欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 课件>数学比例的意义课件

数学比例的意义课件

2024-07-15 08:00:35 收藏本文 下载本文

“diyzhen”通过精心收集,向本站投稿了10篇数学比例的意义课件,下面是小编整理后的数学比例的意义课件,欢迎大家阅读分享借鉴,欢迎大家分享。

数学比例的意义课件

篇1:数学比例的意义课件

人教版数学比例的意义课件

人教版数学比例的意义课件已经为大家准备好啦,老师们,大家可以参考以下教案内容,整理好自己的授课思路哦!

教学目标:

1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

教学重点:

理解比例的意义,探究比例的基本性质。

教学难点:

探究比例的基本性质和应用意义,会判断两个比能否组成比例。

教学过程:

一、创设情境,设疑激趣

同学们,国旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?你对国旗的大小有哪些了解?

学生思考回答(挖掘学生生活经验)

同学们知道的真多,说明同学们平时认真观察,是个有心人。

二、引导探究,自主建构

活动一:探究比例的意义

1.你了解到哪些关于国旗大小的知识?

学生交流,给学生充分的交流机会。

2.你们仔细观察,结合我们上节课学的比的相关知识,估计一下每种规格国旗长和宽或者宽和长之间是否存在什么规律?

(1)猜测

预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

(2)小组验证

每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。

(3)展示交流小组验证结果,学生到黑板前板书得出结论。

预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

每种国旗的宽和长的比是2:3,他们的比值相等。

教师小结:240:160与144:96的比值相等我们可以把比值相等的式子写成 240:160=144:96 或 240/160=144/96

我们把表示两个比相等的式子叫做比例,组成比例的四个数叫做比例的项,两端的两项叫做比例的(外项),中间的两项叫做比例的(内项)。括号中的可以让学生说一说。

你能说出一个比例吗?说一说你是怎么理解比例的?

怎么判断两个比是不是成比例?

试一试,判断下面哪组中的'两个比可以组成比例。

2:3和6:9 4:2和28:40 5:2和10:4 20:5和1:4

活动二:探究比例的基本性质

1.利用学生列举的比例和判断题中的比例,大胆猜想一下,每个比例两个内项和两个外项之间会存在什么关系?

2.小组内验证猜测结果

3.展示验证猜测情况。得出结论,

预设:

“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

教师归纳总结。

同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

板书:比例的基本性质。

谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)

三、强化训练、应用拓展

同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

1.判断下面哪组中的两个比可以组成比例?

(1) 6:9和 9:12

(2)1/2:1/5和5/8:1/4

(3)1.4:2 和 7:10

(4) 0.5:0 .2和10:4

2.判断。

(1)表示两个比相等的式子叫做比例 ( )

(2)0.6:1.6与3:4能组成比例 ( )

(3)如果4a=5b,那么a:b=4:5( )

3.填空

5:2=80:( )

2:7=( ):5

1.2:2.5=( ):4

在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是( )。

在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是( )。

4.写出比值是5的两个比,并组成比例

5.根据3a=5b把能组成的比例写出来。

四、自主反思、深入体验

通过这节课的学习你有什么收获?

篇2:比例的意义教学课件

【教学内容】

人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。

【教学目标】

(1)知识与技能:使学生理解比例的意义,能应用比例的意义判断两个比能否构成比例。

(2)过程与方法:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

(3)情感、态度与价值观:培养学生在实际生活中发现数学的存在,并在实际生活中能感受到数学的趣味,提高学生学习数学的积极性。

【教学重点】

比例的意义,应用比例的意义判断两个比是否能构成比例。

【教学难点】

应用比例的意义判断两个比是否能构成比例。

【教学准备】

多媒体课件

【教学过程】

一、创设情境,导入新课。

同学们,当你看到这面迎风飘扬的五星红旗时,你会想到什么?(生自由汇报,师相机引出儿歌《国旗国旗真美丽》)一首《国旗国旗真美丽》仿佛让我们回到了一年级刚刚入学的那会儿,而如今,一转眼我们已经是六年级毕业班的学生了,希望你们能好好珍惜和利用小学阶段的最后一个学期加强学习,为进入初中继续学习数学知识打下良好的基础。

五星红旗是庄严而美丽的,并且它与我们的数学也有着密切的联系,今天就让我们一起去研究国旗中的数学知识:比例(板书课题:比例)

从课题中我们不难看出,比例和我们以前学过的哪个知识有一定的关系(比)你们还记得比的意义吗?( 两个数相除又叫做两个数的`比。)如何求比值?(比的前项除以后项所得的商叫做比值。)

好,下面我们就先来用比的知识解决几道国旗中的数学问题。

二、以比值为引线,认识比例。

1、探索组成比例的条件

你在哪些地方看见过国旗?

问题:

1:你能说一说这四幅图中国旗的相同点和不同点吗?

2:你们想知道这些国旗的长和宽各是多少吗?

(发作业纸)作业纸上有四幅不同大小的国旗,请同学们四人一组任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,把你的发现和小组里的同学说一说?

哪个小组研究的是操场上的国旗与教室里的国旗各自长和宽的比?

(请一组学生板演汇报,教师小结板书:两个比相等)

这两面国旗长和宽的比值相等,我们可以用等号将这两个比连接起来。(板书:2.4∶1.6=60∶40)

指着这组相等的比说:像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是“比例的意义”(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答:等式;有两个相等的比)

(教师再强调:一定是比值相等的两个比才能组成比例。)

2、寻找国旗中的其他比例

师:你还能从四面国旗中找出哪些比例?

(学生写在练习本上,然后汇报。教师点击课件)

3、介绍比例的第二种表示方法

师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:=)

4、强调比例的计算单位要统一

出示课件,提出问题,学生判断。

小结:在比例的计算中,单位要统一。

5、区分比和比例

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流:你觉得比和比例有哪些区别?)

形式不同:比由两个数组成;比例由四个数组成。

意义不同:比表示两个数相除;比例表示两个比相等的式子。

三、自主尝试,巩固比例。

(一)数的比例

课本33页“做一做”第1题。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)

(二)形的比例

课本33页“做一做”第2题。两个具有放大关系的三角形(图中的四个数据可以组成多少个比例?

(三)生活中的比例

师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

课本36页第1题(学生独立完成,小组订正交流。)

(四)拓展中的比例

写出比值是5的两个比,并组成比例

五、全课小结

通过这节课的学习,你了解了比例的哪些知识?你还想研究比例的什么知识?

比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

篇3:6年级数学比例课件

教学内容:P39~41  成正比例的量

教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

教学重点:成正比例的量的特征及其判断方法。

教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.

教学过程:

一、四顾旧知,复习铺垫

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

二、引导探索,学习新知

1、教学例1:

出示:一列火车1小时行驶90千米,2小时行驶180千米,

3小时行驶270千米,4小时行驶360千米,

5小时行驶450千米,6小时行驶540千米,

7小时行驶630千米,8小时行驶720千米……

(1)关于练习:

(2)教师小结:

同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

2、教学例2:

(1)花布的米数和总价

数量 1 2 3 4 5 6 7 ……

总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……

(2)观察图表,发现什么规律?

用式子表示它们的关系:总价/米数=单价(一定)

3、抽象概括正比例的意义。

(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?

(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

(3)看书P39,进一步理解正比例的意义。

(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

x/y=k(一定)

(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

4、看书P40例2。

(1)题中有几种量?哪两种量是相关联的量?

(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

(3)它们的数量关系式是什么?

(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

四、课堂练习:

1、P41做一做

2、P43~44练习七第1~5题。

篇4:6年级数学比例课件

教学目标:

1.理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比与比例的关系。

2.在举例、分类、观察、比较、抽象与概括等活动中发展学生的思维。

3.在具体的实践活动中激发学生自主参与的意识和主动探究的精神,感受数学与生活的联系。

教学重点:理解比例的意义和基本性质。

教学难点:判断两个比能否组成比例。

教学过程:

一、导入

1.课件出示国旗画面,三幅不同的场景都有共同的标志:五星红旗。五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽分别是多少吗?

2.课件出示国旗的长和宽,并提出问题。

天安门升旗仪式上的国旗:长5m,宽10/3m

操场升旗仪式上的国旗:长2.4m,宽1.6m

教室里的国旗:长60cm,宽40cm.

这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同的特点呢?每面国旗的大小不一样,但是它们的长和宽中却隐含着共同的特点,是什么呢?这节课我们就结合国旗的知识来学习比例的意义和基本性质。老师板书课题。

二、新授

1.教学比例的意义。

出示P40主题图,根据图中给出的数据分别写出不同场地的国旗的长和宽的比,并求出比值。之后学生汇报、交流。观察写出的比,想一想,这些比能用等号连接吗?为什么?用等号连接的两个比的式子可以怎样写?(可以用等号连接,两个比的比值相等,因为它们的比值相等,说明这两个比也是相等的。之后,老师概括比例的意义0:40,像这样的一些式子叫做比例。让学生按照自己的理解来概括一下比例的意义。交流后让学生勾画P40概念,全班齐读。

那么,怎么判断两个比能否组成比例?学生独立完成P40做一做。刚才我们先写了比,然后又写出了比例,你觉得比和比例一样吗?有什么区别?(比例由两个比组成,有四个数;比是表示两个数相除,有两个数)

2.教学比例的基本性质。

⑴认识比例的各部分名称。

课件出示:  2.4 : 1.6  =  60 : 40

↑    ↑-内项-↑   ↑

∣___外项 ___∣

说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。如果把比例写成分数的形式,你能指出它的内、外项吗?结合学生回答,课件出示2.4/1.6=60/40。

⑵发现比例的基本性质。

让学生先观察比例的两个内项与两个外项,再算一算两个内项的积与两个外项的积,说一说你发现了什么。(2.4×40=96   1.6×60=96    2.4×40=1.6×60)如果把比例写成分数形式,是否也存在上面发现的规律?(存在)

是不是每一个比例的两个外项与两个内项都有这种规律?小组合作,举出这样的例子。(学生自由列举)通过探究,你发现了什么?学生交流后,小结:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

⑶应用比例的基本性质。

让学生完成P41做一做,反馈后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,还可以应用比例的基本性质。

三、巩固应用:P43 2.3.

四、小结:比例的意义是什么?比例的.基本性质是什么?判断两个比能否组成比例有几种方法?

篇5:6年级数学比例课件

教学目标:

1.理解解比例的意义,会根据比例的意义或比例的基本性质正确解比例。

2.通过合作交流、尝试练习,提高学习运用比例的基本性质解比例的能力。

3.让学生在解比例的过程中,感受到学习数学的乐趣,增强学习数学的兴趣和信心。

教学重点:解比例的意义和方法。

教学难点:明确解比例的依据,能正确地解比例。

教学过程:

一、复习铺垫

1.上节课,我们学习了比例的有关知识,请你判断一下,下面哪两个比能组成比例?(课件出示)

2:3    0.5:0.2    0.6:0.8    1/3:1/10     3:1.2      4:6      2/3:1/5      3/5:4/5

讨论交流:什么叫做比例?刚才那些同学的判断对吗?你是怎样知道的?

2.填空并说明理由。

1:3=(   ):(   )      3:8=9:(   )

因为与1:3比值相等的比有很多,所以这道题的答案不唯一,只要比值是1/3就可以了。5:3=9:(24),根据比例的基本性质,内项之积是8×9=72,外项积也应该是72,72÷3=24,所以括号里填24。

3.借题导入:3:8=9:(  )中的未知项也可以用x表示,写作3:8=9:x,像这样求比例中的未知项,叫做解比例。老师板书课题。

二、新授

1.教学例2,探究解比例的方法。

出示例2,读题,学生弄清列式及解题根据,自主尝试解答,之后汇报交流,老师指名学生板演并交流列式及解答根据。(先列出比例,根据比例的基本性质“外项积=内项积”把比例改写成方程,然后解方程。)

解:设这座模型的高度是Xm。

X:320=1:10

10X=320×1

X=(320×1)/10

X=32

答:这座模型高32m。

2.教学例3,探究分数形式的比例的解法。

出示例3,让学生独立思考后,汇报解题思路和方法,老师结合学生汇报进行板书。

3.总结解比例的过程:解比例首先要根据比例的基本性质把比例转化成方程,然后根据学过的解方程的方法求解。

三、巩固应用:

1.P44 8.(学生独立计算,老师巡视个别指导,发现问题及时纠正)

2.P44 9.10.11.(指导学生先列比例,再解比例)

四、小结:这节课我们学习了“解比例”,谁能说说在解比例的过程中,应该注意些什么?(设未知数为X,再列比例,最后根据比例的基本性质求未知项)

篇6:《比例的意义和基本性质》课件

《比例的意义和基本性质》课件

教学目标:

1、理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

4、通过自主学习,让学生经经历探究的过程,体验成功的快乐。

教学重、难点:

重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学准备:CAI课件

教学过程:

一、复习、导入

1、谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

还记得怎样求比值吗?

2、课件显示:算出下面每组中两个比的比值

⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

二、认识比例的意义

(一)认识意义

1、指名口答上题每组中两个比的比值,课件依次显示答案。

师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

数学中规定,像这样的一些式子就叫做比例。(板书:比例)

[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

(生答:想研究比例的.意义,学比例有什么用?比例有什么特点……)

5、那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

(根据学生的回答,教师抓住关键点板书:两个比 比值相等)

同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

课件显示:表示两个比相等的式子叫做比例。

学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

(二)练习

1、出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次

第二次

买练习本的钱数(元)

1.2

2

买的本数

3

5

(1)学生独立完成。

(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

2、完成练习纸第一题。

一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

4、教学比例各部分的名称

(1) 课件出示: 3 : 5

前项 后项

(2) 课件出示: 3 : 5 = 18 : 30

内项

外项

(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

课件出示:3/5=18/30

[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

5、小结、过渡:

刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

三、探究比例的基本性质

1、课件先出示一组数:3、5、10、6

再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

2、独立思考,并在作业本上写一写。

学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

根据学生回答板书: 3×10=5×6 3:5=6:10

3:6=5:10

5:3=10:6

6:3=10:5

篇7:《比例的意义》数学教案设计

教学目标

知识目标:理解比例的意义。

技能目标:能正确判断两个比是否能组成比例,培养学生抽象概括能力。

情感目标:使学生初步感知事物间是相互联系、变化发展的。

教学重难点

重点:理解比例的意义。

难点:判断两个比能否组成比例。

教学工具

多媒体课件

教学过程

一、新课导入

请同学们回忆一下比的知识,比的前项、后项和比值。

二、教学过程

1.比例的意义

(1)出示P40例1

操场上和教室里两面国旗的长和宽的比值有什么关系?

2.4∶1.6=3∶2

60∶40=3∶2

2.4∶1.6=60∶40

象这样表示两个比相等的式子叫做比例。

比例也可以写成: =

做一做

1、下面那组中的两个比可以组成比例?把组成的比例写出来。

(1)6∶10和9∶15 (2)20∶5和1∶4

(3) ∶ 和6∶4 (4)0.6∶0.2和 ∶

答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2

(4)0.6∶0.2=3∶2 ∶ =3∶1

所以,只有第一组可以组成比例为6∶10=9∶15

2、用图中4个数据可以组成多少比例?

答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5

全课小结

通过这节课,我们学到了什么知识?什么是比例?

拓展延伸

用 、8、、12四个数分别作为比例的项,你能组成几个比例?

课后小结

通过这节课,我们学到了什么知识?什么是比例?

课后习题

一、填空

1、( )叫做比例。

2、两个比的( )相等,这两个比就相等。

3、把6×8=24×2改写成四个比例。

4、把7m=8n改写成四个比例。

5、根据8×9=3×24,写出比例( )

6、如果7a=6b,那么a:b=( ):( )。

7、如果9a=5b,那么b:a=( ):( )。

二、选择

1、下面的比中能与3∶8组成比例的是( )。

A.3.5∶6 B.1.5∶4 C.6∶1.5

2、甲数除乙数的商是1.8,那么甲数与乙数的比是( )。

A.9:5 B.5:9 C.1:8

3、下面的数中,能与6、9、10组成比例的是( )。

A.7 B.5.4 C.1.5

板书

表示两个比相等的式子叫做比例。

篇8:《比例的意义》数学教案设计

教学目标

1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。

2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。

3、体验获得成功的乐趣,建立学好数学的自信心。

教学重难点

教学重点:理解比例的意义。

教学难点:应用比例的意义判断两个比能否组成比例。

教学工具

ppt课件

教学过程

请同学们回忆一下上学期我们学过的比的知识,谁能说说:

1、什么叫做比?比的书写形式有哪些?

2、什么叫做比值?

一、情境引入

同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。

(生齐声说:升旗仪式)

课件出示:升旗仪式的情景

你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?

不了解是吧?那老师告诉大家:

课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。

提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?

指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)

在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。

那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?

那么下面呢我们看一下老师收集到的一些信息。

课件出示不同场合下的国旗

课件出示:不同场合下的国旗

提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。

(2)学校的国旗长2.4米,宽1.6米。

(3)教室里面的国旗长60厘米,宽40厘米。

(4)会议桌上的国旗长15厘米,宽10厘米。

那我们现在看到的这些国旗的大小都一样吗?

师小结:在不同的场合的国旗的大小是不一样的。

追问:它们的形状相同吗?(相同)

尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。

二:探究新知

下面请同学们拿出练习本,听清要求:

先写出图中国旗长与宽的比然后再求出它的比值。

学生自主计算,教师巡视。

提醒:同学们在计算时,一定要认真。 注意计算结果的准确性。

哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答

根据学生汇报并分类板书。

5:10/3=3/2

2.4::16=3/2

60:40=3/2

15:10=3/2

大家同意他的计算结果吗?

师:请同学们观察黑板上的计算结果,看看有什么发现。

指名回答

师小结:说的非常好,这是个很重大的发现,这四面国旗它们的长与宽都有变化,但比值都是3/2 。其实呀不止这两面红旗长与宽的比是3:2,所有国旗长与宽的比的比值都是3/2,这在国旗法中有明文规定的

板书:5:10/3 2.4:1.6

师:像这样的两个比,它们的比值相等的,也就说这两个比相等,那么我们可以用什么符号把它们连接起来变成一个等式?

来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6

提问:那么谁能根据这四个 5:10/3=3/2

2.4:1.6=3/2

60:40=3/2

15:10=3/2

相等的比也像老师一样写一个等式呢?

指名回答并根据汇报板书

我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例? 指名回答

老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)

大家齐读两遍,开始。

学生齐读

这就是我们今天要学习的内容—比例的意义

板书课题

提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?

指名回答

教师明确:两个比相等并在这句话的字的下面标上黑点

表示两个比相等的式子叫做比例。

。。 。 。。

2、深入理解比例的意义

那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的? 对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。

那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。

追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?

(指名回答)

大家同意吗?

对学生的回答进行评价

追问:如果不相等的话,能组成比例吗?

教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!

(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??

请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!

班内交流: 哪位同学说一说你们小组找出来哪些比例?

同学们真了不起,从这四面大小不同的国旗中,就组成了这么多不同的比例。比老师找的还多呢,请看屏幕

展示: 2.4 :1.6 = 60 :40 (长:宽 = 长:宽)

1.6 :2.4 = 40 :60 (宽:长 = 宽:长)

2.4 : 60 =1.6 :40 (长:长 = 宽:宽)

......

这里能组成的比例还有很多,同学们课下再找出其他的比例吧!

2、比和比例的区别?

(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?” 下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!

(2)交流:谁愿意来说一说你们小组讨论的结果?

(生答)

(3)展示:说的太好了,比由两个数组成,是一个式子,表示两个数相除。比例由四个数组成,是一个等式。它是表示两个比相等的式子。,请看屏幕上的表格

三、智慧城堡

师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?

四、谈收获

这节课,大家都非常积极和认真,老师相信同学们的收获肯定很多,那谁想来和大家分享一下你的收获呢?

五、全课总结:

师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

课后小结

比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

篇9:小学数学比例知识课件

一、教学目标

1.让学生感受比例的知识与现实生活的密切联系,培养学生学习数学的兴趣。

2.使学生掌握解答正、反比例应用题的方法,能正确地解答正、反比例应用题,

3.培养学生的应用意识,初步学会用所学的知识和方法解决一些简单的实际问题。

4.倡导学生自主探索、合作学习,培养学生的创新精神和实践能力

二、教学重点

构建解正反比例应用题的思维模式,使学生掌握解答正、反比例应用题的方法。

三、教学过程:

(一)课前练习

1、判断下面各题的比例关系,并说明理由。

(1)速度一定,路程和时间( )

(2)总价一定,单价和数量( )

(3)和一定,一个加数和另一个加数( )

(4)工作总量一定,工作效率和工作时间( )

(二)引入新课

我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.

教师板书:比例的应用

1、介绍唐山农民义务救灾小分队事迹:

我国南方罕见的特大冰灾雪灾牵动着全国人民的心。河北省唐山市农民宋志永平时做些小生意,家境并不富裕。从电视上看到灾区断水断电的情景,他毅然从家中存折上取出3万元钱,并联系了本村12名村民,备上铁锹、铁镐,租了辆中巴车,大年三十下午4时毅然南下,赴湖南郴州参加救灾。

2、出示题目:

救灾小分队汽车2小时能行驶80千米,照这样的速度,从河北唐山到湖南郴州共行驶30小时,河北唐山到湖南郴州之间的公路长多少千米?

(1)学生利用以前的方法独立解答.

80÷2×30

=40×30

=1200(千米)

(2).利用比例的知识解答.

思考:这道题中涉及哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?

怎么列出等式?

解:设河北唐山到湖南郴州之间的公路长X千米.

80:2=X:30

2X=80×30

2X=2400

X=1200

B学生解答。

3、怎样检验这道题做得是否正确?

4、出示题目:

救灾小分队汽车从河北唐山到湖南郴州,如果按正常速度每小时行驶80千米,15小时可以到达,但由于道路受冰雪影响,每小时只能行40千米,从河北唐山到湖南郴州需要几小时才可能达到?

(1)那么,这道题怎样用比例知识解答呢?请大家思考讨论:

这道题里的路程是一定的,_________和_________成_________比例.

所以两次行驶的_________和_________的_________是相等的.

(2)、如果设每小时需要行驶X千米,根据反比例的意义,谁能列出方程?

学生尝试解答。

四、归纳与巩固

(一)师生小结

1、教师:刚才我们运用比例的知识解答了两道应用题,一道是正比例应用题,一道是反比例应用题,这两道应用题的解题过程有什么共同点?

2、小结:解正反比例应用题共分为四个步骤??

(1)认真审题,分析数量关系,判断哪两种量成什么比例;

(2)设未知数χ,注明单位名称;

(3)根据正反比例的意义列出等式,并解答;

(4)检验,并写答句。

3、请同学们结合自己的体会说一说,用比例的知识解应用题要注意什么?

(二)巩固练习

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

五、应用与提高

(一)综合应用

(1)一根木料锯成5段要用36分钟,照这样的速度,如果把这根木料锯成8段,要用多少分钟?

(2)用边长是15厘米的方砖给一间教室铺地,需要块,如果改用边长25厘米的方砖,只需要多少块?

(二)布置作业

1. 练习八1、3、4

[小学数学比例知识课件]

篇10:小学数学比例教学课件

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:能正确、熟练地解答按比例分配的实际问题。

课前准备:布置学生预习

教学过程:

一、创设情境:

1、回顾以前学习过的平均分,由平均分的“公平”引出今天的题目如果还按照平均分,反而不公平。(两人共同合作劳动,完成份额不同,所得分配问题)

2、小结:刚才两位如果劳动资额相同,所以他们获得的报酬要按1:1来分配,这种分配方式也就叫平均分。如果完成劳动份额不相同,所以他们获得的报酬要按1:1来分配就不公平,怎么办?

(组织交流)

师:这里的报酬要完成份额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)

二、初步感知

1、想一想,两位应该按怎样的比来分配劳动所得?(板书:按完成的比3:2进行分配)

2、谁能用自己的语言说说3:2的具体含义。

3、谁能用算式表示两位各应分得多少元?

4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)

三、自主探究,合作研习:

1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第19页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。

2、此时用PPT出示“学习内容”“学习目标”和“导学提纲”

学习内容:冀教版小学数学六年级上册第19页。

学习目标:

1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。

2、认识连比,理解三个数量连比的意义。

导学提纲:

1、例1中“紫色与红色方块数的比是3:5”的含义是什么?

2、与同学说说例题中每种方法的解题思路。

3、你能画图理解这两种解题方法与同学交流吗?

4、你怎样理解例2“按照2:3:5配置混凝土”这句话的含义?

5、“练一练”第3题是把1200千克培养料按怎样的比来分配?

学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。

(1)独立思考,尝试解答。

(2)小组交流,说说想法。

(3)组织交流,形成思路。

(4)选好内容,进行预展示。

四、集中展示

1、例1中“紫色与红色块数的比是3:5”的含义是什么?

预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。

(2)把984平方米平均分成5份,3份是茄子,5份西红柿。总份数3+5=8,

茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。

2、展示例2的解题思路及方法……

3、展示“练一练3”的解题方法

小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。

五、反馈检测

1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?

2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?

3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

六、课堂小结:

学了这节课,你有什么收获?

[小学数学比例教学课件]

【数学比例的意义课件】相关文章:

1.6年级数学比例课件

2.小学数学六年级《比例的意义》教学设计

3.《比例的意义和基本性质》数学教案设计

4.成比例线段教学课件

5.比例的意义教学设计一等奖

6.数学课件

7.比例的意义和基本性质教案设计

8.人教版六下比例的意义教学设计

9.学前班数学课件

10.数学不等式课件

下载word文档
《数学比例的意义课件.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部