欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>分数应用题教学设计人教版

分数应用题教学设计人教版

2024-09-22 07:49:31 收藏本文 下载本文

“dashan6473221”通过精心收集,向本站投稿了18篇分数应用题教学设计人教版,以下是小编帮大家整理后的分数应用题教学设计人教版,供大家参考借鉴,希望可以帮助到您。

分数应用题教学设计人教版

篇1:《分数应用题》教学设计

教材分析:

本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

教学要求:

1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点:

分数除法应用题的特点及解题思路和解题方法。

教学过程:

一、谈话激趣,复习辅垫

1.师生交流

师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

师:老师查到了一些资料,我们一起来看一下。(课件出示)

2.复习旧知

师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

学生回答后说明理由。

师:算一算你们自己体内水分的质量吧!

生答

师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

生回答后出示:儿童的体重×5(4)=儿童体内水分的重量

35×5(4)=28(千克)

师:谁还能根据另一个信息写出等量关系式?

成人的体重×3(2)=成人体内的水分的重量

2.揭示课题

师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

二、引导探究,解决问题

1.课件出示例题。

2.合作探究

师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

3.学生汇报

生1:根据数量关系式:儿童的体重×5(4)=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

生2:直接用算术方法解决的,知道体重的5(4)是28千克,就可以直接用除法来做。

28÷5(4)=35(千克)

4.比较算法

比较算术做法与方程做法的优缺点?

(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

5.对比小结

和前面复习题进行比较一下,看看这题和复习题有什么异同?

(1)看作单位“1”的数量相同,数量关系式相同。

(2)复习题单位“1”的量已知,用乘法计算;

例1单位“1”的量未知,可以用方程解答。

(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

6.试一试:一条裤子的价格是75元,是一件上衣的3(2)。一件上衣多少元?

问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

单位“1”是已知还是未知的?

根据学生回答画线段图。

根据题中的数量关系找学生列出等量关系式。

学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

师:这道题你还能用其它方法解答吗?

(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

三、联系实际,巩固提高

1.(投影)看图口头列式,并用一句话概括题中的等量关系。

(1)

(2)

2.练一练:

(1)、小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

(2)、一个修路队修一条路,第一天修了全长的`5(2),正好是160米,这条路全长是多少米?

3.对比练习

(1)一条路50千米,修了5(2),修了多少千米?

(2)一条路修了50千米,修了5(2),这条路全长是多少千米?

(3)一条路50千米,修了5(2)千米,还剩多少千米?

篇2:《分数应用题》教学设计

教学内容:

三种类型的分数应用题在生活中的应用比较。(即人教版实验教材第十一册练习十的第6、7、8、9题)

教材分析:

教材内容中第6~9题是三种类型的分数应用题在生活中的实际应用。其中第6题是求两数和的35是多少,用乘法计算,是属于求一个数的几分之几是多少的问题;第8题则适合用方程解,第7题是在第8题的基础上可以两种方法结合,先列方程求出下半年的产量,再列算式求全年的产量,这些实际问题是属于已知一个数的几分之几求这个数的问题;第9题有关获奖作品的表格填写是对三种类型分数应用题综合应用的实际问题,其中的第(1)题要先根据第三栏的信息求出获奖作品总数48件(即计算单位1的量),再求一等奖、二等奖的作品数(即求一个数的几分之几是多少),第(2)题可以用获奖作品件数除以作品总数(即求一个数是另一个数的几分之几)。学生通过解决这些生活问题有助进一步认识分数应用题的题型特点,掌握分数应用题的解题思路。

学情分析:

通过上一节课的学习,学生已经对三种分数应用题的有一定的掌握。但对于解决生活中的实际问题容易出现判断错“单位1的量”的问题,特别对于“求一个数的几分之几是多少”和“已知一个数的几分之几是多少,求这个数”这两种类型更容易出现混淆,缺乏对具体情境中实际数量与分率的关系及单位“1”的分析理解。

教学目标:

1、知识技能:

(1)弄清三种分数应用题的题型特点及解题思路的联系和区别。

(2)掌握三种分数应用题的解题方法,通过练习学会灵活地解决一些实际问题。

2、过程与方法:通过观察、改编、解答、比较、小组学习等多种形式进行有效的练习。

3、情感、态度与价值观:结合练习培养分析、解决问题的能力,以及良好的思维品质。

教学重点和难点:

掌握三种分数应用题的题型特点,进一步巩固解题方法,培养分析问、题解决问题的能力。

教具准备:投影仪、投影片。

教学流程与思路:

教学过程:

一、基本练习、梳理知识

谈话导入:前阶段我们学习了三种类型的分数应用题。解决这三类题的关键是什么?

(抓住含有分率的句子,找准单位“1”)

板书课题,公布目标。

1、出示投影,找出单位“1”,并补充数量之间的关系。

(1)女生人数是男生人数的45,为单位“1”。关系式:×45=

(2)一堆沙子,运走了35,()为单位“1”。关系式:×35=

(3)实际产量比计划产量多18,()为单位“1”。关系式:×=

2、(板书)选择条件回答问题,下列算式及方程求的是什么?

条件:男生15人,女生30人,男是女的12。算式:(1)15÷30(2)30×12(3)x×12=15

指名回答,要求说出问题及单位1,并板书问题。

问题:

a、男生是女生的几分之几?

b、求女生的12是多少?

c、求女生有多少?

3、提问:求一个数是另一个数的几分之几用什么方法?求一个数的几分之几是多少用什么方法?已知一个数的几分之几是多少,求这个数,用什么方法?

过渡语:为了进一步理解每种类型的特点,巩固解题方法,请同学们和老师一起来做下面的生活问题。

二、对比练习、探索本质

1、投影出示题目。

题目设计:从下面条件中选择两个条件,并按要求提出问题来编写应用题。

A、学校有20个足球

B、学校有25个篮球

C、篮球个数比足球多14

D、足球比篮球少15

(1)编写求一个数是另一个数的几分之几的问题。

(2)编写求一个数的几分之几是多少的问题。

(3)编写已知一个数的几分之几是多少,求这个数的问题。

2、让学生分小组讨论“选择哪两个条件,可以提出什么问题”,并在练习本用“字母+问题”形式编写题目。

3、小组汇报结果,并订正,教师以“字母+问题”形式板书归纳出三组应用题。

通过集体交流编题,让学生体会到三种类型的问题结构不一样。第一次编题时(求分率问题)必须已知两个实际数量,并且它们是相比较的,也就是“谁”是“谁”的几分之几,在第二次编题时(求一个数的几分之几是多少)必须有单位1的量及分率,而在第三次编题时单位1的量是未知。

4、让学生对所编写的问题,列出算式或方程(不要求计算),互相检查是否正确。

5、小组讨论:“这三种类型的分数应用题在解题思路上有什么相同点?有什么不同点?

通过集体交流,归纳出三种分数应用题在解题思路上的异同点“不同点:根据已知、未知的变化确定用什么方法解答。第一种,求分率用除法;第二种知道单位“1”的量,求单位“1”的几分之几用乘法;第三种知道分率和分率的对应量,求单位“1”的量用除法或方程。

6、练习:人教版实验教材第十一册练习十的第6、8题

第6题:

第8题:我国幅员辽阔,东西相距5200km,东西相距是南北的5255、南北相距多少千米?

先让学生独立审题,判断属于哪种类型的分数应用题,并在练习本上解答,最后集体订正。

三、综合练习,发展提高

1、课件出示练习一:

题目:根据不同的条件选择正确解题方法。

果园有40棵苹果树,_________,梨树有多少棵?

①苹果树比梨树多14()②苹果树是梨树的14()

③梨树是苹果树的14()④梨树比苹果树多14()

a、40×14b、40×(1+14)c、设梨树x棵。x×(1+14)=40d、设梨树x棵。x×14=40

先让学生独立思考选择,再小组交流,最后集体讲评。

2、课件出示练习二:

题目:一个排球36元,一个篮球40元,一个排球的价钱比一个篮球价钱少几分之几?

(1)学生独立分析列式,同位互相检查,最后集体讲评。

(2)小组合作学习,根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题。

3、人教版实验教材第十一册练习十的第7题

第7题:某电视机厂去年上半年生产电视机48万台,是下半年产量是的45、这个电视机去年全年的产量是多少万台?

先让学生独立列式,再同位互相检查,最后集体讲评。

4、人教版实验教材第十一册练习十的第9题。

第9题:

先让学生审题说说表格中的数学信息,引导找出获奖作品总数是单位“1”的量,并且在填写表格时要先计算出来。

由学生独立思考填表计算后,再同学之间互相检查,说一说各自的思维方法和结果。

四、全课总结

通过今天这一节课的学习,你有什么收获?

引导学生小组内互相说说解决分数应用题应当注意哪些地方?(找出单位1的量以及分析数量与分率之间的对应关系。)

五、作业布置

人教版实验教材第十一册练习十的第13、14题

六、板书设计

分数应用题的对比

男生15人,女生30人,男是女的12。A、学校有20个足球B、学校有25个篮球

(1)15÷30男生是女生的几分之几?C、篮球个数比足球多14D、足球比篮球少15

(2)30×12求女生的12是多少人?1、A+B问题:(略)2、A+C(B+D)问题:(略)

(3)x×12=15求女生有多少人?3、A+D(B+C)问题:(略)

篇3:《分数应用题》教学设计

教材分析:

这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。

学情分析:

用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的'问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。

教学目标:

1、认识求比一个数多(少)百分之几的应用题的结构特点。

2、理解和掌握这类应用题的数量关系、解题思路和解题方法。

教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。

教学难点:理解这类应用题的数量关系、解题思路和解题方法。

教具准备:

小黑板

教学过程:

第一课时

活动(一)铺垫复习。

1、说出下面各题中表示单位1的量,并列出数量关系式。

(1)男生人数占总人数的百分之几?

(2)故事书的本数相当于连环画本数的百分之几?

(3)实际产量是计划产量的百分之几?

(4)水稻播种的公顷数是小麦的百分之几?

2、只列式,不计算。

(1)140吨是60吨的百分之几?

(2)260吨是40吨的百分之几?

3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

活动(二)相互合作,探究问题:

1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

2、讨论:

(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?

(2)根据线段图,这道题应该怎样思考、解答?

列式解答:

(14-12)12=2120.167=16.7%

答:实际造林比原计划多16.7%。

3、学生阅读课本,对照例3的解答,质疑问难。

4、想一想,例3还有其他解法吗?

可能出现1412-100%116.7%-100%=16.7%

5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?

(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)

解答过程:

(14-12)14或者:1-1214

=2141-0.857

0.143=1-85.7%

=14.3%=14.3%

答:原计划造林比实际造林少14.3%。

活动(三)、巩固练习

1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。

(1)今年比去年增产百分之几?

(2)男生比女生少百分之几?

(3)一种商品,降价了百分之几?

(4)客车速度比货车慢百分之几?

(5)货车速度比客车快百分之几?

2、判断题。(对的在括号里打,错的打。)

(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。

(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。

篇4:《分数应用题》教学设计

教学内容:

教科书第117—118页,例4和“做一做”,练习二十五的第1—4题。

教学目标:

1.整理和复习与“一个数比另一个数多(或少)几分之几”有关的分数应用题,进一步理解这些稍复杂的分数应用题之间的内在联系,掌握它们的解答方法。

2.在计算过程中进一步培养学生良好的观察、分析、判断能力。

3.体会数学的实用价值,提高同学们对学习数学的兴趣。

教学重点:

稍复杂的分数应用题的数量关系。

教学难点:

稍复杂的分数应用题之间的内在联系。

教具准备:

教师准备两块小黑板,一块写好口算练习题,另一块写好教科书第117页例4及下面讨论的问题。

教学过程:

一、口算练习

教师出示小黑板上的口算练习题。

二、教学例4

1.复习“求一个数比另一个数多(或少)几分之几”的应用题。

“下面我们来复习分数应用题。”(出示小黑板上的例4。)

例4 学校举办的美术展览中,有50幅水彩画,80幅蜡笔画,蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?

“请同学们先自己解答这道应用题,解答完以后,想一想这道题中的两个问题有什么相同之处,有什么不同之处?”

(80 - 50)÷50 =

(80 - 50)÷80 =

答:蜡笔画比水彩画多:水彩画比蜡笔画少。

解答完以后,教师让学生说明这道题中两个问题的相同点和不同点。

小结:我们在解答分数应用题时,一定要认真分析数量关系,要弄清以哪个数量作为标准,也就是说:要弄清以哪个数量作为单位“1”。

2.复习“已知一个数比另一个数多(或少)几分之几和其中的一个数,求另一个数”的应用题。

“接着例4的这两个问题,我们再来讨论下面的两个问题。”(出示小黑板上其余的问题。)

(1)根据“蜡笔画比水彩画多”这个条件

如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

(2)根据“水彩画比蜡笔画少”这个条件

如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

分析的时候,教师要引导学生弄清什么时候用乘法计算,什么时候列方程解答或用除法计算。一般可以概括成:当我们知道了作为单位l的数量,要求它的几分之几时,就用乘法计算(根据乘法的意义1);反之,如果是求作为单位“1”的数量时,列方程解答,或者是用除法计算(根据除法的意义)就比较方便。

3.复习百分数应用题。

“如果我们把以上各题中的分数都改为百分数,解答的方法一样吗?”(一样)

(例如。把例4的问题改为求“蜡笔画比水彩画多百分之几?水彩画比蜡笔画少百分之几?”解答的结果是百分数。)“百分数应用题与分数应用题实质是一样的,只不过是把比较两个数量关系的分数用百分数来表示。”

1.做教科书第117页“做一做”的第l题。

教师巡视,做完后集体订正。订正时,可以请一名学生说一说合格率与废品率的.关系,以加深学生对这些实际问题的理解。

2.做教科书第117页“做一做”的第2题。

谈谈这节课你的收获?

练习二十五的第1—4题。

篇5:《分数应用题》教学设计

教学内容:

义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。

教材简析:

教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。

教学目标:

1、知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。

2、能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。

3、情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。

教学过程:

一、创设情境,谈话导入。

谈话:同学们,08的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?

[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。

二、自主探究,获取新知。

1.课件出示教科书73页情境

谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?

(1)北京故宫的占地面积大约是多少公顷?

(2)我国的世界文化遗产和自然遗产一共有多少处?

(3)我国的世界文化遗产比自然遗产多多少处?………

(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?

2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?

[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。

3.选择你喜欢的方法试着独立解决这一问题好吗?

4.学生汇报交流。

让学生到前面展示不同的方法,分别说说自己的解题思路。

(1)272×1/4=68(公顷) 68+4=72(公顷)

(2)272×1/4+4

=68+4

=72(公顷)

学生在多次交流解题步骤中,教师板书数量关系

天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积

并展示学生画的线段图。让学生分析线段图。

[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。

5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?

学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)

全班交流,展示做题方法。

(1)30×7/10+30×2/15 (2)30×(7/10+2/15)

=21+4 =30×25/30

=25(处) =25(处)

6.让学生展示线段图的画法,说清解题思路。

7.点题并板书:分数应用题。

8.单看这两个算式的计算,你能想到什么运算律?有什么启发?

9.小结:乘法的分配律在分数中同样适用。

[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。

三、巩固练习,加深理解。

独立完成(第75页第2、3题。)

指生回答,并说出解题思路。

(重点说出数量关系。)

[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。

四、回归实践,拓展运用。

课件再次出示本课信息窗情境图。

谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?

现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。

课本76页第9题。学生读题,指生列式。

[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。

五、谈收获。

这节课你有什么收获?

篇6:《分数应用题》教学设计

教学目标

使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。

进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点

分数除法应用题的特点及解题思路和解题方法。

教学准备

教学过程设计

教学内容

师生活动

一、复习引新

二、教学新课

三、巩固练习

四、课堂小结

五、作业

1、先说出单位1,再说出数量关系式

(见课件)

2、做43页复习题

问:这道题怎样想?

3、引入新课

解答分数应用题,要先确定单位1,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。

1、教学例1

(1)出示例1,学生读题,说明条件和问题。

问:关键句是哪一句?谁占果树总棵数的2/5?

单位1是谁?

(2)让学生画出线段图

(3)学生独立列式解答。

(4)讨论:哪种方法比较简单?

指出:求单位1的应用题一般来说用方程解。

2、比较解法

请同学们比较例1和复习题。

问:在条件、问题上有什么相同点和不同点?

在解法上有什么相同点和不同点?

小结:解答分数应用题,要先确定单位1,再找出题目的数量关系再解答。

1、做练一练

让学生先写出数量关系式再解答。

2、做练习十第4题

问:要怎样想?根据什么来列方程?

今天学了什么?解答此类应用题要怎样思考、分析?

练习十第2、3题

课后感受

本节课的内容比较简单,学生有一定的基础,所以花一定的时间让学生画线段图,让学生提高解题的能力,这对学习较复杂应用题有一定的帮助!

篇7:分数应用题(人教版六年级教案设计)

教学目标

1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.

2.培养学生分析、解答两步计算的分数应用题的能力和知识迁移的能力.

3.培养学生的推理能力.

教学重点

培养学生分析、解答两步计算的分数应用题的能力

教学难点

使学生正确地解答两步计算的分数一般应用题.

教学过程

一、复习引新

(一)全体学生列式解答,再说一说列式的依据.

两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?

13÷2-5

=6.5-5

=1.5(千米)

根据:路程÷相遇时间-甲速度=乙速度

(二)教师提问:谁来说一说相遇问题的三量关系?

速度和×相遇时间=总路程

总路程÷相遇时间=速度和

总路程÷速度和=相遇时间

(三)引新

刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为  小时)

二、讲授新课

(一)教学例1

例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过  小时相遇.甲每小时行5千米,乙每小时行多少千米?

1.读题,分析数量关系.

2.学生尝试解答.

方法一:解:设乙每小时行  千米.

方法二:  (千米)

3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?

相同:解题思路和解题方法相同;

不同:数据不同,由整数变成分数.

4.练习

甲、乙两车同时从相距90千米的两地相对开出,  小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?

(二)教学例2

例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的  ,这批水果有多少千克?

1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.

由此得出:一批水果的重量  第一次+第二次

2.列式解答

方法一:解:设这批水果有  千克

方法二:

3.以组为单位说一说解题的思路和依据.

4.练习

六年级一班有男生23人,女生22人,全班学生占六年级学生总数的  .六年级有学生多少人?

三、巩固练习

(一)写出下列各题的等量关系式并列出算式

1.甲、乙两车同时从相距184千米的两地相对开出,  小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?

2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的  .这部书稿有多少页?

(二)选择适当的方法计算下面各题

1.一根长绳,第一次截去它的  ,第二次截去  米,还剩7米,这根绳子长多少米?

2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行  千米,两人多少小时后相遇?

四、课堂小结

今天我们学习的分数应用题和以前所学的知识有什么联系?有什么区别?

五、课后作业

1.商店运来苹果4吨,比运来的橘子的2倍少  吨.运来橘子多少吨?

2.一套西装160元,其中裤子的价格是上衣的  .上衣和裤子的价格各是多少元?

六、板书设计

分数应用题

例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过

小时相遇.甲每小时行5千米,乙每小时行多少千米? 例2.一个水果店运一批水果,第一次运了50千克,第二次运了

70千克,两次正好运了这批水果 的 ,这批水果有多少千克?

解:设乙每小时行  千米

答:,乙每小时行  千米.

解:设这批水果有  千克

篇8:分数乘除法应用题教学设计

分数乘除法应用题教学设计

您现在正在阅读的《分数乘除法应用题》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《分数乘除法应用题》教学设计教材分析:分数连除和乘除复合应用题这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位1和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。

在设计授新课部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的引和放,以培养学生分析问题和解答问题的能力。

本节课计算是次,分析列式是主,所以在设计练兵场1、2时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。

巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位1,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。

小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后优化算法。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。

教学目标:

1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。

2、培养学生分析问题和解答问题的能力。

教学重点:找准每一步的单位1和数量关系。

教学难点:掌握两类应用题的结构特点,找准数量关系。

教学过程:

一、复习导入

1、口算天天练。(课件示题,指名口答)

渗透个别算式的知识点。

2、看谁先找到题中的单位1。指名口答

3、分析分率句,口头列式解答。

教师小结:题目中已知了分率和单位1的量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位1的量,要用除法计算。

4、谈话引入新课。

东华小学的`校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)

问:在这道题中,有几个单位1?这两个单位1的量是已知还是未知?

这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)

二、新授课

您现在正在阅读的《分数乘除法应用题》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《分数乘除法应用题》教学设计1、教学例4。

1.)师引导学生分析题目中的数量关系。

2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。

3.)师引导,学生确定每一步的算法。

师小结:刚才我们用连除的方法解答了题目中有两个单位1并且都未知时,求其中一个单位1的量的这类问题。

4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)

2、完成练兵场1中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)

更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?

3、教学例5。

1.)出示例题,齐读题目。

2.)师引导学生分析题目中的数量关系。

3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。

4.)师引导,学生确定每一步的算法。

师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位1并且一个已知,一个未知时,求其中未知的一个单位1的量的这类问题。

5.)谁还会用列方程的方法解答这道题?(指名板演)

4、完成练兵场1中的题目。集体订正。

三、巩固练习

1、基本练习。只列式,不计算

要求先独立做,然后集体订正。

下面几道题和前面的稍稍有点不同,敢挑战吗?

2、变式练习。

3、拓展练习。

四、小结

今天我们学习了题目中含有两个单位1的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。

五、布置作业

练习十一的2、3、6题。

篇9:分数乘除法应用题教学设计

分数乘除法应用题教学设计

教学目标:

(1)使学生掌握分数除法应用题的结构及数量关系,学会分析解答分数法除应用题,发展学生思维能力。

(2)引导学生充分自主探索,分组讨论,观察分析和比较,在自主学习中探究,在探究中发展提高。

(3)通过过师生交流总结,让学生获得学习数学的成功。让学生养成认真审题、积极思考的良好学习习惯。

教学重点:能用方程正确解答分数除法应用题。

教学难点:确定单位“1”、分析数量关系

教学过程:

以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数应用题)。

没学新课之前老师要考考大家,可以吗?(生答略)

1.说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?

①吃了一筐白菜的2/5。

②一本书的价格正好是一支钢笔价格的2/5。

③小明体内的水分占体重的4/5。

2.小明的体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

把答案讲给同学们听,说一说你怎样想的。

1、教学例1

同学们已经掌握了解了分数乘法应用题的方法那么同学们想不想利用这个方法去解答分数除法应用题呢?这节课我们就来研究分数除法应用题怎样解答好不好?

①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?

仔细观察看一看有没有什么发现?

独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。

小结:用方程解比较容易,因为它的解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的'几分之几是多少求这个数的应用题用方程解的方法。

2、教学例2。

师:同学们研究出了解答分数除法应用题的方法,那么你愿意不愿意用它帮助一下遇到困难的小明呢?

②小明买一条裤子是75元,是一件上衣的2/3,一件上衣是多少钱?

(看题)(独立完成后说说自己的想法)

谁愿意帮助小明?在本上写出你的答案,谁想把你的答案写在黑板上?解:设上衣的价格为x元。

x×2/3=75

x=75÷2/3

x=75×3/2

x=112。5

说一下你的想法

3、比较例1、例2有什么不同。

师:例1、例2虽然存在着不同指出,但是解题方法是类似的。我们再做两道题看看是不是这样。(投影出示做一做1、2)。请两名同学在投影片上做,其他同学在本上做,做后请同学叙述怎样做的,为什么这样做。

小结:通过以上的学习,同学们觉得分数应用题在解答时的关键是什么?

四、练习

1、判断下列说法是否正确。

①白兔只数是黑兔只数的2/5,单位“1”是黑兔,数量关系式:黑兔的只数×2/5=白兔的只数。

②黑兔只数的2/5是白兔的只数,白兔的只数是单位“1”()。

③苹果树占果园总面积的4/7,果园总面积是单位“1”,苹果树占地面积×4/7=果园的面积。()

2、①林庄果园占地面积是840公顷,苹果树果园总面积的3/4,苹果树占地多少公顷?

②林庄苹果树占地360公顷,占果园总面积的3/4,果园总面积有多少公顷?

3、新风小学去年植树320棵,相当于今年植树棵数的4/5。今年共植树多少棵?

五、总结全课

师:好了,同学们,这节课我们学习了列方程来解已知一个数的几分之几是多少,求这个数的应用题,学好这部分知识对于提高我们解决问题的能力,发展我们的思维有着重要的作用,同学们表现得非常好,希望你们继续努力。

篇10:《分数除法应用题》六年级教学设计

教学目标

1.理解以和倍问题为基础的分数应用题的解题思路.会列方程解答此类应用题.

2.培养学生的迁移类推能力.

3.培养学生运用所学的知识解决生活中的实际问题的能力.

教学重点

理解应用的数量关系,找到题目中的等量关系.

教学难点

找准题中的等量关系.

教学过程

一、复习。(用含有字母的式子表示)

1、果园里有苹果树x棵,梨树的'棵数是苹果树棵数的3/4。梨树有|()棵。

苹果树和梨树一共有()棵。

2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。

二、生活引入.

上一年,有一位学生问我|:老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?

1.老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了.

2.板书课题:分数除法应用题。

3、学生读题,理解题意弄清谁是单位1,画出线段图.

4、分层指导。

思考:

(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?

(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师、杨莹的岁数用含有的式子怎么表示?

5.学生练习,集体订正,说明思路。

三、尝试练习

(一)出示例3

例3.饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的.白兔和黑兔

各有几只?

1.读题,理解题意弄清谁是单位1,画出线段图.

2.小组回答:

(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?

(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含有的式子怎么表示?

3.学生练习。

4.学生打开书本对答。(65页)

解:设白兔的只数为只,黑兔的只数是.

白兔只数+黑兔只数=总只数

答:白兔有15只,黑兔有3只.

4.教师提问:这道题还可以怎样列式?

18(1+)什么意思?

(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答.

1.商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

2.商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

教师归纳:今天学习的应用题在解答时要根据分率句确定单位1,把单位1设为.

另一个数就是几分之几.根据已知条件列出方程解答.

四、巩固练习.

(一)变式练习

小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?

(二)对比练习

1.李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多少吨?

2.李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?

(三)选择练习

果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?

解:设桃树有棵.

A.B.

C.D.

五、质疑总结.

1.用方程解这类题的关键是什么?

2.用算术方法解答时应注意什么?

六、板书设计

篇11:《分数除法应用题》六年级教学设计

解:设老师的年龄是岁.

......老师年龄

42-30=12......杨莹的年龄

答:老师30岁,杨莹12岁.

篇12:《分数乘除法应用题》教学设计

《分数乘除法应用题》教学设计

教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。

在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。

本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。

巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。

小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。

教学目标:1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。

2、培养学生分析问题和解答问题的能力。

教学重点:找准每一步的单位“1”和数量关系。

教学难点:掌握两类应用题的结构特点,找准数量关系。

教学过程:

一、复习导入

1、口算天天练。(课件示题,指名口答)

渗透个别算式的知识点。

2、“看谁先找到题中的单位‘‘1‘‘。”指名口答

3、分析分率句,口头列式解答。

教师小结:题目中已知了分率和单位“1”的'量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位“1”的量,要用除法计算。

4、谈话引入新课。

东华小学的校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)

问:在这道题中,有几个单位“1”?这两个单位“1”的量是已知还是未知?

这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)

二、新授课

1、教学例4。

1.)师引导学生分析题目中的数量关系。

2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。

3.)师引导,学生确定每一步的算法。

师小结:刚才我们用连除的方法解答了题目中有两个单位“1”并且都未知时,求其中一个单位“1”的量的这类问题。

4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)

2、完成“练兵场1”中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)

更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?

3、教学例5。

1.)出示例题,齐读题目。

2.)师引导学生分析题目中的数量关系。

3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。

4.)师引导,学生确定每一步的算法。

师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位“1”并且一个已知,一个未知时,求其中未知的一个单位“1”的量的这类问题。

5.)谁还会用列方程的方法解答这道题?(指名板演)

4、完成“练兵场1”中的题目。集体订正。

三、巩固练习

1、基本练习。只列式,不计算

要求先独立做,然后集体订正。

下面几道题和前面的稍稍有点不同,敢挑战吗?

2、变式练习。

3、拓展练习。

四、小结

今天我们学习了题目中含有两个单位“1”的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。

五、布置作业

练习十一的2、3、6题。

篇13:分数除法应用题(人教版六年级教案设计)

教学目标

1.使学生进一步熟悉应用题的数量关系,能够掌握用算术、方程法解答两步计算的分数小数应用题。

2.提高学生分析和解答应用题的能力。

3.渗透对应思想。

教学重点

掌握数量关系,明确解题思路。

教学难点

会分析数量间的等量关系。

教学准备

投影片。

教学过程

(一)复习

1.看句子列算式。

2.复习数量关系。

(1)行程问题中的三量关系式是什么?

(2)相遇问题与行程问题三量关系有什么区别?是什么?

投影出示:速度和×相遇时间=合走路程

合走路程÷速度和=相遇时间

合走路程÷相遇时间=速度和

(3)它们同类量之间有什么关系?

合走路程=甲走的路程+乙走路程

速度和=甲的速度+乙的速度

(二)导入新课

这些数量关系以前学过,解决了一些实际问题,今天我们就来应用这些数量关系解决分数、小数中的一些实际问题。(板书课题)

(三)讲授新课

例1  两地相距13千米,甲乙二人从两地同时出发,相向而行,经

1.读题,说出已知、未知条件分别是什么?

2.分析:

(1)这是什么类型的题?和我们以前学过的相遇问题有什么区别?

(相遇问题,相遇时间给的是分数。)

(相遇时间,甲乙二人都行了这么长时间。)

在日常生活中,遇到的数不可能都是整数,那就要用分数、小数来表示。这样的问题你们会解决吗?

(3)请同学们自己选择方法做这道题。

(4)投影反馈各种不同做法,讲算理。

说每步的算理。

解③  设乙每小时行x千米。

为什么这样列方程,根据是什么?

(甲走的路程+乙走的路程=总路程)

解④  设(略)

列方程根据是:速度和×相遇时间=距离。

(5)对比用方程解答和用算术方法解答从解题思路上有什么不同?

(算术法是根据已知量,运用关系式,求出未知量;方程法是根据关系式确定等量关系,让未知数x参加运算。)

(6)小结:解答应用题时,首先明确数量之间的关系,灵活运用,选择多角度思考,用不同方法解答。

(1)读题分析:

这道题是一道什么样的应用题?

分数应用题的解题步骤是什么?

(一、认真审题;二、分析重点句;三、确定单位“1”;四、准确画图;五、列式计算。)

(2)根据解题步骤同桌讨论后,说出解题思路。(重点句是“两周正好

共修的总和。)

(3)同学们自己画图,列式。(一生板演)

解①设这段公路长x米。

等号左边和等号右边各表示什么?

为什么这样列式?

以先求两周共修的,然后再求这段公路全长多少千米。)

(4)两种解法的思路有什么不同?

(方程法设全长单位“1”为x,根据分数乘法的意义来列等量关系

出单位“1”。)

(5)例2与以前学的简单分数应用题的区别是什么?

(简单分数应用题是直接给出相对应的量率;而今天学的是运用对应思想,间接地求出相对应的量率。)

以上两个例题的学习使我们明白,在整数应用题时所学的数量关系,在小数、分数中照样可以应用,思路相同。

(三)巩固练习

1.课本第77页的“做一做”,任选一种方法列式计算,投影两种解法,区别比较。

方程法  算术法

解  设运来桔子x吨。

(用方程法解,思路清晰;用算术方法解逆向思维,尤其是加上0.5,不易理解。)

2.课本第78页的“做一做”,任选一种方法列式计算,投影订正。

3.选择正确答案。(举号选择)

(设钢笔价钱为x元)

第二月比第一月多生产30条。前两个月共生产毛巾被多少条?

(四)布置作业

第80页1~4题。

课堂教学设计说明

这节课是分数、小数应用题的第一课时,关键要把整数之间的数量关系迁移到分数、小数范围内,目的是迁移、巩固、提高。所以在设计这节课的教案时,改变过去以老师讲解为主的状况,让学生互相讨论,说解题思路,大胆放手让学生试做,然后根据学生所做的情况,说算理,说列方程的依据,明确列方程的等量关系。由于分析、思考的角度不同,所以确定的等量关系式也不同,列的方程式也就不同,这样就从多角度复习了数量之间的关系,发散了学生的思维。

分数应用题是这册书的重点。例2是在以前学过简单的分数应用题的基础上出现的,引导学生通过充分说算理,正确地画出图形,列出方程式和算术式,进一步加深了学生对求一个数的几分之几意义的理解。同时,向学生渗透对应思想,由简单的一一对应,向间接地求出相对应的量和率过渡,明确数量之间关系,为今后解决较复杂的分数应用题做好铺垫。

教案设计注意发挥学生主体作用,让学生参与教学,不是老师牵着学生鼻子走,而是为学生主动学习创设发展思维的环境。

篇14:分数连除应用题(人教版六年级教案设计)

教学目标

1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。

2.进一步提高学生的分析概括能力及解题能力。

教学重点

找准单位“1”,巩固分数除法应用题的解答方法。

教学难点

掌握分数连除应用题的结构及数量关系。

教学过程

(一)复习

(投影)

1.找准单位“1”,并列式解答。

2.出示准备题。

(1)读题,请学生找出已知条件和未知条件。

(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)

提问:美术组,生物组,航模组三个数量之间有什么关系。

(4)请一名同学列式解答,然后订正。

(二)讲授新课

老师把准备题进行改编。

指名读题,找出已知条件和未知条件。

1.指导学生画图。

提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)

提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)

老师按学生的回答,把准备题的图示进行修改。

2.找出含有分率的句子,进行分析。

(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?

(4)根据三量之间的关系,列出等量关系式。

(5)这个式子的等号两边相等吗?为什么?

人。)

学生回答,老师板书:

3.根据等量关系列方程解答。

提问:根据上面的分析,应设谁为x?(设美术组人数为x。)

老师板书:

解 设美术组有x人。

答:美术组有30人。

看方程提问:

(3)为什么要设美术组人数为x?

(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)

师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。

(三)巩固练习

(投影)

先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。

2.看图,找出数量间相等的关系,并列方程解答:

(1)说出这个图所反映的等量关系式。

(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。

师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)

三好生4人。

学生动笔做,老师带领学生订正。

的高是多少厘米?

根据题意填空:

是(  )厘米。设(  )为x。

果树有多棵?

(四)课堂总结

今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)

这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)

(五)布置作业

(略)

课堂教学设计说明

本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。

篇15:分数应用题2(人教版六年级教案设计)

教学目的

1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

2.通过复习,培养学生的分析能力以及综合能力.

3.通过复习,培养学生认真、仔细的学习习惯.

教学重点

通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

教学难点

通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.

教学过程

一、复习准备.

老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?

学生回答:

(1)3是6的几分之几?

(2)6是3的几倍?

(3)3比6少几分之几?

(4)6比3多几分之几?

(5)6占6与3总和的几分之几?

(6)3是6与3差的几倍?……

谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)

二、复习探讨.

(一)教学例4.

学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?

1.教师提问:根据已知条件,你都可以提出什么问题?并解答.

2.反馈:

(1)水彩画和蜡笔画共多少幅?

(2)水彩画比笔画少多少幅?

(3)蜡笔画比水彩画多几分之几?

(4)水彩画比蜡笔画少几分之几?

(5)水彩画是蜡笔画的几分之几?

(6)蜡笔画是水彩画的几分之几?

(7)……

3.教师质疑.

(1)5问和6问为什么解答方法不同?(单位1不同)

(2)3问和4问的问题有什么不同?(单位1不同)

(二)例题变式.

1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多  ,蜡笔画有多少幅?

2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多  ,水彩画和蜡笔画一共有多少幅?

(1)学生独立解答.

(2)学生讨论两道题的区别.

教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.

(三)深化.

如果题目中的分数发生了变化,我们还会解答吗?

1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的  ,还剩下多少吨钢材?

2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的  ,还剩下15吨,仓库里有多少吨钢材?

(1)学生独立解答.

(2)学生讨论两道题的区别.

教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.

三、巩固反馈.

1.分析下面每个题的含义,然后列出文字表达式.

(1)今年的产量比去年的产量增加了百分之几?

(2)实际用电比计划节约了百分之几?

(3)十月份的利润比九月份的利润超过了百分之几?

(4)的电视机价格比降低了百分之几?

(5)现在生产一个零件的时间比原来缩短了百分之几?

(6)十一月份比十二月份超额完成了百分之几?

2.列式不计算.

(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?

(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?

(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

3.判断并且说明理由.

男生比女生多20%,女生就比男生少20%.         (       )

4.一辆汽车从甲地开往乙地,第一小时行了全程的  ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?

四、课堂总结.

通过今天这堂课,你有什么收获吗?

篇16:分数乘法应用题(人教版六年级教案设计)

教学目标

1.进一步掌握分数乘法应用题的数量关系.

2.学会用一个数乘分数的意义解答两步分数乘法应用题.

教学重点

1.掌握两步分数应用题的解题思路和方法.

2.画线段图分析应用题的能力.

教学难点

分析两次单位“1”的不同之处.

教学过程

一、复习、质疑、引新

(一)指出下面分率句中的单位“1” .

1.乙是甲的

2.小红的身高是小明的

3.参加合唱队的同学占全班同学的

4.乙的  相当于甲

5.1个篮球的价钱是一个排球价钱的  倍

(二)口头分析并列式解答

1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的  ,小华储蓄了多少元?

2.小华储蓄了15元,小新储蓄的是小华的  ,小新储蓄了多少元?

(三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.

(出示课题--分数应用题)

二、探索、悟理

(一)出示组编的例题

例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的  ,小新储蓄的是小华的  ,小新储蓄了多少元?

1.思考讨论

(1)小华储蓄的钱是小亮的  ,是什么意思?谁是单位“1”?

(2)小新储蓄的是小华的  ,又是什么意思?谁是单位“1”?

2.汇报思路讲方法

根据“小华储蓄的钱是小亮的  ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱:  .根据“小新储蓄的是小华的  ”,把小华的钱看作单位“1”,再标出小新的储蓄钱:  .

由此基础上试列综合算式:

(二)巩固练习

小华有36张邮票,小新的邮票是小华的  ,小明的邮票是小新的  ,小明有多少张邮票?

1.分析数量关系,独立画图并列式解答.

2.学生板演.

(张)

(张)

答:小明有40张.

3.综合算式

三、归纳、明理

用连乘解答的题有什么特点?”“解题思路是什么?”

1.认真读题弄清条件和问题

2.确定单位“1”找准数量关系

根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.

3.列式解答

板书:抓住分率句,找准单位“1”,

画图来分析,列式不用急.

四、训练、深化

(一)联想练习根据下面的每句话,你能想到什么?

1.苹果的个数是梨的  .(如,梨是单位“1”;苹果少,梨多;苹果比梨少  等)

2.修了全长的

3.现在的售价比原来降低了

(二)先口头分析数量关系,再列式解答.

1.鹅的孵化期是30天,鸭的孵化期是鹅的  ,鸡的孵化期是鸭的  ,鸡的孵化期是多少天?

2.3个同学跳绳,小明跳了120下,小强跳的是小明的  ,小亮跳的是小强的  倍,小亮跳了多少下?

(三)提高题.

六年级有三个班参加植树,___________,二班植树棵数是一班的  ,三班植树棵数是二班的  倍,___________?

五、课后作业

(一)六年级同学收集了180个易拉罐,其中  是一班收集的,  是二班收集的.两班各收集多少个?

(二)长跑锻炼,小雄跑了3千米,小雄跑的  等于小刚跑的,小勇跑的是小雄的  .小刚和小勇各跑多少千米?

六、板书设计

分数乘法应用题

小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的  ,小新储蓄的钱是小华的  .小新储蓄了多少钱?

教案点评:

解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。

这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

篇17:分数、百分数应用题复习的教学设计

教学目标:

1、通过复习“一个数是另一个数的百分之几”“求一个数的几分之几(百分之几)是多少。”“已知一个数的几分之几(百分之几)是多少,求这个数。”三类应用题,引导学生通过自主学习理清解题思路,归纳解答方法,发现各自的特点。

2、通过复习训练学生根据题目的特点解题,进而提高学生分析、解答应用题的能力。

3、培养学生认真审题和学会联系实际的学习的习惯。

教学重点:整理分数、百分数两类应用题分析、解答方面的特征。

教学难点:根据题目的特征,正确、快速的解答稍复杂分数、百分数的两类应用题。

教学过程:

一、创设情境,导入学习。

师:六一儿童节就要到了,音乐张老师为学生采购演出用的连衣裙,商家七折促销,一件衣服原价180元,实际多少钱?

师:同学们能不能用以学的知识帮助张老师解决问题呢?

生:180X70%=126元

师:感谢同学们的热情帮助,刚才大家用学过的知识帮老师解决了问题,是哪部分知识?(分、百应用题)今天,我们一起来复习分、百应用题。(板书课题)

二、观察比较进行分析。

师:我们解决分百应用题的关键是什么?(找关键句,确定单位“1”)

下面我们就来找一找(出示关键句找单位“1”)

1、一条路,已经修了60%

2、现价比原价减少了30%

3、苹果树的25%相当于梨树棵树

4、今年小麦增产了16.5%

师:确定好了单位“1”下面我们就该找准对应的“量”和“率”的关系了。下面我有几个问题大家来看(出示ppt)

一件连衣裙原价180元,现价126元,现价是原价的几分之几?

一件连衣裙原价180元,现在打七折出售,现价多少元?

一件连衣裙打七折出售是126元,请问原价多少元?

师:同学们能不能迅速的列出式子来,观察这三道题分别是哪三种类型的?(学生进行分析)教师汇总板书

分百三类题:

1.求一个数是另一个的几分之几(百分之几)?

2.求一个数的几分之几是多少?

3.已知一个数的几分之几是多少,求这个数?(板书)

师:那他们每个问题都是求什么的呢?用的什么方法?

生:第一个求分率,用比较量除以单位“1”的量,第二个求比较量,用单位“1”X对应分率等于比较量,第三个求单位“1”用比较量÷对应分率等于单位“1”的量

师:同学们答得非常对,做分百应用题就是这三个类只要找好单位“1”确定“量”和“率”的关系就一定能把问题解决,下面再看几道题

出示PPt

观察比较,找规律

一件连衣裙原价180元,现价126元,便宜了百分之几?

一件连衣裙原价180元,打七折出售,便宜了多少钱?

一件连衣裙现价126元,便宜了30%,原价多少钱?

师:同学们列式看看这三道题与前面三道题有什么异同呢?

生:类型相同,不同的是给的条件都是间接的。

三、小结。

分析、解答这两类应用题时,都是从含有分率的句子入手分析――确定“1”,找到对应的“量”与“率”;在根据已知条件和所求问题判定属于哪一类型。如果求“数量”,就用单位“1”的量ד所求数量对应的分率”;如果求单位“1”的量,就用“数量”÷“数量所对应的分率”;求单位“1”的量还可以用方程的方法来解答。

四、综合练习,巩固提高。

五、板书设计。

分百应用题

①确定单位“1” ②找准对应的“量”和“率”

1、求一个数是另一个数的几分之几?(百分之几)

2、求一个数的几分之几(或百分之几)是多少?

3、已知一个数的几分之几(或百分之几)是多少,求这个数。

篇18:“分数、百分数应用题与复习”教学设计与评析

“分数、百分数应用题整理与复习”教学设计与评析

江苏省常熟市梅李中心小学  朱永坤执教

江苏省常熟市教育局教研室  徐建文评析

教学目标

1.使学生进一步理解和掌握分数、百分数应用题的数量关系和解题方法,沟通分数、百分数应用题之间的联系,通过学生自主建构使知识系统化。

2.提高学生分析、推理、判断能力以及解决简单的实际问题的能力。

3.培养学生收集、处理信息的能力,使学生体会到数学的价值。

教学过程

一、课前观察

1.欣赏:美丽的千岛湖和农夫山泉广告

2.观察:

每位同学的桌子上都摆放着一瓶来自我国最大的矿泉水生产基地浙江千岛湖的农夫山泉矿泉水,请你仔细观察这瓶矿泉水。

3.师:你从中获取了哪些信息?

生1:这个瓶子是一个近似圆柱体。

生2:广告中说如果你喝一瓶矿泉水,那就为中国申奥捐出一分钱。

生3:这瓶矿泉水是550毫升。

生4:我用尺测量了一下瓶子,瓶中水的高度约20厘米。

【评:看广告片、观察矿泉水,引导学生从中收集数据,获取数学信息,培养了学生的数学意识】

二、整理复习

1.猜一猜。

师:老师喝去了一些矿泉水,还剩下这些(举起手中的瓶子),请你猜一猜,还剩下这瓶水的几分之几?

生1:1/4。

生2:1/5,也可能是1/6。……

师:你有什么办法来证明自己猜对了吗?

生1:可以先测量剩下的水有多少,再计算还剩几分之几。

生2:可以先称出剩下的重几克,再计算出剩下的占整瓶水的几分之几。

师:你认为哪一种办法好呢?

生:测量。

师追问:测量什么?用什么测量?

生:测量剩下的水的高度。

学生操作后得出:满瓶矿泉水的高度是20厘米,剩下水的高度是4厘米,剩下的占这瓶水的了1/5(20%),喝去了这瓶水的4/5(80%)。

师:想法很好,但如果要求比较精确,怎么办呢?

生:可以用量杯量。

教师示范操作,用量杯量后,看一下是多少毫升?

生:110毫升。

师:现在谁能计算出还剩下几(百)分之几?

生:110÷550=1/5。

师:那么喝下几(百)分之几?怎样计算?

生:4/5,用1-1/5,也可以用(550-110)÷550。

电脑显示:

① ②③

一瓶水550毫升 喝去440毫升 剩下110毫升

④ ⑤⑥

“1”         4/5(80%)      1/5(20%)

小结:求喝下几(百)分之几和剩下几(百)分之几…… 这就是我们已经学过的`求一个数是另一个数的几(百)分之几的应用题,解答这类题的关键在于弄清谁与谁比,把谁看作单位“1”。

【评:通过猜、测、量、算,让学生在动手与动脑的过程中获得数学活动的经险,巧妙地复习了求一个数是另一个数的几(百)分之几的应用题】

2.编一编。

师:刚才我们通过观察、讨论、计算,得到了以下两组信息,现在老师要求大家从上述两组信息中各选择一条信息,再提出一个问题,组成一道我们已经学过的分数(百分数)应用题。

学生交流,教师调控。

如①+⑤喝去了多少毫升?还剩多少毫升?

①+③还剩多少毫升?喝去多少毫升?

②+⑤这瓶矿泉水多少毫升?

师:你认为解答分数、百分数应用题的关键是什么?

生:确定单位“1”,找出与几(百)分之几的对应数量,然后联系一个数乘以分数、百分数的意义列出数量关系,再列式计算。

【评:让学生自己选择信息并提出问题,组合成分数、百分数应用题后自己解答的过程,不仅使学生进一步理解了这些应用题的结构,掌握了解题方法,而且沟通了各类应用题之间的联系,有利于学生建构自己的知识系统】

三、应用拓展

1.算一算。

①工厂生产的矿泉水合格率是99.8%。如果有80瓶是不合格产品,那么这一天共生产了多少瓶矿泉水?

②矿泉水现在每瓶成本1.5元,比原来降低了25%,如果工厂按每天生产20000瓶计算,可以节约成本多少元?

③工厂降低成本后,为答谢广大顾客,决定开展“买四赠一”活动。如果矿泉水原来每瓶卖2元,那么优惠了百分之几?

【评:在算一算的过程中,学生当了回质检员、成本核算员和销售员,他们俨然是在为公司解决生产和销售中的实际问题,小小的心灵多了些质量意识、成本意识和责任意识】

2.想一想。

学校组织大家去春游,如果我班同学每人各自买一瓶矿泉水,单价是2元。如果整箱买:小箱12瓶可打九折,大箱20瓶可打八折。请你们小组合作,设计购买方案。

【评:创设开放性情境,为学生提供信息,并让学生选择相关信息,设计购买方案,给学生提供了广阔的思维空间,渗透了问题解决策略多样化的思想,培养了学生的创新意识,并使不同层中的学生都能获得学习成功的体验】

四、全课小结:略。

总评:本保一改传统的教学模式,走出了一条应用题整理也复习的新路子。主要表现在以下方面:

1.创造性地组织了复习内容。

全课以矿泉水为主线,通过创设“喝矿泉水――算矿泉水――生产矿泉水――销售矿泉水――购买矿泉水”等一系列情境,将复习内容巧妙地贯穿其中,构建了由浅入深、由易到难这样一条较为完整的复习路径。课中所提供的学习材料来自现实生活.如“买四赠一”、“春游时购买矿泉水”等,使学生感受到数学与生活的密切联系,体会到数学的应用价值。

2.十分关注学生的整体发展。

整理和复习,理应关注“双基”,但在重视学生知识、技能的同时,更应关注学生的整体发展,通过对问题情境和现实背景下的数学问题的思考和解决,培养学生的数学能力,实现理解巩固与探索创新的有机结合。朱老师通过猜一猜、编一编,引导学生自己对分数、百分数应用题进行整理和复习,深化了学生对知识之间内在联系的理解,促进了学生原有认知结构的优化。结合复习内容设计的计算矿泉水生产、销售中“合格产品的数量”、“每天节约的成本”以及“优惠了百分之几”等环节,不仅实现了知识的拓展和延伸,而且培养了学生的应用意识和解决简单实际问题的能力。

3.重视培养学生的信息素养。

数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力。课始,朱老师引导学生从农夫山泉广告和矿泉水瓶的标签中收集信息,为全课展开预设铺垫;课中,他和学生一起,在估测、操作的过程中获取信息,并让学生合理选择获得的信息编成学过的分数、百分数应用题,让学生通过自己的努力完成对已有知识的梳理;课尾,他让学生利用提供的信息设计矿泉水的购买方案。全课信息展示丰富多彩.增强了学生学习活动的新鲜感,增大了课堂教学的信息容量,培养了学生收集处理信息的能力,有效地激发了学生的创新意识。

【分数应用题教学设计人教版】相关文章:

1.人教版连乘应用题教学设计

2.分数乘分数人教版教学设计

3.分数乘法人教版教学设计

4.人教版分数加减教学设计

5.人教版分数除法教学设计

6.《稍复杂的分数应用题》教学设计

7.人教版四上数学应用题教学设计

8.人教版列方程解应用题教学设计

9.工程问题应用题教学设计人教版

10.人教版乘除法应用题教学设计

下载word文档
《分数应用题教学设计人教版.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部