以等于0吗?当然可以,b=0就是引例中前2条式子的一般式,由此可知,当b=0时,函数就成了y=kx,,它是特殊的一次函数,我们称之为正比例函数,其中的常数k也叫做比例系数。

由于一次函数和正比例函数的概念是本节课的重点,所以得出概念后,教师还应对概念进行强调:一次函数的一次指的是自变量x的指数是1次;比例系数k不能为0,但既可取正数,也可取负数;b可以为任何实数,当它取0时为正比例函数,也可以这样说:所有形如y=kx+b(k≠0)的函数都是一次函数,反过来,所有的一次函数都可以写成y=kx+b的形式。同理,所有形如y=kx(k≠0)的式子都是正比例函数,反过来,所有的正比例函数都可以写成y=kx形式。

为了及时巩固概念,教师以快速抢答的形式让学生完成书上做一做:

做一做:下列函数中,哪些是一次函数,哪些是正比例函数?系数k和常数项b的值各是多少?

①c=2πr;②y=x+200;③t=;④y=2(3-x);⑤s=x(50-x)

做完此题教师应强调:①中π为常数,所以比例系数为2π;④、⑤应先化,简,巩固了一次函数的概念,此时出示例1,学生就显得比较轻松。

例1:求出下列各题中x与y之间的关系式,并判断y是否为x的一次函数,是否为正比例函数?

①某农场种植玉米,每平方米种玉米6株,玉米株数y与种植面积x(m2)之间的关系。

②正方形周长x与面积y之间的关系。

③假定某种储蓄的月利率是0.16%,存入1000元本金后,本息和y(元)与所存月数x之间的关系。

例1应由学生口答,教师板书,判断是否属于一次函数应严格按照概念中的一般式,通过本例还让学生弄清楚了正比例函数都是一次函数,而一次函数不一定都是正比例函数。同时也体会到了根据题中的数量关系可直接列出一次函数解析式。如果班里学生比较优秀,也可请大家模仿例1自己编一个例子,写出函数关系式,并判断写出的函数关系式属于哪种类型。这种编写具有一定的难度,教师对于学生的一点点闪光点都要予以肯定。

接着教师出示练习1:已知正比例函数y=kx,当x=-2时,y=6,求这个正比例函数的解析式。

此题是书上课内练习改编过来的,书上的原题是求比例系数k,但我认为求函数解析式层次更高一些,同时为下节课的待定系数法打下基础。

此题可以这样分析:要想求这个正比例函数解析式,必须求出k的值,只要把一组x、y的值代入y=kx,得到一条以k为未知数的一元一次方程,即可求出k的值,然后就可写出解析式,建议教师板书过程,如果班里学生比较优秀,教师也可提到:如何求y=kx+b的解析式呢?同理可得只要求出k、b的值就可以了,k、b是两个未知数,只要两组x、y的值代入,联立二元一次方程组即可求出k、b的值,然后就可写出解析式,具体的操作下节课再学。

以上设计使学生明白了如何求一次函数解析式及判断某条函数关系式是否为一次函数的方法,但大家都知道,学习了新知识,就是为了解决实际问题。

由于例2是本节课的教学难点,里面的问题情景比较复杂,学生一下子难以适应,于是我对例2进行这样处理:

先请同学们看屏幕:教师用多媒体出示一份国家1月1日起实施的有关个人所得税的有关规定的材料,同时还附上一份税率表。

然后问学生:哪位同学知道什么叫全月应纳税所得额,如果有学生讲出来更好,如果没人讲出来,教师自己介绍:应纳税所得额是指月工资中,扣除国家规定的免税部分1600元后的剩余部分。

为了提高学生的学习兴趣,教师说:你想知道我们班数学老师和科学老师每月应缴个人所得税多少吗?老师们的隐私同学们是最想知道的,于是急着解决问题。

我班数学教师的工资为每月2400元,科学老师的工资为每月2600元,问他俩每月应缴个人所得税多少元?

相信学生很快就有答案(因为这节课我上过),并且方法几乎一致,都是用直接列算式的方法。教师对学生们的结果表示肯定,接着问:如果要计算10个工资均在2100元—3600元之间的教师每月应缴的个人所得税呢?还用直接列算式的方法吗?如果工资均在10000元以上呢?

经过思考、讨论,发现工资额越大,计算应缴个人所得税的累计越麻烦,于是讨论有没有一种比较简单方法,如果有类似于计算公式的,把工资额直接代入就可求出的,那该多好啊!

此时教师出示例2:按国家201月1日起实施的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至元部分的'税率为10%.

(1)设全月应纳税所得额为x元,且500

(2)小明的妈妈的工资为每月3400元,小聪妈妈的工资为每月3600元,问她俩每月应缴个人所得税多少元?

有了刚才的铺垫,学生对此题有了深入的理解,就不再害怕了,教师可先由学生回答,再自己补充。可以这样分析:由于500

此题的设计使学生体会到了运用函数模型解决实际问题的重要性,但某些爱动脑筋的同学可能会问:虽然运用函数可以解决一些实际问题,但方程也是解决实际问题的重要数学模型,它们有什么区别吗?怎样区别?拿到一道题怎么会想到用函数来解决,简单地说,如果没有特殊说明,能用方程解决的问题就用方程来解决,不能用方程来解决的问题就马上想到用函数来解决。但如何建立函数模型,具体的方法我们下节课再学习。

本例的设计使学生既了解了国家的政策法规,又学会了用函数来解决实际问题,通过计算老师们的应缴个人所得税,让学生初步体会了个人所得税的计算方法,再假设要求多数人的所得税,激发了学生探求好方法的欲望,使学生体会到了函数的作用。

为了使学生学有所用,就来完成书上课内练习2.

最后在教师提问的基础上,让学生对本节内容进行归纳总结。

本节课的作业是分层布置:A组、B组、C组分别由班里的三个不同层次的同学完成。

四、设计说明

本节课通过创设问题情境,归纳总结得出一次函数的概念,同时利用一次函数解决了生活中的实际问题。整节课没有大量的练习为基础,而是以提高学生的数学素质为指导思想,以学生积极参与教学活动为目标,以概念讲解为载体,以展开思维分析为主线,在课堂教学中,教师充分调动一切因素,让学生在和谐,愉悦的氛围中获取知识,掌握方法!整个教学既突出了学生的主体地位,又发挥了教师的指导作用。

篇18:一次函数什么时候学

一次函数在生活中的应用

1、当时间t一定,距离s是速度v的`一次函数。s=vt。

2、如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

3、当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)。

篇19:第六册一次函数

第六册一次函数

课   题:一次函数

教学目标: 1.知道一次函数与正比例函数的意义

2.能写出实际问题中正比例函数与一次函数关系的解析式.

3.掌握“从特殊到一般”这种研究问题的方法

教学重点:将实际问题用一次函数表示.

教学难点:将实际问题用一次函数表示.

教学方法:讲解法

教学过程:

一. 复习提问

1.     什么是函数?请举例说明.

2.     购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)关系式是什么?

3.     在上述式子中变量是谁.常量是谁?自变量又是谁?

二. 讲解:

在前面我们遇到过这样一些函数:

y=x                       s=30t

y=2x+3                    y=-

x+2

这些函数都使用自变量的一次式来表示的,可以写成 y=kx+b 的形式

一般的,如果y=kx+b(k , b是常数,k≠0),  那么y叫做x的'一次函数.

特别的,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y就叫做x的正比例函数.

例一 :

一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.

(1)  求小球速度v (米/秒)与时间t(秒)之间的函数关系式;

(2)  求3.5秒时小球的速度.

分析:v与t之间是正比例关系.

解: (1)v=2t

(2)t=3.5时,v=2×3.5=7(米/秒)

例二: 拖拉机工作时,油箱中有油40升.如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式.

分析:t小时耗油6t升,从原油油量中减去6t,就是余油量.

解:Q=40 - 6t

课堂练习:

P96 1 ,2

小结:一次函数与正比例函数的意义,两者之间的关系,一次函数不一定是正比例函数,而正比例函数一定是一次函数,会将简单的实际问题用一次函数或正比例函数表示出来

作业:P97     1。2。3。4。

篇20:一次函数说课稿

一、教材分析

(一)本节内容在教材中的地位和作用

本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

二、学情分析

本节课主要是研究一次函数的图象与性质,是在学习了正比例函数的.图象与性质,并初步了解了如何研究一个具体函数的图象与性质的基础上进的。原有知识与经验对本节课的学习有着积极的促进作用,在前后知识的比较中,学生进一步理解知识,促进认知结构的完善,发展、比较、抽象与概括能力,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,在函数图象及其性质的探索活动中,应给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。

(二) 教学目标

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

3、掌握一次函数的性质。

过程与方法:

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)教学重点难点

教学重点:一次函数的图象和性质。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

二、教法学法

1、教学方法

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法――利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法――利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

【一次函数教案】相关文章:

1.《一次函数》教案

2.一次函数知识点

3.数学教案-一次函数

4.《一次函数图象的应用》教案

5.二元一次方程与一次函数的教案

6.人教版一次函数说课稿

7.一次函数教学设计

8.一次函数知识点总结

9.初中一次函数说课稿

10.一次函数复习教学反思

下载word文档
《一次函数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部