函数奇偶性说课课件
“嘴子”通过精心收集,向本站投稿了12篇函数奇偶性说课课件,以下是小编帮大家整理后的函数奇偶性说课课件,欢迎大家收藏分享。
篇1:函数奇偶性课件
函数奇偶性课件
函数的奇偶性是指在关于原点的对称点的函数值相等。函数奇偶性课件内容,一起来看看!
课标分析
函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.
教材分析
教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.
教学目标
1 通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.
教学重难点
1理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.
2 在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的.
学生分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax2,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.
教学过程
一、探究导入
1 观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.
对于函数f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.
2观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.
可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
二、师生互动
由上面的分析讨论引导学生建立奇函数、偶函数的定义
1 奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.
2 提出问题,组织学生讨论
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?
(f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
(3)奇、偶函数的'定义域有什么特征?
(奇、偶函数的定义域关于原点对称)
三、难点突破
例题讲解
1 判断下列函数的奇偶性.
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1〕.
2 已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3 已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).
又f(x)是偶函数,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
巩固创新
1 已知:函数f(x)是奇函数,在〔a,b〕上是增函数(b>a>0),问f(x)在〔-b,-a〕上的单调性如何.
2 f(x)=-x|x|的大致图像可能是( )
3 函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数.
4 设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、课后拓展
1 有既是奇函数,又是偶函数的函数吗?若有,有多少个?
2 设f(x),g(x)分别是R上的奇函数,偶函数,试研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数.
4 一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
教学后记
这篇案例设计由浅入深,由具体的函数图像及对应值表,抽象概括出了奇、偶函数的定义,符合职高学生的认知规律,有利于学生理解和掌握.应用深化的设计层层递进,深化了学生对奇、偶函数概念的理解和应用.拓展延伸为学生思维能力、创新能力的培养提供了平台。
篇2:高一函数的奇偶性课件
一、三维目标:
知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的'情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1.复习在初中学习的轴对称图形和中心对称图形的定义:
2.分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。
五、学习过程:
篇3:高一函数的奇偶性课件
(1)对于函数,其定义域关于原点对称:
如果______________________________________,那么函数为奇函数;
如果______________________________________,那么函数为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。
六、达标训练:
A1、判断下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+(4)f(x)=
A2、二次函数是偶函数,则b=___________.
B3、已知,其中为常数,若,则
_______.
B4、若函数是定义在R上的奇函数,则函数的图象关于
(A)轴对称(B)轴对称(C)原点对称(D)以上均不对
B5、如果定义在区间上的函数为奇函数,则=_____.
C6、若函数是定义在R上的奇函数,且当时,,那么当
时,=_______.
D7、设是上的奇函数,,当时,,则等于()
(A)0.5(B)(C)1.5(D)
D8、定义在上的奇函数,则常数____,_____.
七、学习小结:
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
八、课后反思:
篇4:函数的奇偶性数学课件
函数的奇偶性数学课件
一、教学目标
(一)通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象概括能力.
(二)理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.
(三)在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的.
二、任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax■,(a≠0),故可在此基础上,引入奇、偶函数的概念,便于学生理解.在引入概念时始终结合具体函数的图像,增强直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于有定义域奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念——非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想的效果.
三、教学设计
(一)问题情景
1.观察如下两图(图略),思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.
2.观察函数f(x)=x和f(x)=的.图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.
可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
(二)建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义.
1.奇、偶函数的定义.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
2.提出问题,组织学生讨论.
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?
(f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
(3)奇、偶函数的定义域有什么特征?
(奇、偶函数的定义域关于原点对称)
(三)解释应用
[例题]
1.判断下列函数的奇偶性.
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].
2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x),∴f(x)=x(1-x).
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)内是增函数,还是减函数,并证明你的结论.
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)内是增函数,证明如下:
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
[练习]
1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.
4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
(四)拓展延伸
1.有既是奇函数,又是偶函数的函数吗?若有,有多少个?
2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.
4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
篇5:二次函数课件说课
二次函数课件说课
二次函数课件说课
一。 教材分析
1、教材的地位及作用
函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2.教学目标
(1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
(3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,
3、教学的重、难点
重点:二次函数的概念和解析式
难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力
4、学情分析
①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。 ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与 能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析
1` 教法(关键词:情境、探究、分层)
基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法 为主进行教学。让学生在开放的情境中,在教师的 引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)
根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的`主动性和积极性,使学生由“学会”变“会学”和“乐学”.
3、教学手段
采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习兴趣,参与热情,增大教学容量,提高教学效率。
三、教学过程
完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:
(一)。创设情境 温故引新
以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:
(1)你们喜欢打篮球吗?
(2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?
从而引出课题〈〈二次函数〉〉,导入新课
(二)。合作学习,探索新知
为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。
学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数
(三)当堂训练 巩固提高讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零。
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有“差异的”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。
(四)。小结归纳 拓展转化
让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。
(五)布置作业 学以致用
作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系。
四。评价分析
本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。
五。教学反思
1.本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。
2.本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生的语言表达能力。同时不断激发学生的探索精神,提高了学生分析和解决问题的能力。使学生有成功体验。
篇6:反比例函数的说课课件
反比例函数的说课课件
反比例函数的说课课件
一、教材分析:
本课时的内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析:
根据新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:
(一)知识目标:
1.使学生了解反比例函数的概念
2.使学生能够根据问题中的条件确定反比例函数的解析式。
3.使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。
4.会用待定系数法确定反比例函数的解析式。
(二)能力目标:
培养学生的观察能力,分析能力,独立解决问题的能力。
(三)德育目标:
1.向学生渗透数学来源于实践又反过去作用于实践的观点。
2.使学生体会事物是有规律地变化着的观点。
(四)美育目标:
通过反比例函数图象的研究,渗透反映其性质的图象的直观形象美,激发学生的兴趣,也培养了学生积极探索知识的能力。
三、教学重点,难点:
(一)教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。
(二)教学难点:画反比例函数的图象。
(三) 解决方法
(1)由分组讨论,积极思考,分析问题,发现结论。
(2)训练,研究,总结
因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质
四、教学方法:
初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的'形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。鉴于教材和初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法 和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导:
本堂课立足于学生的“学”,要求学生多动手、多观察从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
最后我来具体谈一谈这一堂课的教学过程。
六、教学过程:
(一) 复习引入——反函数解析式
练习1:写出下列各题的关系式:
(1)正方形的周长C和它的一边的长a之间的关系
(2)矩形的面积为10时,它的长x和宽y之间的关系
(3)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。
(二) 探究学习1——函数图象的画法
问题3:如何画出正比例函数的图象?
通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。
问题4:那反比例函数的图象应该怎样去画呢?
在教学过程中可以引导学生仿照正比例函数图象的的画法。
设想的教学设计是:
(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;
(2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;
(3) 随后老师在在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。
初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:
(1) 在“列表”这一环节 在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。
(2)在“连线”这一环节 学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。从而引导学生画出正确的函数图象.
(3)图象与x轴或y轴相交
在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。
(三)探究学习——函数图象性质
1、图象的分布情况
问题5:请大家回忆一下正比例函数的分布情况是怎么样的呢
提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况 又是怎么样的呢?
问题7:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?
在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性
(四)小结:
通过列表的形式,引导学生小结反比例函数的性质
名称 解析式 图像 图象分布 函数变化情况
k>0 k<0 k=“”>0 k<0
正比例函数 y=kx(k 0)是一条经过原点和(1,k)的直线 一、三
象限 二、四
象限 y随x的增大而增大 y随x的增大而减小.
反比例函数 双曲线 一、三
象限 二、四
象限 y随x的增大而减小 y随x的增大而增大.
篇7:if函数的应用说课课件
一、抽奖游戏
激趣导入
活跃课堂气氛,为学生带来一个抽奖游戏。
1. 说明游戏规则(见附1)。
2. 随机选定部分学生参与抽奖游戏,选择单元格。
3. 按照游戏规则,对应黑板中的流程图,讲解IF函数的.原理。
4. 分发奖品,提出疑问。
5. 在计算机中模拟抽奖环节,介绍IF函数。
二、解决问题
熟悉函数在“抽奖”中的IF函数条件表达式为等式,探究出是否可以为不等式,创设情境,引出任务一:
任务一:
请根据消费合计判断消费是否超支?
1. 学生讨论并在学案中画出流程图,思考参数表达式、正确返回值、错误返回值的内容。
2. 放手给学生操作。
3. 解决问题、总结。
提出问题,条件中是由单元格引用地址与固定数值比较,探究出是否可以利用两个单元格直接比较?
任务二:
请根据本月与上月售价比较,判断商品是否涨价?
1. 提供学案,由学生自己完成流程图思考。
2. 根据自己的判断完成IF函数判断。
3. 利用自动填充功能,将任务解决。
三、学生总结
提炼步骤教师引导学生先进行讨论,并完成操作步骤的总结,更好的整理学生的操作思路,帮助学生建构正确操作过程。
四、勇闯难关
自主探究为学生布置闯关游戏,利用素材开展活动:
1. 架设学生喜欢的情境,让学生挑战不同的关卡,得到密码。
2. 利用挑战成功后得到的密码打开最终文档,并完成最终挑战。
3. 结合自主学习材料,了解嵌套IF函数的使用。
五、完成评价利用导学案完成本节课自主评价。
引出下节课学习内容——自动筛选。
总结本课学习内容,并说明信息技术在生活中的便利应用,提出日后深入学习Excel的希望。
if函数语法
IF(logical_test,value_if_true,value_if_false)
Logical_test 表示计算结果为 TRUE 或 FALSE 的任意值或表达式。
例如,A10=100 就是一个逻辑表达式,如果单元格A10 中的值等于 100,表达式即为TRUE,否则为FALSE。本参数可使用任何比较运算符(一个标记或符号,指定表达式内执行的计算的类型。有数学、比较、逻辑和引用运算符等。)。
Value_if_true logical_test 为 TRUE 时返回的值。
例如,如果本参数为文本字符串“预算内”而且 logical_test 参数值为 TRUE,则 IF 函数将显示文本“预算内”。如果 logical_test 为 TRUE 而 value_if_true 为空,则本参数返回 0(零)。如果要显示 TRUE,则请为本参数使用逻辑值 TRUE。value_if_true 也可以是其他公式。
Value_if_false logical_test 为 FALSE 时返回的值。
例如,如果本参数为文本字符串“超出预算”而且 logical_test 参数值为 FALSE,则 IF 函数将显示文本“超出预算”。如果 logical_test 为 FALSE 且忽略了 value_if_false(即 value_if_true 后没有逗号),则会返回逻辑值FALSE。如果 logical_test 为 FALSE 且 value_if_false 为空(即 value_if_true 后有逗号,并紧跟着右括号),则本参数返回 0(零)。VALUE_if_false 也可以是其他公式。
篇8:函数单调性说课课件
函数单调性说课课件
函数单调性说课课件已经为大家准备好啦,老师们,大家可以参考以下教案内容,整理好自己的授课思路哦!
一、教学内容的分析
1.教材的地位和作用
首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.
其次,从函数角度来讲. 函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.
最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.
2.教学的重点和难点
对于函数的单调性,学生的认知困难主要在两个方面:
首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.
其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.
根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性.
二、教学目标的确定
根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:
1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.
三、教学方法的选择
1.教学方法
本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法.教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力.
2.教学手段
教学中使用了多媒体投影和计算机来辅助教学.目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.
四、教学过程的设计
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识.具体过程如下:
(一)创设情境,引入课题
概念的形成主要依靠对感性材料的抽象概括,只有学生对学习对象有了丰富具体经验以后,才能使学生对学习对象进行主动的、充分的理解,因此在本阶段的教学中,我从具体材料——有关奥运会天气的例子出发,而不是从抽象语言入手来引入函数的单调性.使学生体会到研究函数单调性的必要性,明确本课我们要研究和学习的课题,同时激发学生的学习兴趣和主动探究的精神.
在课前,我给学生布置了两个任务:
(1) 由于某种原因,北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.
课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.
(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.
课上我引导学生观察8月8日的气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低.
然后,我指出生活中我们关心很多数据的变化,并让学生举出一些实际例子(如燃油价格等). 随后进一步引导学生归纳:所有这些数据的变化,用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.
(二)归纳探索,形成概念
在本阶段的教学中,为使学生充分感受数学概念的发生与发展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质的认识,我设计了三个环节,引导学生分别完成对单调性定义的三次认识.
1.借助图象,直观感知
本环节的教学主要是从学生的已有认知出发,即从学生熟悉的常见函数的图象出发,直观感知函数的.单调性,完成对函数单调性定义的第一次认识.
在本环节的教学中,我主要设计了两个问题:
问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?
在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.
而后两个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
对于概念教学,若学生能用自己的语言来表述概念的相关属性,则能更好的理解和掌握概念,因此我设计了问题2.
问题2:能否根据自己的理解说说什么是增函数、减函数?
教学中,我引导学生用自己的语言描述增函数的定义:
如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数.
然后让学生类比描述减函数的定义.至此,学生对函数单调性就有了一个直观、描述性的认识.
2.探究规律,理性认识
在此环节中,我设计了两个问题,通过对两个问题的研究、交流、讨论,将函数的单调性研究从研究函数图象过渡到研究函数的解析式,使学生对单调性的认识由感性认识上升到理性认识的高度,使学生完成对概念的第二次认识.
问题1:右图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?
对于问题1,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.
问题2:如何从解析式的角度说明在上为增函数?
在前边的铺垫下,问题2是形成单调性概念的关键.在教学中,我组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈,评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.
对于问题2,学生错误的回答主要有两种:
(1)在给定区间内取两个数,例如1和2,因为,所以在上为增函数.
(2)仿(1),取很多组验证均满足,所以在上为增函数.
对于这两种错误,我鼓励学生分别用图形语言和文字语言进行辨析.引导学生明确问题的根源是两个自变量不可能被穷举.在充分讨论的基础上,引导学生从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答:
任意取,有,即,所以在为增函数.
这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小.事实上,这种回答也给出了证明单调性的方法,为后续用定义证明其他函数的单调性做好铺垫,降低难度.至此,学生对函数单调性有了理性的认识.
3.抽象思维,形成概念
本环节在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程,完成对概念的第三次认识.
教学中,我引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后我指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.
同时我设计了一组判断题:
判断题:
②若函数满足f(2) ③若函数在和(2,3)上均为增函数,则函数在(1,3)上为增函数. ④因为函数在上都是减函数,所以在上是减函数. 通过对判断题的讨论,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 从而加深学生对定义的理解,完成本阶段的教学. (三)掌握证法,适当延展 本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握根据单调性定义证明函数单调性的方法,同时引导学生探究定义的等价形式,对证明方法做适当延展. 例证明函数在上是增函数. 在引入导数后,用定义证明单调性的作用已经有所降低,我选择一个较难的例子,主要是考虑让学生对证明过程中遇到的问题有一个比较深刻的认识. 证明过程的教学分为三个环节:难点突破、详细板书、归纳步骤. 1.难点突破 对于函数单调性的证明,由于前边有对函数在上为增函数的研究作铺垫, 大部分学生能完成取值和求差两个步骤: 证明:任取, 因此学生的难点主要是两个函数值求差后的变形方向以及变形的程度.问题主要集中在两个方面:一方面部分学生不知道如何变形,不敢动笔;另一方面部分学生在变形不彻底,理由不充分的情形下就下结论. 针对这两方面的问题,教学中,我组织学生讨论,引导学生回顾函数在上为增函数的说明过程,明确变形的主要思路是因式分解.然后我引导学生从已有的认知出发,考虑分组分解法,即把形式相同的项分在一起,变形后容易找到公因式,提取后即可考虑判断符号. 2.详细板书 在上面分析的基础上,我对证明过程进行规范、完整的板书,引导学生注意证明过程的规范性和严谨性,帮助学生养成良好的学习习惯. 五、学习小结 在知识层面上,引导学生回顾函数单调性定义的探究过程,使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义. 在方法层面上,首先引导学生回顾判断,证明函数单调性的方法和步骤;然后引导学生回顾知识探究过程中用到的思想方法和思维方法,如数形结合,等价转化,类比等,重点强调用符号语言来刻画图形语言,用定量分析来解释定性结果;同时对学习过程作必要的反思,为后续的学习做好铺垫. 2.布置作业 在布置书面作业的同时,为了尊重学生的个体差异,满足学生多样化的学习需要,我设计了探究作业供学有余力的同学课后完成. (1) 证明:函数在上是增函数的充要条件是对任意的,且有. 目的是加深学生对定义的理解,而且这种方法进一步发展同样也可以得到导数法. (2) 研究函数的单调性,并结合描点法画出函数的草图. 目的是使学生体会到利用函数的单调性可以简化函数图象的绘制过程,体会由数到形的研究方法和引入单调性定义的必要性,加深对数形结合的认识. 判断方法 1、先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性。 2、根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法) 3、若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇。 4、若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶。 5、若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇。 函数奇偶性练习题精选 函数奇偶性练习题精选 11.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为________. 答案 0 512.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(=________. 2 1答案 - 2 5551111解析 依题意,得f(=-f=-f(-2)=-f=-2×(1-)=-2222222 13.函数f(x)=x3+sinx+1的图像关于________点对称. 答案 (0,1) 解析 f(x)的图像是由y=x3+sinx的图像向上平移一个单位得到的. 14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为________. 答案 -4 15.定义在(-∞,+∞)上的函数y=f(x)在(-∞,2)上是增函数,且函数y=f(x+2)为偶函数,则f(- 11),f(4),f(5的大小关系是__________. 2 1答案 f(5) 解析 ∵y=f(x+2)为偶函数, ∴y=f(x)关于x=2对称. 又y=f(x)在(-∞,2)上为增函数, ∴y=f(x)在(2,+∞)上为减函数,而f(-1)=f(5), 1∴f(5<f(-1)<f(4). 2 16.(·湖北八校)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),求: (1)f(0)与f(2)的值; (2)f(3)的值; (3)f(2 013)+f(-2 014)的值. B.-1 11D.-4 答案 (1)f(0)=0,f(2)=0 (2)f(3)=-1 (3)1 解析 (2)f(3)=f(1+2)=-f(1)=-log2(1+1)=-1. (3)依题意得,x≥0时,f(x+4)=-f(x+2)=f(x),即x≥0时,f(x)是以4为周期的函数. 因此,f(2 013)+f(-2 014)=f(2 013)+f(2 014)=f(1)+f(2).而f(2)=-f(0)=-log2(0+1)=0,f(1)=log2(1+1)=1,故f(2 013)+f(-2 014)=1. 17.若f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值8,求F(x)在(-∞,0)上的`最小值. 答案 -4 解析 由题意知,当x>0时,F(x)≤8. ∵f(x),g(x)都是奇函数,且当x<0时,-x>0. ∴F(-x)=af(-x)+bg(-x)+2 =-af(x)-bg(x)+2 =-[af(x)+bg(x)+2]+4≤8. ∴af(x)+bg(x)+2≥-4. ∴F(x)=af(x)+bg(x)+2在(-∞,0)上有最小值- 4. 1.已知f(x)是在R上的奇函数,f(1)=2,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(3)=________;f(2 019)=________. 答案 0 0 解析 在f(x+6)=f(x)+f(3)中,令x=-3,得f(3)=f(-3)+f(3),即f(-3)=0. 又f(x)是R上的奇函数,故f(3)=0. 即f(x+6)=f(x),知f(x)是周期为6的周期函数,从而f(2 019)=f(6×336+3)=f(3)=0. 12.若f(x)是定义在(-1,1)上的奇函数,且x∈[0,1)时f(x)为增函数,则不等式f(x)+f(x<0的解集2 为________. 11答案 {x|<x<} 24 解析 ∵f(x)为奇函数,且在[0,1)上为增函数, ∴f(x)在(-1,0)上也是增函数. ∴f(x)在(-1,1)上为增函数. 1f(x)+f(x-<0? 2 11f(x)<-f(x)=f(-x)? 22 1-1<2-x<1, 高中数学课件奇偶性 高中数学课件奇偶性 教学目标: 1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。 2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。 3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。 教学重点: 探索并理解数的奇偶性 教学难点: 能应用数的奇偶性分析和解释生活中一些简单问题 教学过程: 一、游戏导入,感受奇偶性 1、游戏:换座位 首先将全班45个学生分成6组,人数分别为5、6、7、8、9、10。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。 (游戏后学生发现6人、8人、10人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位) 2、讨论:为什么会出现这种情况呢? 学生能很直观的找出原因,并说清这是由于6、8、10恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。 (此时学生议论纷纷,正是引出偶数、奇数的最佳时机) 3、小结:交换位置时两两交换,刚好都能换位置,像6、8、10……是2的倍数,这样的数就叫做偶数;而有人不能与别人换位置,像5、7、9……不时的倍数,这样的数就叫做奇数。 学生相互举例说说怎样的.数是奇数,怎样的数是偶数。 二、猜想验证, 认识奇偶性 1、设置悬念、激发思维 现在我们继续来考虑六组人数:5人、6人、7人、8人、9人、10人,那么猜猜那些组合起来能够刚好换完?那些不能? 2、学生猜想、操作验证 学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。 汇报成果: 奇数﹢奇数=偶数 奇数-奇数=偶数 奇数+奇数+……+奇数=奇数 奇数个 偶数+偶数=偶数 偶数-偶数=偶数 奇数+奇数+……+奇数=偶数 偶数个 奇数+偶数=奇数 奇数-偶数=奇数 偶数+偶数+……+偶数=偶数 你能举几个例子说明一下吗? (学生的举例可以引导从正反两个角度进行) 3、深化 请同学们闭上眼睛,想一想:2+4+6+8+……+98+100这么多偶数相加的和是偶数还是奇数?为什么? 三、实践操作、应用奇偶性 我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。 1、一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动100次?105次? 学生动手操作,发现规律:奇数次朝下,偶数次朝上。 2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下? 你手上只有一个杯子怎么办?(学生:小组合作) 学生开始动手操作。 反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。 引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。 学生动手操作,尝试发现 交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。 学生再次操作,感受过程,体验结论。 3、游戏。 规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加? 学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么? 生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。 是呀,这是老师在街上看到的一个骗局,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?学生自由说。 四、课堂小结,课后延伸。 1、说说我们这节课探索了什么?你发现了什么? 2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次? 请同学们课后去尝试探索这个命题,可以独立思考,也可以找人合作。 各位评委,你们好!今天我就人教版第五册第11课《秋天的雨》进行说课。下面我准备从教材、教法学法、教学预设三个方面来谈谈自己的初步设想: 一、说教材 《秋天的雨》是一篇抒情味很浓的散文,名为写秋雨,实质写秋天。把秋雨作为一条线索,将秋天众多的景物巧妙地串起来,给我们带来了一个美丽、丰收、欢乐的秋天。使学生通过本课的的学习,体会秋天的美好,感受课文的语言美。 文章层次分明、思路清晰。使用了多种修辞手法,或把秋雨人格化,或把秋雨比喻成生活中常见的东西和事物,或很含蓄的抒发感情,通篇语言艺术化,给人以美感。 根据教材的特点和新课标的要求,我确定了这样的学习目标。 1、正确认读8个生字,会读“清凉、留意、扇子”等词语。 2、正确、流利地朗读课文,读出对秋天的喜爱和赞美之情。 3、读懂课文内容,感受秋天的美好。 重点 :使学生通过课文生动的描写,体会秋天的美好,感受课文的语言美。 难点 :品味文中语言,学习语言,积累语言,内化运用语言。 二、说教法与学法 本文的语言生动优美,适于朗读的训练,所以,教学本课主要引导学生抓重点词句,通过反复品读、探究、讨论,再有感情地朗读,读出秋雨的韵味,读出秋天的美好,在理解、朗读中积累语言。其次在教学中我还采用情境教学法,运用多媒体教学手段,在读中感悟秋雨的.美,在读中陶冶自己的感情。配上抒情的音乐让学生朗读,以便更好地进入课文的情境。 根据本课特点,这节课我将引导学生采用以读为主的学习方法,使学生在读中感悟、读中体验、读中积累,感受秋天的美。 三、说教学流程 本课教学我计划用2课时完成。第一课时学习生字词语,正确、流利地朗读课文,初步感受秋天美丽的景色 。第二课时品读秋天的美,有感情地朗读课文,背诵课文。现在我具体说说第二课时的教学预设,这一课时我准备按以下几个环节进行教学:一设置悬念,妙趣导入二深入文本 细读品味三拓展延伸,歌唱秋天 一、设置悬念,妙趣导入 1、同学们,在上课之前老师要送你们一首诗。我们一起来读读这首诗。 春天的雨像一位报春的使者,用温柔的雨滴滋润着大地万物。 夏天的雨像一个调皮的孩子,总是敲着大鼓、轰隆隆地从天而降。 ?? ?? 冬天的雨像一群可爱的精灵,是他们给大地送来了雪姑娘的礼物。 2、同学们发现了什么? 3、对呀!诗中还缺秋天的雨。今天的这节课老师就要请同学们帮助老师一 起来完成这首诗。同学们愿意吗? 4、好,让我们继续来学习《秋天的雨》,学完了课文你们肯定能帮助老师写完这首诗了。 本课的语言优美华丽,在导入设计上采用一首小诗的方式引出与课文基调符合。诗中间缺失的秋天的雨可以使孩子们对秋雨充满了好奇,唤起阅读期待,以更好地投入朗读打下基础。 二、深入文本、细读品味。 (一)抓钥匙 赏秋雨 1、出示秋雨图,师引导:看,同学们,秋天的雨趁同学们没留意轻轻地,轻轻地来了!(示课文第一自然段)自由读说说你读出了什么?预计学生会说秋雨是一把钥匙,真神奇!这时我顺势而导,钥匙,是意见常用的东西,她有什么作用?你从文中哪些词语体会到秋天像一把钥匙?引导学生抓住“轻轻地、趁你没留意”等词体会秋天到来的轻盈、温馨。这样通过联系生活经验,拉近了学生与文本的激励,让学生在读中理解、感悟秋雨的神奇。 (二)抓五彩缤纷,品秋色 1、秋雨,就像一把神奇的钥匙,打开了秋天的大门,它给大地带来了什么变化呢?(出示秋天美丽的景色) 2、请同学们默读第二自然段用自己喜欢的符号画出表示颜色的词语。 3、同学们找出了黄色、红色、等各种颜色。其实这么多颜色它可以用第二自然段的一个词语表示,你们能找出来吗?预计学生能说出五彩缤纷,板书, 齐读。 4、接着我顺势而导:这五彩缤纷的颜色,秋雨分别把它们给谁呢?自己再读读第二自然段并找找秋雨把什么颜色给了谁?自己喜欢的句子还可以多读几遍。学生朗读,教师巡视。在学生充分朗读的基础上,我再交流一下。指名生自由地说。重点交流以下几句: (1)银杏树的叶子像扇子,扇哪扇哪,枫叶像一枚枚邮票,飘哇飘哇,引导学生边想象画面边齐读这几句话。如果把句子当中的“扇哪扇哪、飘哇飘哇’去掉,自己再来读读看,有什么不同?师生共同小结:“扇哪扇哪”让我们仿佛看到银杏叶像一把把黄色的小扇子,轻轻地、轻轻地帮我们扇走了夏天的炎热;而“飘哇飘哇”让我们感受到红红的枫叶多像一枚枚邮票,为我们邮来了秋天的凉爽。) 这两句句子用了比喻的修辞手法,将银杏叶和枫叶写的非常传神。但是华美的语言也给学生的理解造成了一定的障碍,所以在理解这两句时我首先出示银杏叶的图片加深学生的感性认识。再通过反复诵读达到记忆的积累优美词句的目的。当然仅积累是不够的,还应让学生明白,为什么句子写得好,好在哪?我通过减去句子中词语的方法让学生品悟那几个词语用得如何精妙,更教予读书的方法,以便学生迁移学习 5、秋雨还把什么颜色给了谁?通过引导读果树上的“你挤我碰”菊花的频频点头体会到秋天丰收的喜悦和菊花的美丽。最后出示秋雨课件,推荐读书最好的同学配音,其他同学去欣赏,去享受。 这里需要播放一段多媒体,用直观的方法展示在秋雨的滋润下,秋天的五彩缤纷与收获的喜悦。孩子对秋天的感触肯定不深,课文中描写的许多景物他们也没有真实的看见过,那么在这里通过画面的展示和同学的朗读,就能有更深的感触和体会了。 (三)抓气味,展秋收 (1)秋天的雨滴里藏着非常好闻的气味,自由读第三自然段,边读边闻一闻,你闻到了什么气味? 这一自然段主要是通过对香气的留恋进一步的写出秋天的丰收与美好。鉴于本自然段比较简单,因此我主要采用了放手让学生朗读的方式感悟此段。还特别采用了多种形式的比赛读、自由读等方式,增强学生朗读的欲望。 (四)抓热闹,悟秋趣 课文的第四自然段描述了“深秋中动物、植物准备过冬的繁忙热闹的场面。”本段文字可谓妙趣横生,这恰恰是小学生喜闻乐见的。在此,我顺学而导,以学定教,满足学生的心理需求,采用了“看图说话”的方式来理解、品味本段的语言文字。我采取了以下策略:学生充分自由朗读,积极为自己的出色表演奠定基础,带着快乐的心情再次美读,出示画面,用自己的语言看图说话。这样个性化的阅读,加深了对本内容的理解,又锻炼了说话能力,分享了阅读乐趣。 (五)齐声读,赞秋雨 我们都该感谢秋雨,它带来了绚丽的秋色,带来了成熟的果香,还带来了冬天即将到来的信息。 让我们一起来赞美这秋天的雨!齐读第五自然段。第五自然段是以教师总结,学生赞美秋天来引出朗读。既节省了时间又给了学生充分朗读的空间。 三、拓展延伸,歌唱秋天。 1、在学生齐声高诵秋歌之后,我问:在你的心中,秋天的雨还是一首什么样的诗歌?学生畅谈秋雨。师小结过渡秋天的雨是真是美妙、神奇、令人陶醉!你们个个都是小诗人!下面让我们回到上课前老师给你们看的那首诗,让我们一起来完成它吧!出示 生自由交流。全班展示,美美地朗诵自己写的诗。 此环节的设计与课题的导入可谓首位呼应。让学生自由的把小诗补充完整,鼓励他们凭借学习本课和原有的语言积累完成这首小诗。这么做不仅有利于他们 将课文内容的内化提炼自己的观点更能锻炼他们的口头表达能力。 2作业:秋天是美丽的、迷人的,让我们沿着秋天的足迹,以自己的方式去寻找秋天,感受秋天,歌唱秋天。 (1)喜欢诵读的,找些赞美秋天的诗文进行诵读。 (2)喜欢写诗的,试着写一首赞美秋天的小诗。 (3)喜欢画画的,用你七彩的画笔画画秋天的一处景色。 (4)喜欢旅游的,和爸爸、妈妈一起去找找,把看到的景色写成一段话 这样的作业基于文本而高于书本,从积累、解读、写作、创作等方面着手设计的。而且这四个题目并不是每个都要做的,可以选择其中两个做。这样有利于不同层次的同学选择适合自己的题目,拓展自己的能力。 四、说说板书设计 颜色:五彩缤纷 秋天的雨 气味:香香甜甜 丰收 欢乐 声音:冬天的消息 这堂课我紧抓秋天的三个方面的特点进行板书设计,简单扼要,条理清晰,便于学生理解。 【函数奇偶性说课课件】相关文章: 1.函数奇偶性练习题 2.少先队说课课件 3.中学生物说课课件 4.说课课件稿 5.思想品德说课课件 6.洋务运动说课课件 7.摇篮曲说课课件 8.幂函数说课课件 10.函数课件篇9:函数奇偶性判断
篇10:函数奇偶性练习题
篇11:高中数学课件奇偶性
篇12:说课课件模版






文档为doc格式