真题实例讲考研数学应用题的四大类
“柠檬果果”通过精心收集,向本站投稿了3篇真题实例讲考研数学应用题的四大类,下面是小编帮大家整理后的真题实例讲考研数学应用题的四大类,希望对大家带来帮助,欢迎大家分享。
篇1:真题实例讲考研数学应用题的四大类
真题实例讲考研数学应用题的四大类
历年考研试题中都涉及数学实际应用的问题。下面就以考研真题为例,总结归纳了函数的极值和最值、积分、微分方程和概率等考研中数学应用题的四大类型以及各个类型问题的解法。
1.函数的极值和最值模型
函数的极值和最值的应用问题主要分为一元函数和多元函数的极值和最值的应用,解决这类问题的思路是:第一根据实际问题中的数量关系列出函数关系式及求出函数的定义域;第二利用求函数极值和最值的方法求解。
例如:某厂家生产的一种产品同时在两个市场销售,售价分别为p1,p2;销售量分别为q1和q2;需求函数分别为q1=24-0.2p1,q2=10-0.05p2;总成本函数为C=35+40(q1+q2)。试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利润是多少?
分析:这是一个典型的二元函数求最值问题。首先要根据题意求出总利润函数:总利润=总收益-总成本;其次求出函数的定义域;最后根据二元函数求最值的方法求解即可。
2.积分模型
在积分的应用过程中关键要解决好两个问题:一是什么样的量可以用积分来表达;二是用什么样的积分表达,即确定积分区域和被积表达式。
例如:某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功。设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为kk>0)。汽锤第一次击打将桩打进地下am。根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0
问:(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米)
分析:本题属变力做功问题,可用定积分进行计算,而击打次数不限,相当于求数列的极限。
3.微分方程模型
应用微分方程解决实际问题,其实就是建立微分方程数学模型,通过建立微分方程、确定定解条件、求解及对解的.分析可以揭示许多自然界和科学技术中的规律。应用微分方程解决具体问题时,首先将实际问题抽象,建立微分方程,并给出合理的定解条件;其次求解微分方程的通解及满足定解条件的特解;最后由所求得的解或解的性质,回到实际问题。
例如:现有一质量为9000kg的飞机,着陆时的水平速度为700km/h。经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.0×106)。问从着陆点算起,飞机滑行的最长距离是多少?注:kg表示千克,km/h表示千米/小时。
分析:本题是以运动力学为背景的数学应用题,可通过利用牛顿第二定理,列出关系式后再解微分方程即可。
4.概率模型
关于概率论的应用题主要集中在古典概型、随机变量的分布以及随机变量的数字特征等方面。应用概率论的知识解决具体问题时,首先要分析实际问题,找出随机变量的关系及其分布;下来是列出它们的函数关系,利用概率论的有关知识求解。
例如:设某企业生产线上产品的合格率为0.96,不合格产品中只有3/4的产品可进行再加工,且再加工的合格率为0.8,其余均为废品。已知每件合格品可获利80元,每件废品亏损20元,为保证该企业每天平均利润不低于2万元,问该企业每天至少应生产多少产品?
分析:本题为概率论中的数学期望在经济中的应用,有关数字特征的应用题主要是随机变量函数的数学期望、方差等,求解这类问题的关键是找出函数关系.根据题设列出方程求解。
以上对高等数学研究生入学考试中的有关数学应用题的类型及其解法作了一些探讨,主要以考研真题为例对历年来的研究生入学考试的命题特点进行了分析,总结了考研数学应用题的解决方法,希望对考研学生有所启示。
篇2:小升初数学应用题解答方法与四大类应用题详解
整数和小数的应用
1
简单应用题
1、简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
2、解题步骤:
a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2
复合应用题
1、有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
2、含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
3、含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
4、解答连乘连除应用题。
5、解答三步计算的应用题。
6、解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
答案:根据计算的结果,先口答,逐步过渡到笔答。
7、解答加法应用题:
a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
8、解答减法应用题:
a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。
9、解答乘法应用题:
a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。
10、解答除法应用题:
a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。
b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。
C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。
d已知一个数的几倍是多少,求这个数的应用题。
11、常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3
典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
1、平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)
2、归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。693 0 ÷( 477 4 ÷ 31 ) =45 (天)
3、归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。80 0 × 6 ÷4=1200 (米)
4、和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)
5、和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)
6、差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米?各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。
7、行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)
8、流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。
列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。
9、还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。
10、植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)
11、盈亏问题:是在等分除法的基础上发展起来的。他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为(25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
12、年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为:21( 48-21 )÷( 4-1 ) =12 (年)
13、鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
分数和百分数的应用
1、分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2、分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3、分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。
已知一个数的几分之几(或百分之几 ) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量。
4、出勤率
发芽率=发芽种子数/试验种子数×100%
小麦的出粉率= 面粉的重量/小麦的重量×100%
产品的合格率=合格的产品数/产品总数×100%
职工的出勤率=实际出勤人数/应出勤人数×100%
5、工程问题:
是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。
数量关系式:
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
工作总量÷工作效率和=合作时间
6、纳税
纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税款。
应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。
* 利息
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间 。
篇3:GRE数学应用题难点分析实例精讲
GRE数学应用题难点分析实例精讲 教你巧妙解答易错利息题
为什么GRE数学利息问题容易出错?
很多人可能会觉得奇怪,为什么小编要特地把利息类问题拿出来给大家单独分析,这个知识点的难度并不高啊?其实考生之所以容易做错利息类问题,很多时候并不是因为对知识点不熟悉,更多是来源于这类题目翻译成英文后其表达方式上可能会让大家造成的理解错误。举例来说:
8% annual interest compounded semi-annually
12% annual interest compounded quarterly
这两个表述方式都是关于利息的表达,而且涉及到了利息知识点中较为复杂的复利,也就是俗称的“利滚利”问题,大家可能单看每个词汇都知道什么意思,但组合在一起大家理解起来有时候就比较困难了,特别是这方面知识接触比较少的同学,很有可能看不懂这两个表达是什么意思。简单解释一下,前者是年利率8%,半年加1次息,后者是年利率12%,1个季度加1次息。而想要做好这种涉及到复利的题目,其实也是有一定难度的,除了看懂题目外大家还需要知道复利的计算公式,也就是本利和=本金×(1+利率)^期数,所以一旦GRE数学中出现较为复杂的利息计算题,考生就比较容易在各个环节出现错误而导致扣分。
GRE数学利息问题实例讲解
下面小编就按照难度从低到高的顺序分别为大家讲解3道GRE数学中比较常见的利息类问题,帮助大家理解这个知识点在实际题目中的解题思路和技巧:
例子1:
Alice invested $1000 at 8% simple annual interest. How much is the investment worth after one year?
这个应该算是最简单的利息题了,实际上考试中不太出现难度这么低的送分题,大家只要按照计算利息的基本公式,也就是本金×(1+利率)得出算式$1000 x 1.08 = 1080直接就能算出答案。
例子2:
Alice invested $1000 at 8% annual interest compounded every 6 months (semi-annually). How much is the investment worth after one year?
(A) $1040
(B) $1080
(C) $1081.60
(D) $1160
(E) $1166.40
这个例子比起前一个就稍有一些难度了。因为这道题涉及到了复利计算问题,理论上来说这道题有三种计算方式,最笨的方法是既然年息然后按照半年算两期,那么考生直接算两次也就是$1000 x 1.04 = 1040,$1040 x 1.04 = 1081.6得出答案,稍微聪明一点的方法则是直接套入复利公式,$1000 x (1.04)^2 = 1081.6,但是这个公式面对期数较多的情况就必须要用到计算器了。最聪明的方法是大家要知道复利结果会比按照单次计算的结果要稍微高一点的,但根据利息情况增加的数量往往非常小,所以只要按照$1000 x 1.08 = 1080,然后在这个基础上找一个比它略高一点点的答案,也就是C,就可以直接得到答案。这种技巧在应对复利计算题时是非常有效的。
例子3:
Amy invested $5000 at 12% annual interest compounded quarterly. How much is her investment worth after 5 years?
(A) $5000(1.12)^5
(B) $5000(1.12)^20
(C) $5000(1.04)^5
(D) $5000(1.03)^5
(E) $5000(1.03)^20
这道题目可能就是利息类题目在GRE数学中会出的难度最高的形式了,既有复利计算,又涉及到多期利息,当然也是最贴合现实生活情况的实际应用题。一般来说,GRE数学中出现这类题目不会要求大家直接计算答案,而是会给出计算公式作为选项让大家选择。面对这类题目,直接套用复利计算公式本利和=本金×(1+利率)^期数才是最好的方法。当然大家也需要搞清楚应该套进公式里的各项数据才行。本金是5000,利率按照12% annual interest compounded quarterly,每一期的利率应该是3%,然后5年的话一共就是20期,所以正确答案是E。
总而言之,GRE数学考试中许多同学都会在结合数学知识点和实际生活应用的题目中出问题,不仅是因为考生缺乏对数学知识点实际使用的经验,更是因为大家缺少对这些题目提问方式的了解所造成的。小编还是希望大家能够适当提升数学练习量,积累更多的解题经验,如此才能顺利做好本文中利息问题这样的GRE数学应用题拿到更好的成绩。
GRE数学150题练习
1、有一图表题(柱状):VO?ON NUMBER OF COUNTRY X(记不清了)
总之,纵轴是NUMBER OF THE SITE-DAYS..OTE:THE total number of the site-days is……10 vo?on …sites、) 大意如此吧。
Q1、1989年,Y’s total number of the site-days is 243,for 12 vo?on…sites、问:per site Y 比X多多少?(X1989:TOTAL NUMBER 200)
(MY KEY)243/12-200/10=0、25
2、有那道US钱最多,我排了一下median不是Canada是UK??,大家最好自己排一下,时间来得及。
25那个阅读报纸和刊物的那道表格题,135是正确答案。还有那道打电话的概率题,
是选B,小于1/4。
3、x,y是integer, x>y>1, xy=200,问x的个数。(5)
4、还有一道几何题,不好画图,说说吧。一个半圆(semicircle),直径AB,C为圆心,D为弧AB的中点(CD垂直AB),然后分别以AD和BD为直径画半圆(弧朝外),AC=x,求AD,BD半圆在AB半圆以外的那俩部分(月牙状)的面积。t(x.)
5、一个三角形的三边长5,6,8,其中两个角(5,6所对)之和与90比大小。(钝角▲,和<90)
6、一个club ,45 female ,average age m,35 male,average age n,m>n,
比较average age of the club and (m+n)/2
上述就是新GRE数学练习题集锦第五部分,希望可以供大家参考,更好地备考新GRE数学。掌握住新GRE数学基础知识,进行大量的GRE数学题的训练,希望考生们获得自己满意的成绩。
GRE数学150题练习
1、一表格,四种不同颜色blue,red,yellow,???的小船,分别有6,4,3,2个座位(顺序不一定),船承重能力各为多少多少的、一题是问有三条船,16个人刚好坐满,问red的船(有4个座位的)(要不就是red的船上的座位)的比例?
2、图表题:
美国1980年, 1985年, 1990 年, 三个年度人口最多的前8个洲, 按人口数排名列表、
问1、只有一年排进前8名的有几个洲 (3个, SURE)
问2、1985-1990年人口增加最多的是哪个周
3、有一个图表题,2问,关于圣露易斯的什么东东,两张表,反正下面一个没用,有用的数据都在上一个表中,一问是这个东东平均单价$500,total数量表上有,圣露易斯的销售收入占总收入的70%,求该地区的收入,选那个100(sure)~
4、有个图表题,(柱状图)是对200个司机师傅做调查,提供五个买车因素,每个司机对每个因素都要做出或 somewhat important 或very important的回答、图是五个柱,每柱上面一段画回答 somewhat important的,下半段画回答very important的、有一题,问题长达三整行,其实就问这五个因素中,有至少60%的司机说somewhat important的有几个、注意回答somewaht important 的人数用200减交点数值?
5、若63^n可以被3^16整除,比较n和7的大小
n>=8 >7
上述就是GRE数学考试练习题介绍,希望可以供大家参考,更好地备考GRE数学。
上述就是新GRE数学练习题集锦第四部分,希望可以供大家参考,更好地备考新GRE数学。掌握住新GRE数学基础知识,进行大量的GRE数学题的训练,希望考生们获得自己满意的成绩。
GRE数学150题练习
1、一块砖放在盒子里,盒子6.0.,砖和盒子每个面之间有0。5厚的填充物,问砖体积
解: (6-2.、5).10-1)(4-1)=135
2、一个是图表题:一个表是各年有多少妇女,一个表是每一千个妇女生了多少的孩子。
有一问,突然出现问3/5的婴儿是女的,女生的增加和男同胞的增加的比,妇女生小孩的一题11、1%
3、还有一道图表题,讲对17890(乱编)个人进行汽车保险意向的调查,每个人都要对
7个ITEM中的任何一个做出YES, MAYBE 或NO 三种回答, 然后给一系列的数据。
不难, 但要对它要你求什么东西。好好理解,我开始就有一问没看懂。一个 yes 占 17% 另一个 30% 两个一起都答 yes的 12%。 问一个都不回答yes的x%?
答案 65%
4、几个国家比较在卫生保健上的投入,和国家的收入。画了个柱状图。然后要你先找国民收入的中数,你一定先排一下收入的dollar数,大致是瑞士〈瑞典〈加拿大〈〈美国。(最富的是美国,美国人考试的时候都不忘教育你,还叫你一个个的排!)中数是canada?然后就好了,是比较谁在医疗上花的多,钱多多少。
大致如此,就是计算繁了
5、图表题:七个国家的每1000个人上网的人数, 分别是X年和Y年, Y=X+3,一问如果Finland的从X年到Y年的人数每年递增33、3%,问X+2年的人数接近多少
二问Iceland 和Japan的人数在Y年的比
【真题实例讲考研数学应用题的四大类】相关文章:
6.考研真题作文范文
7.考研政治真题答案






文档为doc格式