欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>《三角形三边关系》教学设计 (人教版四年级下册)

《三角形三边关系》教学设计 (人教版四年级下册)

2024-08-12 07:35:43 收藏本文 下载本文

“martin200904”通过精心收集,向本站投稿了16篇《三角形三边关系》教学设计 (人教版四年级下册),以下是小编为大家整理后的《三角形三边关系》教学设计 (人教版四年级下册),仅供参考,欢迎大家阅读。

《三角形三边关系》教学设计 (人教版四年级下册)

篇1:《三角形三边关系》教学设计 (人教版四年级下册)

《三角形三边关系》教学设计

【教材分析和设计意图】:“三角形三边的关系”是人教版课程标准实验教材四年级下册“三角形”中的第二课时,该课时是在学生初步了解了三角形的定义的基础上,进一步研究三角形的特征,即三角形任意两边的和大于第三边。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准,熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。教学中,教师根据认知起点和学习起点,首先联系图题图猜想设疑尝试解决问题,然后设计让学生搭建三角形的动手操作活动,使学生一开始就进入学习状态,同时也可产生认知冲突,为后面的学习铺好路。在教师的引导下,当学生发现三角形三边的关系后,教师这时再出示书上的一组数据让学生判断,训练学生灵活运用知识的能力,接下来教师回归情景图,体会数学知识的实际运用。本节课的后半部主要是出示一些实际问题,让学生在解决问题地过程中理解、掌握本节课的重点。

【教学目标】:

1、通过动手操作,探究三角形三边的关系,知道三角形任意两条边的和大于第三边。

2、让学生经历探究数学的过程:猜测-实验-结论,感受数学思想在生活、学习中的作用。

3、根据三角形三边的关系解释生活中的现象,提高运用数学知识解决生活问题的能力。

【教学重难点】:

1、探究三角形三边的关系,知道三角形任意两条边的和大于第三边。

2、能根据三角形三边的关系来解决实际问题。

【教学过程】:

一、复习导入,猜想质疑,感受三角形三边关系

1、复习三角形知识

师:以前我们学习了好多平面图形,给你一个图形,你能叫出他的名字吗?(三条线段围成)

师:判断下面这三个图形是不是三角形?说说你的理由?(三条线段首尾相接)

2、学生操作引出课题

请学生上演示台操作围三角形

1)4  9  8 (能围成)         2)4   9   15  (无法围成)

(讨论围成三角形应该注意的方法)    板书课题:三角形三条边的关系

二、动手操作,探究合作,初步了解三角形三边关系。

1、用4厘米、4厘米、6厘米、10厘米、12厘米五根小棒拼三角形。

师:同学们是不是都想亲手实验下到底能不能围成三角形?刚才老师给你们每一组的都放一个信封,里面5根小棒,长度分别是4厘米、4厘米、6厘米、12厘米、14厘米然后你可以用直尺测量验证下他的长度……(结合课件讲清楚操作要求)

师:好!下面请同学们分小组开始活动。

(学生分小组活动)

2、小组交流,达成共识

(1)、哪一小组来说说哪三根小棒能围成三角形,哪三根不能围成三角形。其它小组认真听看看你们的结论和他们的有什么不同?

(2)、教师根据学生的交流板书表格

不能围成

4 4 12

4 4 14

4 6 12

4 6 14

能围成

4 4 6

4 12 14

6 12 14

(3)、任选一组集体讨论不能围成围成三角形的原因

A、集体讨论不能围成的原因。(因为两条短边之和小于第三边)

B、课件演示(4、6、12)不能围成三角形的动态过程

C、同理讨论另外几组不能围成三角形的原因。

(4)、任选一组集体讨论能围成的三角形的原因

A、集体讨论能围成的原因。(因为两条长边大于第三边)

B、课件演示(4、12、14)能围成三角形的动态过程

C、同理讨论另外几组能围成三角形的原因。

(5)课件出示(4、6、10)能不能围成三角形

A、集体讨论不能围成的原因。(因为两条长边等于第三边)

B、学生猜测、推理验证能不能围成三角形?

C、课件演示(4、6、10)不能围成三角形的动态过程

3、通过刚才实验我们都同意这几组能围成,这几组围不成。请大家想一想:

师:能围成三角形的三边有什么关系? 不能围成三角形的三边有什么关系?可以结合刚才的实验用你自己的话说说看。(课件)

4、分析讨论

预设1、(有的学生直接用两条短边相加大于长边来说明):两条短边的和大于长边能围成三角形;两条短边之和小于或者等于长边就不能围成三角形。(结合摆出的三角形)

针对设计:刚才同学们的发现很有价值,那是不是真的只要两短边的和大于长边就可以围成三角形呢?

生:因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边,所以我们就可以直接用两条短边之和大于长边就可以判断能不能围成三角形就行了。

师:嗯,说的非常好,你能结合一个能围成的三角形来深入分析给大家听么?

生:我以(4、12、14)这三条线段为例,两条短边4+12大于长边14,那么长边14加一条短边4一定也大于10,长边14加10也一定大于4…………所以我只要判断两条短边加起来是不是大于长边就可以知道这三条边能不能围成三角形。

………

预设2、(学生可能会结合具体能围成的三角形分析):4、12、14能围成,因为 4加12大于14。针对设计:(他发现了这一点你还有什么发现?)那12+14和4比较呢?4+12和14比较呢?

板书:4+12>14

4+14>12

12+14>4

还有一组可以围成的三边我们也这样来写一写,同学们说,老师写。(板书)

………

师:你能不能用一句话来概括一下。(两条边相加大于另外一条边)另外一条边我们让它跟前两条边区分开,把它称为第三边可以吗?(板书:两边之和大于第三边)

师:我们再来看看(指着4、6、12)这里4+12>6 6+12>4 ,那他为什么也不能围成三角形呢?

……

师:那么刚才两边之和大于第三边这句话是否严谨?大家觉得应该怎么说才合适?

(只要大致方向接近就行,学生没说出任意,教师就直接板书说明)

板书:任意

5、刚才我们一直在讨论怎么样的三条线段能围成三角形,那么是不是每个三角形的任意两边之和都大于第三边呢?

学生书本上找一个三角形,测量验证任意两边之和大于第三边

6、你能用自己的话来说说“三角形任意两边之和大于第三边”是什么意思么?

【能围成三角形的三条边必须满足任意两边之和大于第三边,每一个三角形的任意两边之和都大于第三边。】

三、巩固练习,培养能力,深入了解掌握三角形三边关系。

1、回归主题,解决问题

师:同学们刚才的探讨很有价值,我们发现了其中的数学问题,通过自己的思考、探讨,也能解决问题。这就是我们今天一起学习的三角形的另外一个特征。

出示课本主题图,让学生分析分析小明去学校应该走那条路?为什么?

2、完成课本练习

师:请同学们翻书到第86页,自己独立做第4题。

(学生做完后汇报展示,并说明判断的方法)

师:你们不仅能用今天的所学来解决问题,还找到了最佳的判断方法,能力真是不可限量啊!

四、拓展延伸,丰富充实,有效提升学生思维空间

师:通过上面的学习,老师欣喜地发现同学们不仅能自主、能动地学习新知,而且能将所学的知识用于解决实际问题之中。下面老师这儿有几道题想让你们来帮忙一起解决下。(课件出示题目,根据学生学习情况和时间选取题目)

1、题目1:李木匠有两根长4米和9米的木条,他想再找一根木条组成一个三角形,你能帮他算算看,配一根多少长的合适?

2、题目2:用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(机动)

【课堂小结】:同学们今天表现非常棒,不仅能猜想,而且能通过实践,利用所学知识解决实际问题,老师为你们骄傲,我相信,只要同学们一如既往,灿烂的明天一定会与你拥抱。

篇2:《三角形三边的关系》教学设计 (人教新课标四年级下册)

咸丰县丁寨乡蒲草小学    张敏

【教材分析】

本节教学的《三角形三边的关系》是人教版课程标准实验教材四年级下册第82页的内容。三角形三边关系是在学生已经初步认识角,认识三角形,知道三角形有3条边,3个顶点,三个角,以及三角形具有稳定性的学习基础上的延伸。本节教材强调通过直观操作来认识、体验、探索图形的性质。让学生通过操作获得一些数据,特别重视对探索过程的亲身体验。学好这部分内容,不仅可以丰富学生对三角形的认识和理解,培养学生思维的严密性,发展学生的空间观念,同时还为后续的几何图形知识的学习积累一定的经验。

【学生分析】

在以往空间与图形的学习过程中,学生已初步养成了动手操作的意识;对角、三角形的分类等建立了基本概念。但学生从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践脱离的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。

【设计理念】

“三角形三边的关系”是人教版课程标准实验教材四年级下册“三角形”中的第三课时,该课时是在学生初步了解了三角形的定义的基础上,进一步研究三角形的特征,即三角形任意两边的和大于第三边。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准,熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。教学中,教师根据小学生喜欢玩的天性,首先设计让学生折塑料管引发学生猜想,使学生一开始就进入学习状态,同时产生认知冲突,为后面的学习铺好路。再用小棒围三角形进行验证,引导学生动手操作、观察比较、交流、抽象概括,当学生发现三角形三边的关系后,教师这时再出示书上的一组数据让学生判断,训练学生灵活运用知识的能力,接下来教师出示书上的情景图,让学生学会运用知识解决实际问题,这一环节的设计,主要是引导学生学会看书,毕竟书本是我们学习最直接的资料之一,我们应好好的加以运用。本节课的后半部主要是出示一些实际问题,让学生在解决问题地过程中理解、掌握本节课的重点。

【学习目标】

知识与技能:使学生发现并理解:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦

教学重点:三角形三边关系的实验与探究。

教学难点:利用三角形三条边之间的关系解决实际问题。

【教学准备】课件、饮料吸管、小棒

【教学过程】:

一、设疑导入

1、设疑。

师:请同学们看屏幕,你看到了什么图形?

生:三角形

师:几条线段可以围成一个三角形?(三条)三条线段一定可以围成一个三角形吗?

学生讨论,然后在小组内交流自己的想法。

2、折饮料管初步感知

请学生将饮料吸管任意折成三段,看能否围成一个三角形。

师:刚才大家都非常积极主动,不过有的同学能围成一个三角形,有的同学却不能,这里面有什么奥秘呢?哪位同学来展示一下自己没有围成三角形的作品?

展示作品,思考怎样才能使它围成一个三角形?

组织学生讨论,交流汇报:

生1:如果上面两根短的小棒的长度的和与长的小棒相等,就能围成一个三角形了。

生2:我不同意你的看法,因为上面的两根短的小棒的长度的和与长的小棒相等时,组合成的图形就平行或者重合了。

生3:我认为只有上面两根小棒的长度的和大于下面的小棒,才可能围成一个三角形。

师:刚才,同学们都发表了各自的看法,有的同学认为两根短的小棒的长度的和与长的小棒相等,可以围成一个三角形。也有的同学反对,还有的认为两根小棒的长度的和大于长的小棒,才可能围成一个三角形。然而,这仅仅是我们的猜想。什么样的三根小棒才可以围成一个三角形呢?看来三角形的三条边之间一定存在着某种特殊的关系,那是什么呢?今天啊,我们就来当一回小小数学家,去探索和发现三角形三边之间的关系。(板书:三角形边的关系)

【设计意图:学生通过折饮料吸管,在实践中发现数学问题,引发了认知冲突。教师组织学生讨论让学生初步感知能否围成一个三角形,与三角形的三条边长度有关,为学生进一步学习“三角形三边的关系”指明探索方向。】

二、实验感悟

1、合作探究

师:为了弄明白三角形三条边之间的关系,我们来做一个实验:

学生拿出课前准备好的信封,内有4厘米、5厘米、6厘米、和10厘米的小棒各一根

师:我们先来学习“小组合作学习”的要求(课件显示,指名朗读)

操作要求:

①测量每一组三根小棒的长度,并填入实验记录表中。

②算一算、比一比,每组任意两根小棒的长度和与第三根小棒长度的关系。

③一人记录,两人用小棒搭建三角形,小组长负责指导。

学生分组实验,师巡视指导。

2.汇报交流结果

师:请各小组汇报、展示实验结果。

实验结果记录表(能围成三角形的画“√”,不能围成三角形的画“×”)

小棒的长度(厘米) 能否围成三角形

第一根 第二根 第三根

4 5 10

4 6 10

5 6 10

4 5 6

【设计意图:放手让学生做实验探究规律,比教师平铺直叙更有利于知识的内化,让学生动手量一量、比一比等实验探究活动能更有效地帮助学生经历知识的形成过程,发现三角形任意两边的和与第三边的关系。】

3.探索发现

师:请大家把刚才实验的结果分成两类,怎么分?

根据各小组的汇报进行整理。

表中:不能围成三角形的是那几组数据?任意两边的和与第三边的关系怎样?

表中:能围成三角形的是那几组数据?任意两边的和与第三边的关系怎样?

(1)探究三根小棒不能围成三角形的原因。

①师:同学们通过动手实践,发现4厘米、5厘米和10厘米这3根小棒不能围三角形,咱们再来验证一下。

课件演示:当三根小棒分别是4厘米、5厘米和10厘米的时候,围不成三角形。

师:为什么围不成呢?你会用一个数学关系式表示出它们的关系吗?

引导学生得出:4+5<10,所以围不成,并填入表一。

②师:下面我们再来验证一下4厘米、6厘米和10厘米这组小棒。

课件演示:当三根小棒分别是4厘米、6厘米和10厘米的时候,也围不成三角形。

师:为什么围不成呢?你会用一个数学关系式表示出它们的关系吗?

引导学生得出:4+6=10,所以围不成,并填入表一。

师:请大家认真观察表一,说一说什么样的3根小棒或3条线段不能围成三角形?

引导学生说出:两根小棒(线段)的长度的和小于或等于第三根小棒(线段),这样的3根小棒(线段)不能围成一个三角形。

(板书:两条线段之和≤第三条线段→不能围成三角形)

【设计意图:在学生通过实验操作,获得较丰富的感性认识的基础上,引导学生算一算、观察比较,并借助课件直观的演示和教师适时、适度的点拨,让学生自主发现不能围成三角形的原因。】

(2)探究三角形三边的关系。

①猜想:

师:两根小棒(线段)之和小于或者等于第三根小棒(线段),这样的三根小棒(线段)不能围成三角形。请同学们猜一猜,什么情况下三根小棒或三条线段一定能围成一个三角形?

生:两根小棒(线段)的和大于第三根小棒(线段)→能围成三角形

(生猜出“两根小棒(线段)的和大于第三根小棒(线段)→能围成三角形”后师板书:两边的和大于第三边→能围成三角形,同时,教师在旁边画上“?”)

②验证猜想:

师:你们的猜想对不对呢?请大家拿出表二,先用数学关系式表示能围成三角形的三根小棒的长度关系,看看谁能从中发现三角形三边的关系,并验证自己的猜想。

生小组讨论、验证,填写表二。

生分组汇报验证过程与结论。

③完善猜想:

质疑:同学们有没有发现(引导学生观察表一),咱们在动手操作的时候得出4厘米、5厘米和10厘米这3根小棒不能围成一个三角形,可是4+10>5呀,5+10>4呀(师把这两个式子填在表一中),这符合我们刚刚得出的结论啊?怎么回事呢?

下面先请大家把表一填写完整,再与表二比较,看看有什么新的发现?同桌可以互相讨论。

生讨论后汇报、交流,引导学生明确:给定的3条线段或3根小棒,不管哪两条线段(小棒)相加的和都比第三条线段(小棒)大,就能确定这3条线段或3根小棒一定能围成一个三角形。

进一步引导学生抽象出:三角形任意两边的和大于第三边。

师:谁能告诉老师,你是怎么理解“任意”的意思?

(三角形中不管哪两条边相加的和都比第三边大)

【设计意图:4+10>5,而4厘米、5厘米和10厘米这3根小棒却围不成三角形,给学生制造矛盾,引发思维冲突,引导学生自觉进行深入、周密的深层次思考,发现只通过一组“两条线段的和>第三条线段”来判断给定的三条线段能否围成三角形是不全面的,进而明确“给定的3条线段,不管哪两条线段相加的和都比第三条线段大,这样的三条线段才能围成一个三角形”,这样学生对“任意”的理解也就水到渠成了。】

三、巩固深化

师:刚才大家通过实验、探索,发现了三角形三条边的关系。

1.独立完成课本P86第4题。

师:刚才同学们通过自己的探索,发现了“三角形任意两边的和一定大于第三边”这一数学规律,表现得非常棒,现在你能运用这个结论来判断给出的三条边能否围成一个三角形吗?

逐题出示:

(1) 3厘米 5厘米 4厘米        (2)7厘米4厘米 3厘米

(3)2厘米 6厘米 2厘米         (4)3厘米 3厘米 5厘米

生:汇报,并说明判断的方法,然后课件演示验证。

师:你们都是这样判断的吗?有没有更快捷的方法呢?能说说为什么吗?

(生:我是先找出较短的两条边比较它们的与剩下的第三条边的大小,如果和大一些,能拼成三角形;如果和相等或小一些,则不能拼成三角形,因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边。)

师:是的,所以我们在判断三条边能否围成三角形时往往只要看较短的两条边的和能否大于三条边,这种方法既快又对。

2.生活中的数学

出示:

师: 通过刚才的练习,你们不仅掌握了判断某三条边能否围成一个三角形,并且还找出了最佳的判断方法,可见只要大家肯动脑筋,一定会取得令人满意的结论的。下面请同学们观察小明上学示意图,有几条路可以走?你会选哪条路?请说说你选择的依据?

3、拓展

为10厘米、4厘米两根吸管再配一根吸管围成三角形,还可以配多长的吸管?有多少种方法?有范围限制吗?

【设计意图:联系生活实际,充分挖掘教材资源,练习设计层层深入,既巩固了新知,又拓展了学生的思维,培养了学生的创新意识和解决问题的能力】

四、回顾总结

师:通过这节课的学习你有什么收获?是怎样学习的?还有哪些不明白的?

【通过谈收获,说方法,提疑问,学生间互相补充,共同完善,有利于培养学生的学习能力,有利于帮助学生形成自我反思的意识】

五、教学反思

三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。因此教学中我很注重引导学生在已有的知识与经验的基础上展开教学,通过动手操作实验、合作学习、讨论交流等学习活动,引导学生自主探索发现数学规律,亲历体验数学、感悟数学的过程,感受成功的喜悦和数学的魅力,较好完成了本节课的预期目标。我将从以下三方面反思本节课的课堂教学:

一、以学生为主体,关注学生亲身经历知识的形成过程。本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分--让学生折饮料吸管进行操作活动引导学生猜想“三根小棒或三条线段能否围成一个三角形,可能与什么有关?”从而很容易得出“与三根小棒或三条线段的长度有关系”,那么它们之间有着怎样的关系呢?今天我们就一起来研究这个问题。这样很自然地激起学生的探究欲望,为后面的新课做了铺垫。二是新授部分:学生用手中的学具(小棒等)按要求围三角形,并且做好记录。这个活动为每个学生提供了自主参与的平台--动手操作、观察比较、讨论交流、抽象概括,让每个学生都能成为数学知识的探究者、发现者,在此基础上观察、发现、比较,从而得出结论。教学中,我设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。

二、整合教材,动态呈现,让教材“活”起来。

现代课程论主张 “用教材教”,教师不应只是被动的课程执行者,而应成为课程的开发者和创造者。根据教学要求,从学生的实际出发,创造性地处理教材--合理取舍,科学整合,适当延伸。改变教材的呈现形式,合理运用课件,把静止的画面变为动态的、有利于激发学生兴趣的、有利于学生主动参与数学活动和引发数学问题的情境,给学生营造浓浓的探究氛围,为学生搭建广阔的探究平台,促使学生积极地去进行探索,使学生学得更积极主动、富有个性。本节课我根据教学内容的特点和学生的实际情况,跳出教材,先让学生折饮料吸管引发学生猜想,再用小棒围三角形进行验证,让学生在具体操作活动中,产生思维冲突,激起学生的问题意识和探究意识,而对于书上的生活情境主题图--“小明上学问题”,我调整到巩固应用环节,同样也让学生体会到数学与生活的密切联系以及学习数学的价值

三、练习设计层层深入

本节课我设计了三个练习:1、判断能否围成三角形。2、小明从家到学校走哪条路最近? 3、配第三根吸管。

一节数学课,学习效果好不好?最直接有效的方式就是通过练习得到的反馈。而学生之间参差不齐,为了能兼顾全班学生的整体水平,我在练习设计上紧密联系学生生活实际,充分挖掘教材资源,主要采用了层层深入的原则,先是基础知识的练习;然后用三角形的知识解决实际问题;最后增加拓展延伸题,让优等生在这个知识点上的学习更进一步。而每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能激发优等生的学习兴趣,让全班学生共同进步。

篇3:四年级数学下册《三角形三边的关系》的教学反思

北师大版四年级数学下册《三角形三边的关系》的教学反思

“三角形的三边关系”是人教版数学四年级下册的内容,这节课的内容安排在三角形特征之后,分类之前进行教学的。教材首先呈现了小明从家去学校的生活场景,通过这样一个学生熟悉的生活情景,引发学生对三角形三边的思考,接着呈现学生以小组合作学习的方式进行合作、探究、发现规律,形成结论的过程,最后揭示“为什么小明上学走中间这条路最近?”所蕴含的道理,体现了数学源于生活,反过来服务于生活的数学理念。

而我对这一部分教学内容进行了重组。首先我出示了分別由三条线段组成的三个图形,让学生说“哪个是三角形?”学生很容易找到,接着问他们“什么是三角形了?”学生说后出示小学和初中课本中的三角形定义,目的`是为了夯实三角形的概念,从而为下面的动手实践“围三角形”扫清障碍。接着,我安排了两次动手操作活动,使学生在动手、动口、动脑等活动中,初步感悟,理解三角形三边的关系,为下一次环节规律的总结,知识的建构做好充分的准备,同时,用课件直观演示“围三角形”的过程和用投影仪展示“画一画,比一比”的结果,使学生理解了三角形三边之间的关系,再次把学生的思维激活,从而进一步深化了对规律内涵的理解。最后,再出示“小明去学校”的主题图,让学生说“为什么选择中间那条路?”让学生深刻的的感受到“生活中处处有数学”,从而学会用数学的眼光观察和分析周围的世界。练习设计力求多层次,让学生的思维在巧妙的设疑中引向深入,做到学以致用。

本节课通过让学生动手实践,认真思考、合作交流、共同分享,引领学生经历了一次“研究与发现”的完整过程,调动学生的多种感官参与学习活动体现了自主、合作、探究的教学方式,体现了以生为本的教学理念,既注重数学知识教学,更注重数学学习方法和数学思想的渗透,从而养成深入思考的良好学习习惯。

这一节课也有很多遗憾的地方。比如:在汇报不能围成三角形的数据时,有位同学说:“9厘米、10厘米、11厘米能围成三角形时,教者并没有记录,而是强调要不能围成三角形的数据时,这样做打消了这位同学的学习积极性;有的同学回答不够全面时,教者让其他同学进行补充……以上情况出现时,教者没有及时给予启发,引导学生得到正确、完整的答案,让学生能“体面的坐下”,这说明教者在教学过程中没有灵活的教学机智,以后要多多关注学生的情感,对学生进行积极性评价。

一节课结束了,但留给我们教者的思考却很多:如何真正体现以生为本的教学思想?如何为学生后续学习和工作打好基础,铺平道路?如何打造高效课堂?在我今后的教学中这些都是值得深思的课题。

篇4:小学四年级数学下册《三角形三边的关系》教学反思

关于小学四年级数学下册《三角形三边的关系》教学反思

核心提示:《三角形三边的关系》是四年级下册内容,是在学生已经初步认识三角形的基础上,使学生进一步深化理解三角形的组成特征,即三角形任意两边的和大于第三边,加深对三角形的认识。

《三角形三边的关系》是四年级下册内容,是在学生已经初步认识三角形的基础上,使学生进一步深化理解三角形的组成特征,即三角形任意两边的和大于第三边,加深对三角形的认识。在探索三角形边的关系过程中,让学生体验通过对实验数据收集、整理、分析,从中发现和归纳结论的方法。学生都知道三角形是由三条线段围成,但是对于“任意的'三条线段不一定都能围成三角形”这一知识却似懂非懂。另外,“三角形任意两边的和大于第三边”的结论,对于学生来说理解并不是非常困难,此内容的教学价值更多的在于过程和方法。因此,在教学中应尽量地为学生提供探索的空间,引导学生围绕问题主动地进行观察、实验、猜测、验证、推理等数学探究活动,让学生自主地“做”和“悟”,从而得出结论。再次,学生的操作材料(吸管和小棒)都有一定的粗细,在实践操作时难免产生误差,此时,可恰当地运用多媒体动态演示,能有效地突破教学难点。

本节课的教学,我认为重点在于探究的过程与方法。通过动手用三根吸管围三角形(有的能围成,有的围不成),引导学生进行观察、实验、猜测、验证等数学探究活动,初步感悟到:“当任意两边的和大于第三边时,能围成三角形”的规律。本节课,我设计了一连串的问题:“为什么这三根吸管围不成三角形?”、“怎样的三根吸管能围成三角形?”、“第三根小棒的长度应在哪个取值范围内?”引导学生发表自己的观点,并对他人的观点发表自己的意见,进行质疑。这样,学生能通过一个个问题的解决深化对知识的理解,完善结论,使学生的思维得到提升,认知产生飞跃。最后通过发挥多媒体教学的优势,最大限度地提高教学效果。三角形边的关系比较抽象,而且在动手操作时,很容易产生误差。课件应用,能动态呈现出来,为突破本节课的难点起到了至关重要的作用。例如:在验证“当较短的两根小棒长度之和等于第三根”能否围成三角形的猜想时,学生意见不一,因为小棒是圆形的有一定的粗细,所以在围三角形时很容易产生误差,误导学生。利用课件引导学生明白当较短的两根小棒的端点搭在一起时,就与第三条线段完全重合了,围不成三角形,直观形象地突破了难点。

篇5:三角形的内角和 教学设计(人教版四年级下册)

第1课时 三角形的内角和

1.学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【重点】 探究发现和验证“三角形的内角和为180度”这一规律的过程,并归纳总结出规律。

【难点】 理解并掌握三角形的内角和是180度。

【教师准备】 PPT课件、三角尺。

【学生准备】 各类三角形、长方形、正方形、量角器、剪刀、活动记录表等。

小游戏:猜一猜藏在信封后面的是什么三角形?

预设 生1:第一个是直角三角形。

生2:第二个是钝角三角形。

生3:第三个可能是锐角三角形,可能是直角三角形,也可能是钝角三角形。

师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定它一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?

揭示课题:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。(板书课题:三角形的内角和)

[设计意图] 创设的不是生活中的情境,而是数学化的情境。有的学生认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释“不能是这样”,而不能解释“为什么不能是这样”。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

教学例6,三角形的内角和是180度。

1.介绍内角、内角和。

出示一个三角形。

师:这个三角形的内角在哪?谁上来给同学们指一指。

(学生上台指)

师:同学们,已经知道了什么是三角形的内角,那么谁来说说三角形的内角和指的是什么?

预设 生:三角形的内角和就是把它的三个内角的度数加起来。

师:计量内角和的单位是度,可以估计一下,各种各样的三角形的内角和是不是一个固定的数?有可能会是多少度?把你的猜想也写在本上。

(学生自己写一写)

师:我们这节课就来一起探究用哪些方法能知道三角形的内角和。

2.确定研究范围。

师:研究三角形的内角和是不是应该包括所有的三角形?只研究黑板上这一个行不行?

预设 生:不行。

师:那就随便画,挨个研究吧。

预设 生:太麻烦了。

师:请你想个办法吧!

(引导学生分析研究哪几类三角形,就能代表所有的三角形这个问题)

预设 生:可以研究一个锐角三角形,一个直角三角形,一个钝角三角形。

3.动手操作实践。

师:请每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,把每个角标上序号。

师:先试着研究自己的三角形,然后再共同研究小组里其他同学的三角形,看看各种三角形内角和是不是一样的。

(学生动手操作试验,在小组中讨论问题)

4.汇报交流。(预设约15~20分)

(1)测量的方法。

预设 生:我们组是采用测量的方法,三个角的度数加在一起大约是180°。

师:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

(2)剪拼的方法。

预设 生:我们组采用的是剪拼的方法,把三个角剪下来,然后拼成了一个平角,所以我们认为三个角的度数和是180°。

师:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。

(教师和学生剪一剪、拼一拼)

师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺像的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

(3)折拼的方法。

预设 生:我们组采用的是折拼的方法,通过折,然后拼成了一个平角,所以我们组也认为三个角的度数和是180°。

师:我们要研究三角形的内角和实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

师:这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

(4)演绎推理的方法。

(借助学过的长方形,把一个长方形沿对角线分成两个三角形)

师:你认为这种方法好不好?我们看看是不是这么回事。

(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等180°)

师:这种方法避免了在剪拼过程中操作出现的误差,非常准确地说明了三角形的内角和一定是180度。

5.验证猜想。

师:请学生把刚才研究的三角形举起来,分别是锐角三角形、直角三角形、钝角三角形,这三类的三角形内角和都是180度,那就可以说所有的三角形的内角和都是180度。

这个结论和课前刚才知道的或猜的一样吗?

预设 生:是一样的。

6.进一步感受。

(1)三角形内角和与三角形大小的关系。

教师出示一个小三角形。

师:内角和是多少度?  预设 生:180度。

再出示一个大的等腰三角形。

师:它的内角和是多少度?  预设 生:180度。

(2)三角形内角和与三角形形状的关系。

(演示用几何画板制作的可以不断变化的三角形)

师:仔细观察,在这个过程中,什么变化了?什么没变化?

预设 生:三个角的度数都在变化,内角和却总是不变的。

师:你有什么新发现吗?

预设 生:三角形的内角和与三角形的形状、大小都没有关系,都是180度。

7.巩固练习。

选一选。

(1)一个等腰三角形,顶角是100°,一个底角是( )。

A.140° B.40° C.55°

(2)一个三角形中,有一个角是65°,另外的两个角可能是( )。

A.95°,20° B.45°,80° C.65°,60°

【参考答案】 (1)B (2)A

[设计意图] 为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

1.完成教材第67页“做一做”。

学生独立完成,完成后集体订正。

2.完成教材第69页“练习十六”第1,3题。

学生独立完成,然后集体订正。

篇6:三角形的特性 教学设计 (人教版四年级下册)

教学内容:

义务教育课程标准实验教科书四年级下册P80、P81内容。

教学目标:

1、知识与技能: 通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

2、过程与方法 : 通过实验,使学生知道三角形的稳定性及其在生活中的应用。

3、情感态度与价值观:培养学生观察、操作能力和应用数学知识解决问题的能力。体验数学与生活的联系,培养学生数学兴趣。

教学重点:

1、建立三角形的概念,认识三角形各部分的名称,知道三角形的底和高。

2、在观察、实验中发现三角形有稳定性。

教学难点:会画三角形指定底边上的高。

教学关键:要联系生活实际,让学生在充分感知的基础上抽象出三角形的图形,从而认识三角形的特性。

学具准备:长方形框架、、课件、自制三角形框架。

教学过程:

一、联系生活,情景导入.

1、展示课本80页情景图:我们的城市日新月异,每天都有新的变化。瞧,这是正在建设的会展中心,不久的将来就会建成,成为城市标志性建筑。你在建筑框架上、吊车上发现你比较熟悉的图形了吗?请你描述几个三角形。

2.导入课题.

三角形在生活中有很广泛的应用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题:三角形的特性)

二、师生互动,引导探索。

1、概括三角形的定义。

(1)画一画。

师:请你在纸上画一个自己喜欢的三角形。并和同桌边指边说一说三角形有几条边?几个角?几个顶点?

师黑板上画一个三角形,让学生说出各部分的名称师板书。

(2)摆一摆。

师:每根小棒相当于一条线段。请你动手用三根小棒摆一个三角形。

找一学生上投影前摆一摆,并说一说是怎么摆的?

(3)看一看。

老师也摆了一个三角形,课件出示。

你们有什么看法?

教师用课件演示并强调:有三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。组织学生在讨论中理解“三条线段”“围成”的确切含义。

(4)找一找。

下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。(学生一起用手势表示)

2.发现三角形的特征.

观察三角形有什么特点?

讨论结果:三角形有三条边、三个角、三个顶点。

让学生在自己画的三角形上尝试标出边、角、顶点。

3、识三角形的底和高,并画高.

(1)你会画平行四边形和梯形的高吗?你对它们的高有什么样的认识,三角形是不是也有自己的高?你觉得画三角形的高应注意什么问题?让学生说一说。

生1:高要用虚线画。

生2:要标垂直符号

(2)教师规范学生的说法:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

明确:代表高的这条线段要画成虚线段。

使学生明确一条边对应一个顶点。

(4)学生试着画AB边上的高。

(5)师:我们刚才画了三角形ABC的一组底和高,想想,每个三角形只有一组底和高吗?学生尝试画出其它的底和高。

引导学生明确:三角形的底和高不止一个,从任何一个顶点都可以向它的对边作高.这样三角形就有3个底和3个高.

4.三角形的特性.

围篱笆。

书上86页第3题:小白兔和小猴子的方法,谁的更牢固,为什么?引出三角形的稳定性

(1)用三角形木框实验。

师:用手拉一拉这个三角形,你有什么感觉? 发现了什么?同桌互相演示,并说一说.

学生得出结论:三角形的木框不易变形.

(2)实验:

师:你再试着拉一拉平行四边形、(用木条钉成的)学具,感觉如何?你发现了什么?(这些图形很容易变形)

师问:要使平行四边形不变形,应怎么办?生:(加一条边构成一个三角形)

(3)揭示特性:三角形具有稳定性的特性。

2.让学生举例说明在生活中哪些物体上利用了三角形的稳定性。

3.师投影展示:展示收集到的有关三角形的图片.电视接收塔、自行车、大桥等。

(4)师小结:房架、自行车架等之所以制成三角形的其中很重要的一个原因是利用了三角形的稳定性,使其结实耐用.

三、运用新知,巩固练习

1.填空。

(1) 三角形是由(   )条边、(   )个顶点、(   )个角组成的。

(2) 三角形具有(   )性。

(3) 三角形有(   )条高。

2.判断。

(1)由三条线围成的图形是三角形。(   )

(2)三角形有无数条高。(   )

(3)自行车车架运用了三角形的稳定性原理。(   )

3.巧手实践。

(1)老师的凳子使用了很多年,最近有点儿摇摇晃晃,谁能利用我们今天所学的知识想一个办法把它修理稳当呢?

(2)路边一棵树不牢固了,要把大树固定住,可是路边只有一根木棍,怎么办?

4.作图:画出下图三角形的三条高。

(设计意图:练习设计具有阶梯性,既巩固基本的知识点,强化教学的重点和难点,又能使优生得到扩展,让不同的学生数学上有不同的发展。)

四、小结评价,交流反思。

师:同学们,这节数学课你们学得开心吗?你从快乐中学道了哪些知识?谈谈自己的收获好吗?

(学生说收获)

师:是啊!生活中处处有数学,数学和大家的生活紧密联系,老师希望大家能从生活中学到更多的数学知识。

篇7:三角形的分类教学设计 (人教版四年级下册)

《三角形的分类》教学设计

仙游县坝下中心小学   杨香素

设计理念:

数学课程标准指出:有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本课的教学遵循学生的认知特点,为学生提供大量的观察、思考、操作、合作、交流、验证等空间和时间,使学生在自主探究和合作交流中,学会给三角形分类,掌握各类三角形的特征,体会数学的思想方法并获得广泛的数学获得经验。

教学内容:

人教版小学数学四年级下册第83-84页的内容。

学情与教材分析:

三角形对于学生来说是比较熟悉的,三角形的基本特征和各部分名称学生都已经掌握,而且学生已经学过了角的分类,认识了各种角的特征,这对于学生进一步学习三角形的分类打下了扎实的基础,在三角形分类的过程中,能沟通知识间的联系,掌握各种三角形的特征,培养学生的探究意识和合作意识。提高解决实际问题的能力,发展学生的空间观念。

教学目标:

1、通过观察、操作、比较,会根据三角形的角和边的特点进行分类,掌握各种三角形的特征。

2、在活动中渗透分类和集合的数学思想,培养学生动手操作能力和归纳概括能力,进一步发展学生的空间观念。

3、在三角形分类的过程中,沟通知识间的联系,培养学生的探究意识和合作意识。

教学重点:

会根据角和边的特点给三角形分类。

教学难点:

掌握各种三角形的特征。

教学准备:

课件、各类三角形学具、实验报告单、量角器、尺子等。

教学过程:

课前互动:用手比角。

一、创设情境,复习旧知

1、猜谜,复习旧知

师:孩子们,喜欢猜谜吗?(喜欢)今天,老师给大家带来了一个谜语,猜猜看。

课件出示:

形状似座山,

稳定性能坚。

三竿首尾连,

学问不简单。

--打一几何图形

师追问:猜得真准!你是怎么猜出来的?

2、导入、揭示课题

师:三角形有三个角和三条边,它的稳定性在日常生活中有着广泛的应用。你瞧,今天三角形王国的许多朋友来了(课件出示:不同形状的三角形),它们的形状一样吗?(不一样)对,它们形态各异,各有各的特点。这节课咱们就根据它们的特点来分分类。(板书课题:三角形的分类)

(设计意图:趣味竞猜,引“生”入胜。通过竞猜,唤起学生对三角形的角和边的有意注意,激活学生的学习热情,做到“课伊始,趣亦生”。)

二、实践操作,探究分类

师:孩子们,认真想一想,你要根据什么来给这些三角形分类?有不同意见吗?对,分类要按一定的标准进行,三角形可以按三个角和三条边的特点进行分类。接下来我们先按角来分。

(一)、按角分

1、师:老师把这些三角形放在小组长的1号信封里,在操作之前我们来看看学习提示,请位同学读一读。

学习提示:

A、每个组员从1号信封里取出2个三角形,仔细观察或比一比、量一量三角形三个角的每个角分别是什么角,标在三角形上。

B、有顺序地汇报,把同一类的三角形放在一起。

C、组长填写好报告单。

D、每组派一名代表汇报。

2、动手操作,合作分类。

3、全班汇报交流、评价。

师:你们组分成几类?哪几个分成一类?有什么特点?有不一样的分法吗?

4、课件展示,并根据各类三角形的特点起名称。

5、小结,师介绍三角形按角分的集合图并板书集合图。

6、比较三种三角形的异同点。

7、小结

(二)、按边分

1、师:学会了按角的特点给三角形分类,我们再来研究按边分的三角形。我把这些三角形放在小组长的2号信封里。操作之前请看学习提示,请位同学读一读。

学习提示:

A、每个组员从2号信封里取出1个三角形,用自己喜欢的方式研究三角形三条边的长度,你发现了什么?

B、有顺序地汇报,把同一类的三角形放在一起。

C、每组派一名代表汇报。

2、动手操作,合作分类

3、全班汇报交流、评价。

4、课件展示,并根据各类三角形的特点起名称。

5、认识等腰三角形和等边三角形各部分的名称,以及等腰三角形两底角的关系和等边三角形的三个内角的关系。

6、说一说生活中见过的等腰三角形和等边三角形,课件展示。

7、小结。

(设计意图:“自主学习的过程实际就是教学活动的过程”。以活动促学习是本节的教学定位。在活动中,给学生足够的时间和空间,自由的、开放的探究数学知识的产生过程。通过看一看、想一想、议一议、分一分、猜一猜等多种形式的学习,为学生提供更多“数学对话”的机会,力求让学生真正地动起来,充分展现做中学,从而获得对三角形边、角特征的认识,进而学会给三角形分类,促进学生的分类、概括、推理以及动手操作能力的提高,使他们在活动的过程中感悟出数学的真谛,逐渐养成探索的习惯,培养学生合作意识和创新能力。)

三、巩固练习,内化提高

1、猜角游戏

师:把三角形藏起来,只露出一个角,你能猜出是哪种三角形吗?(课件分别出示:露出一个直角、一个钝角、一个锐角)

追问:你是怎么猜出来的?

2、在点子图中画一个自己喜欢的三角形。

投影展示,介绍既是什么三角形又是什么三角形的知识。

(设计意图:多形式、多层次的练习力求把学生带人一个活动场,一个思维场,一个情感场!学生在这个场域中游历,逐渐地内化知识、增长智慧、提升能力。)

四、全课总结,课外延伸

1、这节课你有什么收获和大家一起分享,说说吧!

2、完成课本第87页第5题。

3、用三角形拼一幅美丽的图案。

(设计意图:通过总结帮助学生统揽知识要领,完善认知,使得对三角形有有更全面更深刻的理解,再把知识从课堂延伸课外,有效沟通数学与生活,实现小课堂大社会,体会数学知识在生活中的应用价值。)

篇8:三角形的特性 教案教学设计(人教版四年级下册)

三角形的特性

吕忠平

教学内容:教科书第80、81页,练习十四第 l、2、3题。

教学目标:

1.通过动手操作和观察比较,使学生认识三角形,知道三角

形的特性及三角形高和底的含义,会在三角形内画高。

2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。

3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。

教学重点:

认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

教学难点:

会在三角形内三条边上画高。

教具、学具准备:

教师准备木条(或硬纸条)钉成的三角形和四边形。学生准备三角尺。

教学过程:

一、联系生活,情境导人

1.展示课本第80页情境图:同学们,我们以前学过三角形,仔细观察一下图上什么图形最多?

2.课件出示生活中哪些物体上也有三角形?

3.导入课题:其实三角形在我们的生活中有着广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。

板书课题:三角形的特性

二、操作感知,理解概念

1.发现三角形的特征。

请你画出一个自己喜爱的三角形。并小组说一说三角形有几个顶点、几条边、几个角?

教师根据学生的汇报,出示三角形各部分的名称。(课件展示)

2.概括三角形的定义。

引导:大家对三角形有了一定的了解,能不能用自己

的话概括一下,什么样的图形叫三角形?

三条线段围成的封闭图形(每相邻两条线段的端点相连)叫三角形。

3.练习  请学生对照上面的说法,议一议:下面的图形是不是三角形?(课件出示)并且你认为三角形的定义中哪些词最重要?

组织学生在讨论中理解“三条线段”“围成”。

4.用字母表示三角形

为了表达方便,用字母A、B、C分别表示三角形的三个顶点,上面的三角形可以表示成三角形ABC。

5.认识三角形的底和高。

(1) 应用课件联系生活实际进行展示得出以下结论

从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

(2)明确:三角形有几个底,每个底边对应的顶点在哪里(学生依次指出来),从哪里向哪里作高,这条高是谁的高?并提问:三角形共有几条高?

(3)课件展示如何画高。

(4)学生练习画高。

三、实验解疑,探索特性

1.提出问题。

同学们,在生活中三角形有着广泛的运用,仔细观察你能发现什么?生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?为了解决这个问题我们来做个实验吧。

2.实验解疑。

拿出预先做好的三角形和四边形,让学生拉一拉,有什么发现?

实验结果:三角形具有稳定性。

3.请学生举出生活中应用三角形稳定性的例子。

四、巩固运用,提高认识

指导学生完成练习

五、总结评价,质疑问难

这节课我们学习了什么?

篇9:《三角形的分类》教学设计案例(人教版四年级数学下册)

教学内容:课本83页至84页例4;课本84页“做一做”(三角形分类),课本87页5、6、7题。

教学目标:

1、通过分类认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每种三角形的特点。

2、在分类中体会分类标准的严密。

3、在三角形的分类中感受各类三角形之间的关系。

教学重点:能够按三角形的内角不同对三角形进行分类。

教学难点:引导学生认识三角形的特征和相互的关系。

教具准备: 量角器、直尺。

一、自学反馈:

1、引入:我们认识了三角形,三角形有什么特征?今天这节课我们就按照三角形的特征对三角形进行分类.怎样分?

2、小组活动:

(1)出示不同形状的三角形,学生根据自己发现三角形的特点将三角形进行分类。

3、按角分的情况

引导学生明确:相同点是每个三角形都至少有两个锐角;

不同点是还有一个角分别是锐角、钝角和直角.

我们可以根据它们的不同进行分类

(1)分类.

根据上边三个三角形三个角的特点的分析,可以把三角形分成三类.

图①,三个角都是锐角,它就叫锐角三角形.(板书)

提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)

引导学生根据另一个角来区分.图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形.

请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?

教师板书:

三个角都是锐角的三角形叫做锐角三角形;

只有一个角是直角的三角形叫做直角三角形;

只有一个角是钝角的三角形叫做钝角三角形.

(2)三角形的关系.

我们可以用集合图表示这种三角形之间的关系.把所有三角形看作一个整体,用一个圆圈表示.(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭.

(边说边把集合图补充完整.)

每种三角形就是这个整体的一部分.反过来说,这三种三角形正好组成了所有的三角形.

(3)三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角.……

问:你还有没有其他的分法?

4、按边分的情况:

(1)我发现有两条边相等的三角形,还有三条边都相等的。

(2) 师:我们把两条边相等的三角形叫做等腰三角形,相等的两条边叫腰,另外一条边叫底。

(3)师:把三条边都相等的三角形叫等边三角形。

(4)分别量一量等腰三角形和等边三角形的各个角,你有什么发现?

(5)从红领巾、三角板、慢行标志中找一找哪里有这两种特殊的三角形?

三、巩固练习:

1.判断题.( 1)、一个三角形至少有两个锐角。(   )

(2)、一个三角形中最大的一个角是89o,这个三角形可能是钝角三角形(    )

(3)、一个等边三角形,一定是锐角三角形。(    )

(4)、一个等腰三角形,一个底角是80o,另一个底角也是80o。(    )

(5)由三条线段组成的图形叫三角形.(    )

(6)锐角三角形中最大的角一定小于90°.(    )

2.课本87页第5、6、7题。

四、思维训练

1、你们手中都有一个正方形,将它的对角对折会得到一个什么样的三角形?这个三角形按边分它既是什么三角形?按角分它又是什么三角形?三角板中就有一个这样的三角形,拿出来看看,这样的三角形我们就把它叫作等腰直角三角形。

2、你能把一个平行四边形分成两个完全一样的锐角三角形或者两个完全一样的钝角三角形吗?请!(折、剪、划线)

学生展示成果。

(五)、总结

这节课我知道了……懂得了……学会了……

(六)、课后作业:剪一剪

剪一个三角形。为什么确定剪这样一个三角形?你是怎么想的?怎么剪的?

篇10:《三角形三边关系》教学设计

张晓刚

执教:山西省太谷师范附属小学   赵 伟

教学内容

《义务教育课程标准实验教科书  数学》(人教版)四年级下册第62页。

教材和学情分析

《三角形边的关系》这节课是人教修订版四年级数学下册第五单元第二课时的内容。在平面图形里,学生已经学习了线段、射线、直线、角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,虽然知道三角形由3条线段围成,但是对于“任意的3条线段不一定都能围成三角形”这一知识却没有任何经验。学生对三角形任意两边之和大于第三边的规律只是停留在生活经验的基础上,只能初步感悟笔直的路比拐一个弯要近。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,还可以在动手操作、体验理解、思考探索、生活应用等方面发展学生的思维,提高解决实际问题的能力,同时也为进一步学习三角形的分类、三角形内角和、三角形的面积、甚至初中的勾股定理、三角函数等内容打下坚实基础。

教学目标

1.经历用小棒围三角形来探究三角形三边关系的过程,发现、理解三角形任意两边的和大于第三边以及两点之间的所有连线中线段最短,并运用这一发现解决生活中的实际问题。

2.在探索活动过程中,积累猜想、观察、分析、对比、计算、比较、归纳、验证等数学活动经验和方法,培养学生的动手操作能力和策略意识。

3.渗透建模思想,体验数据分析、数形结合方法在探究过程中的作用。

教学重点

探索并发现三角形任意两边的和大于第三边。

教学难点

较短两根小棒的长度和等于第三根时能不能围成三角形。

教学准备学生用小棒(每组5根)、记录单、教学课件

教学过程

一、情景导入

明明要做一个三角形的航模底座,于是他将一根钢管剪成了这样的三段。(师出示)仔细观察,你发现了什么问题?

生:围不成三角形

师:其他同学同意吗?

师:为什么会围不成?(长的太长)

师:你们觉得怎么样就能围成三角形?

生:缩短最长边。

师:我们试试看。(缩短最长边)最长的钢管变短后还真围成了。

师:看来并不是任意三根钢管都能围成三角形,三角形三条边的长度之间一定是有关系的,那会有什么关系呢?今天我们就一起探索三角形边的关系。

(板书课题:三角形边的关系)

二、围三角形  探究三角形边的关系

1.围三角形的活动

师:接下来我们就借助小棒进行研究,每个信封中有4根小棒,上面标有小棒的长度。两人一组,每次任选3根小棒围一围,看能不能围成三角形,把围的结果写到记录单上。好,开始活动。

(学生活动)

引导认为3 5 8厘米能围成的同学:3 5 8厘米这组小棒能不能围成?确实是围成了(师拍照)。

引导认为3 5 8厘米围不成的同学:3 5 8厘米这组小棒能不能围成?说说为什么围不成?3加5正好等于8,和8厘米的小棒就重合了(师拍照),当3厘米和5厘米的小棒拱起来时就更不能和8厘米小棒的端点重合了。可人家还真有人围成了(师操作)你们觉得这围成了没有?是啊,看似围成了,实际上小棒的端点并没有重合,还差一点点。所以这三根小棒围不成。如果让同学们知道了你这种想法,大家一定会很佩服你的。

2.汇报围三角形的情况

师:刚才通过动手操作我们发现有些能围成三角形,有些就围不成。(板书:能围成 围不成)谁来具体说说你们研究的.情况?

(尽可能让认为3 5 8厘米能围成的学生先汇报)

师:大家看看有哪些数据和你们的结果不一样?

预设一:若学生有不同意见

预设二:若学生没有不同意见

师:(生说师打问号做标记)还有不同的吗?打问号的小棒能不能围成三角形?我们怎么办呢?(怎么验证我们的猜测?)

生:再来围一围

师:是个好办法,那就听大家的,我们再围一围。(学生活动)

师:这是我刚拍到的照片(解决能围成的情况)

3 5 8厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?

生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)

生:没围成。(说说你的理由?)

(把照片放大)

师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)

你觉得这三根小棒能围成三角形吗?请说出你的理由?(生述)

师评价:谢谢你, 你的表达真清楚 。

3 5 8厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?

生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)

生:没围成。(说说你的理由?)

(把照片放大)

师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)

你觉得这三根小棒能围成三角形吗?请说出你的理由?

3.探究围成三角形的条件

师:同样是三根小棒,为什么有些能围成三角形,有些就围不成?对比这些数据和图形,你们发现了什么?先独立思考,然后将你的想法在小组内交流。

师:谁来和大家分享一下你们的发现?

预设一

生:较短两根小棒的和大于第三根就能围成三角形;较短两根小棒的和小于或等于第三根就围不成。

师评价:说的真好!真是一名善于思考和总结的孩子。能举例子说说吗?

生:3 4 5厘米,3+4〉5,所以能围成三角形。3 4 8厘米,3+4〈8,所以围不成;3 5 8厘米,3+5=8,也围不成。

师:刚才这位同学找到了最短两根小棒的长度和与最长小棒的关系,在这三条边中,除了这两边的和3+4〉最长边5,其它两边的和与第三边又有什么关系呢?谁能也用这样的式子表示?

(生说出时师板书)

(生说不出时师引导:3加4大于5,3加5呢?)

师:同桌口算一下边长4 5 8厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)

师:这个三角形的三条边是不是也有这样的关系?(是)

师:观察这两个三角形,三条边的长度之间有着怎样的关系呢?谁能根据你的理解,用自己的话说一说?

若学生说不出:师:这是哪两边的和大于第三边呢?

这两边的和3加4大于5,3加5大于4,4加5大于3。

生:三角形每两边的和大于第三边

师:明白他的意思吗?谁能用你的话说一说。

生:三角形哪两边的和都大于第三边。

师:什么叫哪两边的和都大于第三边?(生述)

师:理解的非常到位,每两边也就是任意两边。

师:是不是所有三角形任意两边的和都大于第三边?这样吧,接下来我们在探究卡上任意画一个三角形,并量一量,算一算任意两边的和是不是都大于第三边?

(学生验证三边关系)

师:谁来汇报一下你是如何验证的?

生:*+*〉*   *+*〉*   *+*〉*

师:刚才我发现有一位同学的方法比较特别,(出示照片)(若出现这种情况:说说你为什么只计算较短两边的和大于第三边?)(若没出现这种情况:谁知道为什么只计算较短两边的和大于第三边?)

师:(生若说不出)最长边比另外两边都长,最长边无论加哪条边都比另一条边要长,所以就没有必要算了,只算较短两边的和大于第三边就可以了。

师评价:多么有创意的想法,有深度的思考,分析的太透彻了。这是判断能否围成三角形的最快方法。

师:有没有谁画的三角形,三边关系不符合这个结论的?有没有呢?

师:看来所有三角形任意两边的和都大于第三边。

预设二

生:我发现三角形任意两边的和大于第三边。

师:你严谨准确的语言和高度概括的能力很值得我们学习。能举例子说说吗?

生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3

(学生说,师板书)

师评价:说的真好!你真是一位善于表达的孩子

师:谁能将这个三角形三条边长度之间的这种关系,用自己的话说一说?

生:三角形每两边的和大于第三边

生:三角形哪两边的和都大于第三边

师:同学们理解的都非常到位,同桌口算一下 4 5 8厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)

师:这个三角形的三条边是不是也有这样的关系?(是)

预设三

生:只要随便两边的和大于第三边就能围成三角形。

师:听了他的发言,你想说什么?

生:可3,5,8厘米,5+8大于3,但也围不成呀?

师评价:正是由于这位孩子用心倾听、深入思考才有了与众不同的发现,感谢你为我们带来了新的思考。

师:5+8大于3,3+8也大于5,为什么围不成呀?

生:可是3+5等于8,所以就围不成。

师:看来仅仅是其中两根小棒的长度和大于第三根小棒并不一定能围成三角形,而必须是…… 应该说成是…… 哪两边的和大于第三边 ?

生:三角形每两边的和大于第三边

师:明白他的意思吗?谁能用你的话说一说。

生:三角形哪两边的和都大于第三边。

师:什么叫哪两边的和都大于第三边?(生述)

师:理解的非常到位,每两边也就是任意两边。

师:谁能举例子说说这句话的意思?

生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3

师评价:说的真好!仅仅用3个式子就很清楚的让我们理解了任意两边的和大于第三边。

师:同桌口算一下4 5 8厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)

师:这个三角形的三条边是不是也有这样的关系?(是)

四、应用所学,解决问题

1. 刚才我们通过动手实验,归纳总结出三角形边的关系,还找到了判断能否围成三角形的最快方法,其实今天所学的知识在生活中的应用还是非常广泛的,它就在我们身边。看看这是谁呢?

***身高1.5米,腿长0.8米,有人说他一步能走2米。你同意他的说法吗?

预设一

预设二

生:一步不可能走2米。因为0.8+0.8小于2,所以一步不可能走2米。

师:你们觉得他一步(最多)能走多长?

生:1.6米

师:我们掌声请出***给大家走个1.6米

师:我想这是***十多年来第一次迈出这样的步子,* **不可能就这样走吧?

生:不可能。

师:(出示课件)走路时两腿的长度与两脚间的距离构成一个近似的三角形,谁能用今天学的知识解释?

生:三角形任意两边的和都大于第三边,0.8+0.8应大于一步的长度,所以一步的长度要小于1.6米。

生:走路时两腿与地面形成一个近似的三角形,0.8+0.8小于2就围不成三角形,所以不可能走2米,即使劈叉也不可能走2米。

师:什么是劈叉?谁能示范一下?(生劈叉)

师:我想这是***十多年来第一次迈出这样的步子,* **不可能就这样走吧?

生:不可能。

师:正如这位同学所说,走路时两腿的长度与两脚间的距离构成一个近似的三角形,三角形任意两边的和都大于第三边,0.8+0.8应大于一步的长度,所以一步的长度要小于1.6米。

师小结:真聪明,真会学以致用。看到同学们学的这么认真,而且能用所学的知识解决实际问题,明明也想请大家帮帮忙。

2.还记得明明做三角形航模底座的事吗?

为了做边长整厘米的三角形航模底座,明明将一根钢管剪成了3厘米,5厘米,10厘米。这样剪为什么会做不成呢?谁有什么办法帮帮他?7分

生:把10厘米的钢管据成7厘米。

师:谁知道他为什么要这样想?

生:3+5>7,就能围成三角形了。

师:孩子,你是这样想的吗?(是)

师:是不是只能锯成7厘米?还可锯成?

生:6厘米、5厘米、4厘米、3厘米、2厘米、1厘米

(学生对2分米和1分米两种情况进行质疑并发现锯成2分米和1分米不行)

师:最长可锯成几分米?最短呢?可以有几种情况?

师评价:集体的力量真大,把这个问题的方方面面都想到了。

(2)其实明明只对其中的两种方案比较满意,受这些图形的启发,你觉得是哪两种呢?请说说理由?生:C和E

师小结:说的真好,做成等腰三角形的底座确实好看多了。

(3)我们还能不能帮明明做出更加美观的边长整厘米的三角形底座?

(出示等边三角形底座图)怎么做?

生:剪成3个1厘米…… 师:为什么要这样剪?(三边相等更美观)

师:还有别的方法吗?

生:2厘米,3厘米,4厘米,5厘米(师:4厘米怎么剪?5厘米怎么剪?)

(4)按这几种想法做出的三角形底座就更漂亮了,如果你是明明,会给自己的航模选哪种底座?请说说理由。

五、课堂小结

这节课上我们由刚上课时发现问题,提出问题到课堂上的分析问题,再到刚才的解决问题,尤其是在做航模底座的问题中,经历了做不成-能做成-更美观-实用性的系列研究过程,不仅学到了数学知识,还学到了数学的思想和方法,积累了数学活动的经验,这就是学习数学的价值所在。

篇11:三角形三边关系教学设计

教学目标:

1、结合具体的情境和直观操作活动,让学生探索并发现三角形任意两边和大于第三边。

2、感受动手实验是探索数学规律的途径和方法。

3、培养学生初步的应用数学知识解决实际问题的能力。

教学重点:在观察、操作、比较、分析中发现三角形边的关系。

教学难点:应用三角形边的关系解决问题。

教学关键:借助实际操作和生活经验,引导学生感受三角形三条边的长度关系。

教具准备:多媒体课件

教学过程:

一、复习:我们上节课已经认识了三角形,请同学们回忆一下什么样的图形是三角形?(由三条线段围成的图形)。谁能说出它各部分的名称?三角形具有什么特性?

二、探索新知

师:三角形是由三条线段围成的图形,如果用一根小棒代替一条线段,围成一个三角形需要几根小棒呢?

猜一猜,任意给你3根小棒,你能围成三角形吗?(能或不能)

实践是检验真理的唯一标准,咱们来动手操作,验证一下。

研究一:任取3根小棒围三角形,看能不能围成。

师:“任取3根”是什么意思?

对了,同学们自己随便取3根小棒试着围一围,多围几次。你发现了什么?

汇报

师总结:看来并不是随随便便的3根小棒就可以围成三角形,这里一定隐藏着什么秘密。我们继续来探究。

研究二:什么情况下3根小棒不能围成三角形。

(1) 从你的小棒中找出不能围成三角形的3根小棒,并摆出来。

(2) 想一想,这3根小棒为什么围不成三角形呢?再小组内交流一下。

板书:围不成:较短2边的和小于第3边。

师:看来,较短的两根小棒长度的和小于第三根小棒时的确围不成三角形,除了这种情况,还有什么情况下3根小棒不能围成三角形呢?(自己摆)

生演示汇报。(较短两根小棒加起来的长度和第三根一样长的时候也不能围成三角形)

师:看来较短两根小棒长度等于第三根时也不能围成三角形。板书:较短2条边的和=第3边

师:那么,在什么情况下,三根小棒能围成三角形。我们继续来研究(同桌之间摆一摆,并讨论)出示研究三:在什么情况下,三根小棒能围成三角形。

师:根据我们刚才的研究,我们知道较短两边的和小于第三边,较短两边的和=第三边,这两种情况都围不成三角形,那么你们猜测一下,在什么情况下,三根小棒能围成三角形。

板书:围成:三角形较短两边的和大于第三边。

师:我们这个结论是否正确呢?我们来验证一下。找出能围成三角形的三根小棒围一围,比一比。

汇报:同意吗?看来我们的猜测是正确的。

这就是我们今天所要学习的三角形边的关系。板书:三角形边的关系。齐读。

同意这种说法吗?

我们来观察这个三角形(等边三角形)来比较一下它的三条边怎样(相等)。找不出较短的2条边啊!再看,我取2条长度相等的小棒,再取一个小棒围成了一个三角形,能找出较短的2条边吗?

现在矛盾出来了,我们说的三角形边的关系,应该是所有的三角形,这两种也是三角形,可是却不能用刚才这个结论来解释,对它们公平吗?看来。“较短”这个词并不恰当,这个词怎样改比较好?板书:任意。齐读

老师出示带有数据的三个三角形,你能根据这些数据来解释一下任意两边的和大于第三边吗?

师:三角形任意两边的和大于第三边,任意这个词很重要,接下来我们就用这个知识来做有关练习。

三、拓展练习

篇12:三角形三边关系教学设计

“三角形任意两条边的和大于第三边”是三角形的又一个重要特性。本节课是在学生已经认识了三角形的特征及各部分的名称,了解了三角形具有稳定的特性等知识以及在生活中已经积累了较丰富的“弯路比直路要长”等相关经验的基础上,教学三角形边的关系。在本节课中教师注意关注学生已有的知识和经验,给学生提供充分从事数学活动的机会,让学生通过试验、操作、讨论和交流等活动,自主概括出三角形三边的关系。本课教学主要有以下几个特点:

1、通过多种相关联的活动,自主探索三角形边的特性。

借助生活经验、观察实物、实验操作、推理思考等都是学习理解抽象几何概念的重要手段,也是发展学生空间观念的主要途径。在本节课中,教师为学生提供了充分从事数学活动的机会,让他们通过实验、操作、思考、讨论和交流等活动,探究发现、抽象概括出三角形边的特性——任意两边的和大于第三边。整个数学活动可分为4个层次:⑴测量出实验操作的每根小棒的长度。要求学生测量出每根小棒长度,意在让学生感悟到三角形边的特性跟它的三条边的长度有关系,为学生在探究三角形边的特性时的思维活动给予“定向”。⑵分组进行实验操作活动,意在让学生了解:任意的三根小棒首尾连接,有的能摆成三角形,有的不能摆成三角形。另外,教师在设计实验报告单时,有意识的让学生把能摆成的和不能摆成的分开记录。这样设计,方便学生对实验的结果进行观察、比较,进而发现规律。⑶小组内学生根据实验操作的结果,合作探究三角形三边的关系,这是新课程倡导“动手实践”的根本目的。⑷全班交流。学生把探究、发现的三角形的特性进行全班交流,教师适时地指导学生用规范的数学语言进行概括。

2.结合教学内容,创设问题情境。

让学生在具体的生活情境中学习数学知识,是本次课改的一大特色。然而创设情境不能仅仅为了提高学生的学习兴趣,还必须结合教学内容,隐含丰富的数学信息,激发学生从数学角度去思考问题。本课从学生的现实生活出发,结合教学内容,选取学生熟悉的事例——小明上学的路线图来创设情境。通过“在小明上学的三条路线中哪条路线最近?为什么?”这样一个问题,激活学生的生活经验,为本节课的学习服务。由于学生在日常生活中积累了较为丰富的“弯路比直路长”的经验,因此都知道走第2条路最近并能用个性化的语言解释。这个环节的教学是让学生用生活经验来解释生活事例。

如果让学生仅仅停留在用已有的知识经验来解释生活事例的层次和水平,那不是我们数学教学的目的。于是教师用线段连接小明家、邮局、学校,出现了一个三角形。引导学生观察发现:第2条路走的路程是三角形的一条边,第1条路走的路程是三角形两条边的和。再 适时地引导学生思考:“是不是所有的三角形两边的和都会大于第三边呢?三角形的三条边之间到底有什么关系?”非常自然地实现了从“生活化”到“数学化”的转变。整个教学过程,既能够激发学生的学习兴趣,又能够帮助学生用数学的眼光去看现实生活,用数学的思想、方法解决生活问题。

本节课,学生对“三角形任意两边的和大于第三边”这一特性的认识,是在教师的组织引导下,积极主动参与一个个相关联的活动过程中逐步建立起来的。即:解释生活事例─动手实验操作─探索发现规律─抽象概括特性─运用深化特性。在这些活动中,既让学生经历了知识形成的过程,清晰的认识了三角形边的特性,又提高了学生实验操作、分析思考和抽象概括的能力。

篇13:《三角形三边关系》教学设计

教学内容:

教学目标:

1、探究、发现三角形任意两边的和大于第三边,初步理解三角形三边的关系。

2、经历操作、发现、应用的过程,渗透数学思想与方法,积累数学活动经验,培养自主探究、合作交流的能力。

3、激发学生探究愿望和兴趣,培养参与数学活动的积极性和严谨的科学态度。

教学重点:探究、发现三角形任意两边的和大于第三边。

教学难点:应用数据发现三角形三边的关系,理解“任意”的含义。

教学设计思路:这节课,精心设计了一系列的数学活动,让学生“在参与中体验,在活动中发展”。课堂上,学生通过自主操作、自主估猜、自主探究、自主迁移,深入认识三角形。通过课上师生之间、生生之间充分交流合作,学生自然、自主、自由地发展。

教学过程:

活动一:引发质疑,提出问题。

1、出示各种三角形。(这些是什么图形,什么是三角形?)

2、出示三根纸条红、蓝、黑。

师:我们把这三根纸条看成三条线段,你能把它围成三角形吗?

生代表上来围。师:你们觉得他围得怎么样?生补充围。我真佩服你的细心。纸条要顶点对着顶点,首尾相连,这样才能真正用上了这三根纸条的长度。

3、围三角形比赛,(看来同学们都会围了,现在我们来进行一场比赛吧。从信封拿出纸条1号袋红3cm,蓝6cm,黑11cm。2号袋红3cm,蓝6cm,黑5cm。

4、讨论

为什么有些能围成有些围不成,板书(围不成) (围成)它可能跟什么有关系呢?我们来猜想一下,你说:

生1:可能跟边有关。

生2:跟边的长短有关系。

师:那么三角形三边长短之间到底有怎样的关系呢?这就是这节课我们要探究的课题:出示课题《三角形三边的关系》。

活动二:探索发现,总结归纳

1、动手操作:

师:刚才我们用蓝6㎝,红3㎝,黑11㎝,不能围成三角形,请不能围成三角形的同学上来展示(看来不是操作不当,到底是什么原因呢?

生:11厘米太长了,那两根太短了。

师:上面这两根和下面这根比,你发现了什么?

生:我发现两根小棒之和小于第三根。

师:从你的回答,我听到了智慧的声音,以前我们总是考虑一根和另一根去比长,而现在却考虑用两根的和去与第三根进行比较,真了不起!

能不能用一个算式来表示呢?

生;3+6﹤11。

师:两边的和小于第三边不能围成三角形,两边的和与第三边有怎样的关系就可以围成三角形呢?

生:两边的和大于第三边。

生:两边的和等于第三边。

(过渡)同学们有不同的猜想,生活当中许多重大发现都从猜想开始,但是光猜还不行,我们还得从实践中加以验证,接下来我们从探究验证我们的想法,我们把3cm和6cm两边的和不变缩短黑边的长度,为了便于研究,我们移到整厘米,注意刻度线对刻度线。一边围一边想,这两个结论是否正确,找到规律就可以不用每个刻度都要试,即动手又动脑,才是高效的探究。现在小组一起,可分工不同移动的刻度,要有一个同学作记录。(活动教师巡视指导)

2、汇报交流

教师:下面请同学们来汇报一下你的操作结果。

请不同的学生汇报,教师在课件中输入数据和结果。

第二层:猜想,初步得出三角形边的性质。

师:长度是9厘米时,有争议,图形有些特殊我们重点研究它,请不能围成的同学上来说说不能围成的原因。

生:只要将纸条3cm或6cm稍微抬高一些,纸条3cm和6cm就不能首尾相连了。师:利用课件演示。问能围成的同学此刻的想法。(善于思考能接纳同学的建议很会学习)

生:两边之和大于第三边时能围成,用3cm、6cm和7cm展示。

师:这个猜想对不对呢?这需要进行验证,看看这些能围成三角形的边是不是具备这样的关系?3+6﹥7还有谁也得出这样的结论?指名说。

师:是不是两边的和大于第三边就一定能围成三角形呢?我们用不能围成和围成对比看看。有谁改变主意了?

第三层:引发矛盾,突破难点

生:用3cm、6cm、11cm不能围成三角形,它也有两条边的和大于第三边板书(3+11﹥6)

师:那这个结论正不正确,除了这两个算式还能写出第三个算试吗?

生:6+11﹥3 围成的呢,3+7﹥6 7+6﹥3。

师:还有别的算式吗?(没有)在围成三角形当中每两边的'和都大于第三边,而不能围成的只有两组两边的和大于第三边。在数学中,每两边的和都大于第三边的,叫做任意两边的和大于第三边(板书)

师:什么叫任意?

师:下面我们利用这个结论,再来验证一下3cm、6cm、4cm,是不是都具备这样的关系?

第五层:找出判断能不能围成的简捷方法。

师:在判断能不能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?在小组内想一想,说一说;引导学生发现,因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了,所以呢?只要把较小的两条边,加起来与第三边进行判断,就可以了。

篇14:《三角形三边的关系》教学设计

[片断一]:动手操作,产生问题

师:前面我们已经认识了三角形,知道三角形是由三条线段首尾相连围成的封闭图形,今天,老师想让同学们利用你们桌上的木条亲手搭建一个个的三角形,要求是每个三角形只能用三根木条,你们想不想试一试?

学生:想!

师:下面请同学们分小组开始活动。

(学生分小组活动)

师:每个小组利用桌上的六根木条共搭建了几个三角形?

学生:我们搭建了一个三角形。

师:剩下的三根木条能搭建成一个三角形吗?

学生:不能。

师:你们知道剩下的三根木条为什么不能搭建成一个三角形吗?你发现了什么?

学生1:我发现剩下的三根木条怎么连也连不到一起。

学生2:我们也是这样的。

师:“剩下的三根木条怎么连也连不到一起”说明了这三边在长短上有某种关系,你们能找出这三边在长短上有什么样的关系吗?

学生1:我们将较短的两根木条连接在一起与最长的一根木条相比较,发现较短的两根木条和起来还没有另外一根木条长。

学生2:我们把较短的两根木条连接在一起与最长的一根木条相比较,发现较短的两根木条和起来不是没有另外一根木条长,而是同另外一根一样长。

学生3:我们发现的结论与学生(1)相同,我们是通过用直尺分别度量这三根木条的长度,再计算、比较后发现的。

学生4:我们发现的结论与学生(2)相同,我们也是通过用直尺分别度量这三根木条的长度,再计算、比较后发现的。

师:下面我们将能拼成三角形的三边分开,象上面一样比较一下这三条边在长度方面有什么关系?

(学生活动后汇报)

学生1:我发现较短的两条边加起来比最长的一条边长,同刚才的结论正好相反。

学生2:我发现我这个三角形的任意两边加起来的和都比第三边长。

学生3:我的发现同学生(2)一样,也是这个三角形的任意两边加起来的和都比第三边长。

学生4:“任意两边”是什么意思?我不太懂。

学生5:“任意两边”就是指三角形三边中的每两条边加起来的长度都比剩下来的第三条边的长度长。

学生4:原来是这样的。

(学生都有同感)

学生6:也就是说,任意一个三角形,它的三条边都存在这样一个特征:三角形的任意两边之和都大于第三边。

学生7:我想应该是这样的吧。因为我们的三角形不一样,但我们得到的结论都是一样的。

学生8:我看到书上也有同样的结论。

(学生都翻书看)

[反思]:苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,教师有意设置这些动手操作,共同探讨的活动,既满足了学生的这种需要,由让学生在高昂的学习兴趣中学到了知识,体验到了成功。

[片断二]:及时练习,形成能力

师:同学们刚才表现得非常棒,你们棒在不仅爱玩,而且能在玩中发现数学问题,通过自己的思考、探讨,你们也能解决问题。这就是我们今天一起学习的三角形的另外一个特征,现在你能运用三角形三边的关系判断给出的三条边能否组成一个三角形吗?

学生:能!

师:请同学们翻书到第86页,自己独立做第4题。

(学生做完后汇报展示,并说明判断的`方法)

学生1:(1)、(2)、(4)这三组中的线段能拼成一个三角形,(3)中的线段不能拼成一个三角形,我是把每组中的三条线段两两相加,再与剩下的第三条线段相比较,其中(1)、(2)、(4)这三组中的线段每两条线段之和都大于第三条线段,所以它们能拼成一个三角形,而(3)中2+2〈6,所以这组中的三条线段不能拼成一个三角形。

学生2:我的结论同学生(1)一样,但我的判断方法与他不同,我是先找出较短的两条边,比较它们的和与剩下的第三条边的大小,如果和大一些,则能拼成三角形,如果和小一些,则不能拼成三角形。

学生3:学生(2)的方法只是一种巧合,他没有判断任意两边之和大于第三边,所以这种方法不行。

(学生对学生(2)的方法产生了争论,学生讨论一会儿后)

学生4:学生(2)的方法是对的,因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边,这也就更进一步说明这个三角形的任意两边之和大于第三边。

学生5:看来在判断某三条边能否拼成一个三角形时,用学生(2)的方法既快又对。

[反思]:课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中老师充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我们也欣喜地发现,通过练习,学生还在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。学生的能力不可限量啊!

[片断三]:结合实际,学会运用

师:通过刚才的练习,你们不仅掌握了判断某三条边能否拼成一个三角形的方法,并且还找出了最佳的判断方法。从这里可以看出,只要同学们肯动脑思考,一定会取得令人满意的结论。下面请同学们观察小明上学示意图(电脑出示书第82页示意图),如果小明想走离学校最近的路,你认为他会选择那条路上学?

学生:他会走中间这条路。

师:你们是怎样判断的?

学生1:因为中间这条路是直的,其它的路是弯的,所以中间这条路最短。

学生2:如果小明走通过邮局到学校这条路上学,小明家、邮局、学校则构成一个三角形,由三角形的三边关系可以知道,小明家到邮局,邮局到学校这两条边之和一定大于第三边,即中间这条路,所以中间这条路最短。

师:思考问题既要靠直觉,更要学会用所学的知识解决问题,就像学生(2)一样。另外请问从这副图还可以看出连接两点的线中,哪条线最短?

学生:线段最短。

[反思]:教材是学习的载体,教学中教师应充分发挥教材的育人作用,挖掘教材的教育功能,而不要把教材撇开一边。从上面可以看出,这副图既能让学生领悟知识与实际的结合,又能从中学到另外的知识,可谓一举多得。

[片断四]:拓展延伸,丰富充实

师:通过上面的学习,老师欣喜地发现同学们不仅能自主、能动地学习新知,而且能将所学的知识用于解决实际问题之中。下面老师这儿有几道题不知怎样解答,谁能帮一帮老师?(电脑出示题目)

题目一:已知两条线段a、b,其长度分别是2.5cm与3.5cm。另有长度分别为1cm、3cm、5cm、6cm、9cm的五条线段,其中能够与线段一起组成三角形的有哪几条?

学生1:长度分别是3cm、5cm的两条线段中任意一条线段能与a、b组成一个三角形,因为3+2.5>3.5,2.5+3.5>5。

学生2:长度分别是1cm、6cm、9cm的三条线段中任意一条线段不能与a、b组成一个三角形,因为1+2.5=3.5;2.5+3.5=6;2.5+3.5<9。

题目二:用长度为2cm、2cm、6cm、6cm、6cm这五条线段中的任意三条线段拼成一个三角形,你能拼成几种不同的形状?拼成的三角形有什么特点?

学生1:我用长度为2cm、6cm、6cm三条线段能拼成一个三角形,这个三角形有两条边的长度相等。

学生2:我用长度为6cm、6cm、6cm三条线段能拼成一个三角形,这个三角形三条边的长度都相等。

学生3:我用长度为2cm、2cm、6cm三条线段不能拼成一个三角形,因为2+2<6,所以他们不能拼成三角形。

师:刚才学生1、学生2所说的三角形是两种较特殊的三角形,这些三角形我们将在下次课中学习研究。

题目三:用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?

学生1:我想最多可以由9根火柴棒组成。

学生2:我觉得最多可以由8根火柴棒组成。

师:同学们敢于大胆猜想,勇于发表自己的意见,这很好。不过同学们如果能通过实践,讲究事实依据,用理由来说服人那就更好了!

(学生分小组讨论、拼摆)

学生1:我们通过实践知道,最长边最多可以由7根火柴棒组成。

学生2:我们通过讨论知道,最长边最多可以由7根火柴棒组成。此时另外两条较短的两条边的和为8,大于最长边7,根据三角形三边的关系可知,此时能拼成三角形,且最长边由7根火柴棒组成,为最多。

师:同学们今天表现非常棒,不仅能猜想,而且能通过实践,利用所学知识解决实际问题,老师为你们骄傲,我相信,只要同学们一如既往,灿烂的明天一定会与你拥抱。

[反思]:数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间,如此定会别有洞天。

[点评与拓展]:良好的教育一定要致力于学生用自己的眼睛去观察,用自己的心灵去感悟,用自己的头脑去判别,用自己的语言去表达,要能使一个人成为真正的人,成为他自己,成为一个不可替代的大写的“人”。本节课,授课教师在教学中充分体现了这一观点。先是设计了“拼三角形”这一环节,让学生在动手操作中用自己的眼睛去观察,接着设计汇报展示这一环节,让学生用自己的语言去表达,在听别的同学汇报时,让学生用自己的头脑去判别,用自己的心灵去感悟。在后面的教学中,该教师继续抓住这一教育思想对学生施教,让学生在学习中感受到了生命的存在与价值,体验到了自己主动建构知识的快乐,取得了满意的教育效果。

篇15:《三角形三边的关系》教学设计

教学目标:

1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

教学重点、难点:探索并发现三角形任意两边之和大于第三边。

教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。

教学过程:

一、复习旧知,导入新课

这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

二、动手操作,发现问题

师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

生:三角形。

师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。

三、猜想验证,发现规律

师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

生:换一根小棒

师:怎样换?同学们说的都是你们的猜想(课件1演示猜想1)

1、学法指导

师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。

操作要求:

(1)、2人一组合作完成四种拼法

(2)、围三角形时要注意首尾相连。

(3)、完成后,填写好活动记录表准备交流

第一根小棒长

第二根小棒长

第三根小棒长

能否围成三角形

2、动手操作,寻找规律(师巡视,并指导)

3、交流汇报,探究规律。

师:哪个小组愿意来汇报。

小组上台展示,

3厘米、8厘米、10厘米   能

3厘米、5厘米、10厘米   不能

3厘米、5厘米、8厘米   不能

5厘米、8厘米、10厘米   能

师:其它组有不同意见吗?

师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

三根小棒要围成三角形,必须满足什么条件?

通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?

先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

生:

师:其他同学赞同吗?谁再来说一说。

师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)

师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

生:3+5=8 重合了  不能

师:是这样吗?(课件演示)请看大屏幕。

师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

师:那么怎样才能围成三角形呢?

生:两条边加起来要大于第三边就行了。

师(板书):两边之和大于第三边

师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。

3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

生:有一种不符合就不行了。

师:看来只是其中的两条边之和大于第3条边是不完整的。

生1:加“任何”、“任意”。

生2:其他两边之和都大于第三条边。

生3:无论哪两条边之和都要大于第三边。

4、归纳小结

师:看来只是其中的两条边之和大于第3条边是不完整的,

师:这句话概括说就是:任意两边之和大于第三边(板书:任意)

师:是这样吗?再挑选一组能围成三角形的三条边,来验证:

生:3+4>5、3+5>4、4+5>3,

师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

四、课堂小结

老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?

师:今天你有什么收获?

篇16:《三角形三边的关系》教学设计

教学目标:

1.理解两点之间线段最短,理解三角形任意两边的和大于第三边。

2.经历拼一拼、移一移等操作活动,探索、归纳出三角形三边的关系,培养学生自主探索,合作交流、抽象概括能力,积累活动经验。

3.渗透模型思想,体验数据分析,数形结合方法在探究过程中的作用。

教学重点:

理解三角形任意两边之和大于第三边。

教学难点:

理解两条线段和等于第三条线段时不能围成三角形,理解“任意”二字的含义。

教学资源:

小棒、多煤体课件。

教学过程:

同学们好,这节课我们研究三角形三边的关系。

一、创设情境,导入新课。

1.三角形三边的关系教学设计三角形三边的关系教学设计(课件)主题图。小明上学,你猜他会走哪条路?这条路与其他两条路相比有什么特点?(中间这条路直直的,是一条线段,上面哪条路是两条线段组成的,下面这条路是一条曲线。)小明为什么走中间这条路?(这条路最短)课件演示:三条连线比较长短(师:两点之间所有连线中线段最短,这条线段的长度,叫做两点间的距离。)

2.实物展台上放三根小棒:,现在这样围成三角形了吗?谁来围一围?刚才没围成三角形,现在就围成了,围成三角形的关键是什么?(每相邻两条线段的端点相连)

3.如果从三根小棒中拿走一根,剩下的两根能围成三角形吗?能想办法变成三小棒吗?(把一根小棒剪成两段,变成三根小棒)把两根小棒变成三根,就一定能围成三角形吗?这节课我们一起研究三角形边的关系。板书课题;三角形三边的关系。

二、操作演示,观察发现。

1.(课件出示四根小棒)有四根小棒6、5、3、2(单位:厘米)

2.任意取三根摆一摆三角形,会有几种情况?(课件:①6、5、3;②6、5、2;③6、3、2;④5、3、2。

3.请同学们动手摆一摆,并填写好学习单,小组交流有什么发现?。

4.组织全班交流:学生边说,老师边课演示。

第一种情况:6+5>3,6+3>5,5+3>6;

第二种情况:6+5>2,6+2>5,5+2>6;

第三种情况:6+3>2,6+2>3,3+2<6;

第四种情况;5+3>2,5+2>3,3+2<5

5.三角形任意两边的和大于第三边。

三、实践应用,拓展延伸。

在能拼成三角形的各组小棒下面画“√”(单位:cm)

四、反思总结,自我建构。

这节课你有什么收获?(三角形任意两条边的和大于第三边。)

这节课我们就研究到这儿,同学们再见!

【《三角形三边关系》教学设计 (人教版四年级下册)】相关文章:

1.《三角形三边的关系》的教学设计

2.三角形的分类教学设计 (人教版四年级下册)

3.钝角三角形三边关系

4.认识三角形人教版教学设计

5.人教版认识三角形教学设计

6.人教版四年级美术下册教学设计

7.人教版四年级下册教学设计百度

8.四年级下册数学教学设计人教版

9.人教版四年级下册足球教学设计

10.四年级下册《三角形内角和》的教学设计

下载word文档
《《三角形三边关系》教学设计 (人教版四年级下册).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部