虚拟仿真技术在数控加工中的应用论文
“Poppy”通过精心收集,向本站投稿了15篇虚拟仿真技术在数控加工中的应用论文,以下是小编为大家整理后的虚拟仿真技术在数控加工中的应用论文,希望能够帮助到大家。
篇1:虚拟仿真技术在数控加工中的应用论文
虚拟仿真技术在数控加工中的应用论文
1虚拟仿真数控机床的建模
依据企业现有的三坐标数控镗铣床用CATIA软件进行机床部件的三维实体造型建模,如主轴、床身、导轨、刀库等;接着以STL格式输入到VERI-CUT软件系统中进行组装,组装时应把握其装配约束关系(即几何约束关系、运动约束关系和排斥约束关系)设定机床坐标系、部件坐标系和它们之间的关系,然后根据机床的拓扑关系进行装配。虚拟仿真数控机床建模完成后,要设置各运动部件的运动参数,如工作行程范围、刀具补偿等,其中主轴中心到主轴端面的距离和主轴线的偏移距离参数较为重要,应正确设置,以免影响仿真结果的正确性。
2虚拟仿真数控镗铣床应用研究
通过虚拟仿真数控机床的建立,除对机床的运动进行论证和虚拟设计好所应用的机床夹具外,主要是对数控加工过程进行仿真论证,以解决刀具运动轨迹错误、刀具干扰选择错误等问题,同时,利用虚拟仿真技术可以进行加工过程的优化,以充分利用机床和提高生产率。
2.1验证数控加工过程的错误
进行仿真验证时,通过系统应用等软件将零件的加工信息转换为STL格式输入到仿真加工系统生成数控加工程序,最后进行仿真加工,验证程序轨迹是否存在错误。在实际工作中,由于输入数据有误造成仿真加工时零件形状错误与输入图形信息不符,如刀具未进行补偿、未抬刀、啃刀等,此时可返回原图形信息输入模拟数据,进行检验校正干涉碰撞错误,这是数控加工经常产生的错误之一。验证时观察刀具对非加工部件,如对工作台、夹具等的干涉、碰撞及对工件非加工表面的碰撞,也可对经常发生的干涉现象进行专门的`验证。
2.2优化数控加工程序
应用VERICUT软件时,其带有在知识库基础上建立的优化模块,根据所加工小样的类型选择加工机床参数、应用刀具参数、金属切削数据库等知识进行加工过程的优化,其优化内容主要为粗加工、精加工及高速切削加工时的优化。
2.2.1粗加工优化
为提高生产效率、达到尽快去除粗加工余量的目的,根据已给出的进给量对刀具走刀路径上应去除的金属材料进行速度优化,实现粗加工安全、稳定、高效率。
2.2.2精加工优化
切削力的变化是影响加工尺寸精度和表面粗糙度的主要因素,为此在刀具切入、切出时应调节进给率,使其切削力产生较小的变化,减少振动,从而提高加工质量、延长刀具的使用寿命。值得注意的是,在用球状铣刀加工倾斜面或曲面时进给量会有较大影响,加以适当调节则可使切削平滑、顺利地进行。
2.2.3高速切削加工优化
在工件刀具不产生振动的前提下,高速切削是切削加工的发展方向,通过高速切削不仅可提高生产效率,同时会降低工件的表面粗糙度值。减少切削力的优化方法主要是控制进给量,保持较为稳定的切削力和切屑去除率,通过实际应用对球状铣刀加大进给率,提高主轴转速进行精加工的效果较好。当然也可采用优化切削速度,即对主轴转速进行精加工优化,达到提高表面质量的目的。
3应用特点
利用虚拟仿真技术对数控加工进行仿真试验,通过一段时间应用获得较为显著的效益,主要表现在以下几方面。
3.1提高生产效率
通过仿真切削加工的优化,提高了加工过程的合理性,针对不同加工对象优化切削速度和进给量,使其达到最优切削状态,减少刀具的非正常损坏,从而减少辅助时间,提高加工效率。
3.2提高加工质量
据统计,飞机制造业新机研制过程中加工废品的30%是由于工人操作不当造成,60%是由于数控程序错误造成,10%是其他原因而形成;为此,利用该仿真系统可模拟加工过程,提高了数控编程的正确性,可以大大减少废品的产生。
3.3减少数控机床事故
数控加工时,刀具的碰撞、干涉会导致较大的损失,采用虚拟仿真技术可以避免并减少机床和刀具在加工时不必要的损失。缩短新产品的研制周期新产品研发时,加工出合格的关键零、部件是其中重要环节之一。传统方法试制单一零件耗时费力,容易出现废品,而通过虚拟仿真技术则可基本上验证了所编数控程序的正确性和可靠性,为新品试制节省了大量时间,降低了新品试制的成本和研发周期。
4结语
随着自动化制造技术的不断发展,数控加工已成为机械加工的主流加工手段之一,数控机床的应用已日益普及,在数控加工中开发和应用虚拟仿真技术,提高了价值昂贵的数控机床利用率,减少了机床故障及辅助时间,提高了产品零件的加工质量,并有利于企业员工的继续教育和培训。而这些经实践证明已取得显著经济效益,笔者希望通过该文的介绍能对国内从事数控加工技术的同行有所裨益。
篇2:模拟仿真技术在数控加工的应用论文
模拟仿真技术在数控加工的应用论文
摘要:随着计算机技术的不断发展,模拟仿真技术不断应用于企业生产中,但是由于模拟仿真技术还不够成熟,影响了企业生产加工的质量和效率,基于此,该文首先阐述了仿真计算机技术的应用现状,其次分析了计算机技术在机械加工制造中的应用、仿真技术在数控加工中的应用以及计算机在数控编程中的应用,希望能为相关人员提供参考。
关键词:虚拟加工;数控机床;模拟仿真技术
模拟仿真技术广泛应用于工业生产当中,其可以对制造业的流水线生产和特定环境以及变量进行分析,起到了控制以及模拟操作的作用,所以,对模拟仿真技术在数控加工领域进行分析,不断优化数控加工过程,才能使信息技术更好地为工业生产提供服务。仿真技术主要是利用物理模型或数学模型模拟真实条件下的环境或场景。将计算机仿真技术引入零件数控加工中,是用于研究和设计复杂系统的新型有效工具,在这种有利条件的作用下催生出数控加工仿真技术。
1计算机仿真技术应用的现状
计算机技术的引入使中国进入了互联网信息时代,也使得网络及相关设备不断发展,计算机仿真技术也因此得以快速发展。但是仿真技术在制造企业应用的过程中仍然存在很多问题。许多国家已经能够将先进的高科技技术,象纳米技术、数控技术和激光集成技术等与传统的机械设计和制造相结合,来弥补传统机械设计和制造的不足。
2机械加工制造中计算机技术的应用
2.1计算机技术的辅助功能
相对于其他技术而言,计算机技术的应用更加广泛。人们的生产生活都离不开计算机技术。计算机可以代替或辅助人工进行管理和工作,因此对于机械加工制造过程,有必要结合特定的计算机程序进行系统而专业的学习。人们可以在绘图和制作模型时,应用计算机技术来提高绘图效率,让设计结构变得更加清晰、细节更加直观,其也为设计人员的后续修改和优化工作提供了一个更加便利的平台。利用计算机技术,在直观清楚地了解产品的基本信息的同时,让相关人员一眼就能了解系统的内部结构。
2.2计算机在数控编程中的应用
计算机编程按参与者的不同可分为手动编程(纯人工)和自动编程(人机结合)2种。手动编程需要人为手动操作,而自动编程则通过人与计算机相结合的方式,使用CNC等编程语言编写、处理、测试程序。我国的相关技术人员逐渐消除了数控语言和计算机语言之间的隔阂,同时也意识到计算机技术的'发展速度比数控技术的发展速度要快得多。数控编程是一个需要精密计算以及准确计量的技术,因此可以利用计算机技术来辅助数控编程进行工作。在专业人员运用手动编程的基础之上,运用计算机技术让自动编程也能更好地为企业服务,在两者结合之前需要注意它们能否兼容、是否能满足CNC编程的条件。
2.3.计算机在数控加工中的应用
现代机械在设计和制造时,要求要在高性能设备上搭载某些应用程序,这些程序在提高质量的同时,也提高了计算机设计及处理的速度。在进行数控加工时,无论是相关材料的质量信息还是零件的体积以及数量,都是需要通过计算机进行精密的计算。因此,对于数控加工来说,计算机技术具有非常重要的作用,计算机技术也频繁应用于企业生产中。在使用图形软件的同时,使用3D实体模拟技术,并在交互式自动编程系统中,通过CAD软件提供的图形生成和编辑功能制作零件设计图,完成对零件的建模,接着通过人机交互的方式对加工方法进行筛选,选择要处理的部件,输入加工时需要的工艺参数。图形软件能自动生成工具处理轨迹的各项数据,通过驱动NC程序驱动器,识别输入的NC程序,然后对语法进行检查、解释并转换成NC命令,根据NC命令生成相应的刀具扫描体。上述数控模拟过程都可以通过三维动画的形式,在计算机屏幕上显示出来,并以此为模板完成对数控机床的控制。
2.4.计算机仿真技术
可视化技术与模拟技术不断地发展,经过有机地结合后催生出了越发完善的模拟仿真技术,其能够被机械设计与制造行业广泛接受。该技术可以在绘图软件中直接完成模型设计、考虑系统设计合理性和可行性等方面的工作,节省了大量人力、物力。首先在参数设计页面逐个输入需要的数据,然后在网络分区页面绘制出对产品特性具有高适应性的模拟产品,之后运用仿真技术进行模拟操作。通过模拟仿真技术进行分析和观察,能够及时准确地发现产品存在的问题,并采用适当的方法加以解决,有利于提高产品质量。计算机仿真技术不是万能的,因此需要对实际生产过程中出现的问题加以关注,并通过调整生产参数等方式来保证产品制造的效率和功能,使计算机模拟技术能够在机械的设计制造、自动化、智能化等方面取得更好的成绩。数控加工仿真技术是计算机辅助设计和制造领域的核心技术之一。数控加工仿真技术能够动态地模拟整个机床的加工流程,以此对加工过程中的漏切和过切等现象加以干预,还可以显示加工过程中夹具或机器的碰撞情况,验证加工零件的最终形状是否满足质量要求。要想保证加工出的零件满足设计要求,应尽可能减少工具、夹具和机床之间的相互磨损。然而当前的数控机床加工系统并未考虑刀具路径仿真和动态实体仿真2种模拟模式,而且在虚拟模型中忽略了柄和夹具、机床、刀具、工件、夹具之间是否会相互干涉的问题,因此该模型的模拟效果不是很令人满意。
3结语
随着计算机技术的不断发展,模拟仿真技术广泛应用于企业生产中,但是由于模拟仿真技术还不够成熟影响了企业生产加工质量和效率,因此需要对它进行更加有效的流程管理和技术控制。在数控机床加工过程中应用计算机技术,可以实现从手动操作到自动操作的转变。模拟仿真技术可以对数控机床加工中过程进行很好的控制,而在这一过程中,需要综合考虑加工工艺和操作流程等因素的影响。对于三维零件中的不确定因素,还必须确保参数的合理设置,并防止由于参数错误而损坏零件。
参考文献
[1]李阳,赵永成,魏兰.数控加工仿真技术研究综述[J].系统仿真技术,,4(2):111-116.
[2]常利民.仿真技术在数控加工中的应用探讨[J].机械与电子,(13):512-513.
[3]呼刚义,王荪馨,杨鹏.虚拟加工仿真软件在数控加工技术中的应用和发展[J].机电工程技术,,42(1):16-18.
篇3:数控加工中仿真技术的运用论文
数控加工中仿真技术的运用论文
摘要:随着经济的迅速发展,客户对于产品的需求也日渐多样化,生产厂家为顺应时代的发展和客户需求,需要大幅度减短产品的研制周期,对于产品的零部件业,其越来越复杂,近几年越来越多的公司引入仿真技术,以提高产品竞争力。通过研究数控加工在仿真技术中的应用,改善制造业的加工质量,提高加工效率,对于我国现代制造业的发展有着重要的意义。
关键词:数控加工;仿真技术;应用
1、仿真技术在数控机床加工中的应用现状
随着科学技术的迅速发展,数控技术也在不断地进步和发展,而对于数控程序,其正确性直接决定着产品最终的加工质量。一般情况下,我们通过试切的方法保证数控程序的准确性,将作业中的器具替换为容易切削的材料,通过这样的方法,对加工的`指令可以实现较为全面的检测,同时在数控加工中,轨迹显示法亦是常用的方法,对于这些方法,均存在一些明显的缺点,例如费时、费力等,这势必会导致企业的生产成本增加,使整个产品的研发周期加长。当今,仿真技术在数控加工中的应用得到了广泛关注,具体是指模拟实际工作中的机床加工状况,借助于计算机模拟技术予以实现。部分学校已经开设了有关的课程,该课程的设立,培养了一批优秀的专业人才,同时为学生以后进入企业工作打下良好的基础。企业在加工生产过程中,通过引入仿真技术,可以很好地保证数控加工产品的精度,大幅度地缩短产品的研制周期,提高产品质量,综合提高企业的竞争力。
2、数控加工仿真系统介绍
对于仿真技术的定义,简单来讲是指通过虚拟的仿真模拟技术,对数控加工技能进行培训。
2。1 VERICUT系统
到目前为止,世界上整体应用较为广泛的数控加工仿真模拟软件是VERICUT系统。该系统一方面可以模拟数控代码的查证步骤;另一方面可以大幅度地提升数控材料的切削速度。该系统工作的基本原理是模拟数控加工的轨迹代码,把可以看得到的事物在计算机上表示出来,对刀具轨迹的精确度进行检测,从而实现设计师的标准和要求。在使用之前,需要对系统加工中出现的故障程序进行修改和适当的调整,保证仿真系统可以实现预期的结果。
2。2 VERICUTMachineSimulation系统
VERICUTMachineSimulation系统,是目前为止,世界上功能最为完备的数控加工仿真模拟软件,对于机床的使用和控制过程,是最容易实现模拟效果的。对于这一系统,其中一方面很重要的功能是可识别数控代码文件,同时根据G-代码,进行模拟加工。在实际的仿真操作过程中,VERICUT系统一般与其进行绑定后使用,可以很好地模拟机床的运用,保证在数控加工过程中,准确地发现错误,同时,通过VERICUT系统,可以仿真模拟工件的切割过程,完善数控代码的竞争度,全面提高数控加工的效率。
3、数控加工仿真软件的运用
数控加工的过程中,刀具的轨迹一般看作是仿真模拟技术的重点内容,对三坐标以下的零件进行加工时,有较为良好的效果,但是,仅凭刀具的轨迹,进行实际的仿真模拟,这是远远不够的,需要模拟整个机床加工的过程,这样才能保证可以有效检测出在机床加工过程中,刀具过切以及机床之间磨损程度的大小。对机床的效果进行预测估计的时候,需要优化刀具加工的文件,切实地保障产品的质量以及产品的加工效率。在使用Vericut机床仿真系统时,一般主要是对普通大众的机床进行一定的仿真和模拟,通过这个仿真软件,第一步需要完成的是在MachineSimulation系统上创建机床运动学的模型,这个模型可以使一些文件库使用者进行使用,同时,进一步地完善、修订,实现与使用者的定制理念相匹配。第二步是使用建模模块,组件出机床的几何模型,设计师以此为根据,设计出完美、符合要求的设计图纸,然后工程师对图纸进行配比,设置机床的初始位置,并衍生出相对应的控制文件、机床文件以及工作文件。第三步,根据Vericut系统对所使用的夹具和毛坯进行专业的定义,实现使用行列这一步,定义工件的形状和系统文件,并准确地设定相对应的参数,接下来就可以仿真模拟刀具了。最后一步,将MachineSimulation插进Vericut系统里,以机床仿真模型为依据,同时增添一些实体的机器,例如工件和毛坯的实体,然后根据仿真软件系统中的数据,设置一些对应的参数,通过这一系列的步骤,即可实现同时仿真模拟刀具轨迹以及机床的运动。
4、结语
随着经济的迅速发展,客户对于产品的需求日渐多样化,生产厂家为顺应时代的发展和客户需求,需要大幅度减短产品的研制周期。近几年越来越多的公司引入仿真技术,以提高产品竞争力。本文阐述了仿真技术在数控机床加工中的应用现状,对两种数控加工仿真系统以及数控加工仿真软件的运用进行了介绍,希望对我国该方面的发展有一定的借鉴意义。
参考文献:
[1]武珍平.数控加工中仿真技术的应用[J].品牌(下半月),(1):195.
[2]王学升.浅谈数控仿真软件在实际生产加工中的应用[J].甘肃冶金,2015(3):144-147.
[3]周燕峰.浅谈虚拟仿真技术在数控加工中的应用[J].企业技术开发,2015(14):47-48.
篇4:虚拟仿真技术在物理实验教学应用论文
虚拟仿真技术在物理实验教学应用论文
【摘要】本文主要从目前大学物理实验教学现状出发,探讨了虚拟仿真实验教学模式的特点与优势,简单介绍了仿真实验在大学物理实验教学中的应用问题,进而培养创新型人才具有重要的参考价值。
【关键词】大学物理实验;虚拟仿真实验;应用问题
1.引言
大学物理实验是一门面向理工科学生开设的基础课程,在培养学生动手能力和科学研究方面发挥着重要的作用。但由于实验仪器复杂、精密、昂贵等原因往往不能允许学生自行设计实验参数、反复调整仪器,不利于学生自行设计实验参数、反复调整仪器、剖析仪器性能和结构、理解实验的设计思想和方法。而仿真实验的引入能突破课堂实验教学时空条件的限制与约束,相对于传统实验教学能更加容易揭示物理现象与其他重要的内在规律,能给学生提供独立创新的实验平台,充分发挥学生的积极主动性。实际教学中,由于实验室和师资力量等限制,很难提供给学生大面积实验预习的环境,使学生无法对实验环境建立直观认识;由于教学时间和手段限制,教师也无法有效的对学生的预习情况进行有效检查。这样导致实验教学中长期存在“走过场”,严重影响了教学质量的提高。目前,我校已购买科大奥锐科技有限公司开发的实验预习和自动评判系统和大学物理仿真实验教学平台,有效地弥补了传统实验教学中存在的不足。
2.大学物理实验教学现状
学生基础薄弱,动手能力差,并且大学物理实验理论性较强。另外,实验仪器陈旧,内容笼统,多数仪器经过多年的使用过于老旧,易受损。实验项目也大都趋向于验证性的实验,缺少设计性和综合性的实验项目,与先进的科学技术和实际应用脱轨,对培养学生的科学素养和动手能力作用甚微,导致学生学习的积极性和主动性下降。目前,专职实验教师稀缺,这就导致了实验仪器设备维护,实验教学效果欠佳。
3.仿真实验在大学物理实验教学中的应用
3.1仿真实验的主要优势。
(1)自由性高。学生可根据实验方案选择合适的仪器自主完成实验,激发各层次学生学习兴趣。
(2)互动性强。仿真实验具有高度的开放性,学生可以随时进行访问站,完成系统当中现有的验证性实验,也可自行设计实验。通过系统模拟出真实的实验环境,有助于学生创造力和想象力的开发。
(3)效率高。虚拟仿真大大提高了工作效率,学生可以通过实验平台进行预习,实验操作等,教师通过系统能够查询学生完成实验项目情况,有利于实验教学的良好有序进行。
3.2实验预习和自动评判系统。预习是物理实验教学的.重要环节,通过预习环节,学生实验中才有目的、有指导地进行操作和观察,独立思考,利用掌握的知识对现象进行合理分析讨论,解决实验问题。学生通过物理实验预习和实验报告自动判卷系统用户截面上通过学号登录,下载升级实验预习大厅软件进行考试。根据教学要求自动形成预习安排,学生在线预习、模拟操作、完成对实验原理、仪器原理的理解,做到课前胸有成竹。系统自动记录学生预习情况,通过专家系统自动评判,教师通过系统了解学生的预习情况,针对性的调整教学要点。另外,每个学生实验操作的初始状态和测量值都是随机产生,所对应答案各不相同,从根本上避免了考试中实验操作的作弊现象。同场考试可调用多分卷子,可安排学生对应不同的试卷,有效避免书面试题的作弊现象,从而对实验教学质量的提高具有重要的作用。
3.3大学物理仿真实验平台。大学物理仿真实验平台的引入,很大程度上加强了虚拟实验的模型设计,建设与理论考试相结合的在线实验预习环境,从根本上解决了实验仪器状况及师资力量不足的问题。仿真实验代替了学生按书本抄袭实验步骤、实验原理的过程。促使学生在做真实实验前了解实验过程和仪器操作,能够完成一完整的学习链过程,提高实验教学质量,同时很大程度上减少教师批改预习的工作量,使课堂教学实现自主学习、有利于实验教学的良好有序进行。
4.结语
仿真实验的引入能够有效地解决目前实验教学中存在的约束和弊端,它具有良好的设计性、研究性、为学生提供了网络自主学习的实验平台,为提高物理实验教学质量具有重要的应用价值。
篇5:虚拟仿真技术在医学实验教学中的应用论文
虚拟仿真技术的发展和应用对医学实验教学产生了很大的影响,特别是对传统的医学实验教学方式和实验模式进行了很大的改进。传统的医学实验教学中,缺少实验的设备和实验的客体,学生的实际操作能力得不到有效的锻炼,所以,对学生的学习和操作能力培养不到位[2]。虚拟仿真技术的应用为学生进行实验操作提供了一定的基础,也实现了对学生的有效培养。目前虚拟仿真技术在医学实验教学中的优势主要体现在以下四个方面。
2.1虚拟仿真技术改善了医学实验教学设备
在医学实验教学中,对设备的要求比较高,主要包括一些实验用的动物或者尸体、实验用到的仪器和设备以及相关的实验经费等,都对实验教学的有效进行产生了一定的影响。随着社会的发展,解剖学在目前获得了很大的发展,也是医学教学中最基础和最重要的课程,所以,一定的实验设备在教学中是非常关键的,对教学的`有效性影响也很大。目前,虚拟仿真技术的广泛应用和发展,很好的解决了医学实验教学中的这些问题,不但丰富了实验教学设备,学生可以利用虚拟的“尸体”进行操作和实践,也很好的锻炼了学生的实践动手操作能力。
2.2虚拟仿真技术能够提高学生的兴趣
虚拟仿真技术能够为学生提供相关的实验环境,创造一定的基础性实验条件,同时,还能够实现学生在虚拟的空间环境中和客体进行有效的交流,提高学生对相关内容的认识和理解。虚拟仿真技术在医学试验教学中的应用,能够将声音、图像和相关的多媒体演示功能进行结合,丰富实验教学过程和教学内容,充分的提高了学生的兴趣[3]。同时,将具体的教学内容变得形象和生动,而且有一定的视觉冲击力,方便了学生的理解和掌握,因此,提高了实验教学的效率和质量。比如,在进行细胞膜的教学时,可以利用虚拟仿真技术建立细胞结构,动态化的展示,可以让学生更好的观察和学习。
2.3虚拟仿真技术突破了时间和空间上的限制
虚拟仿真技术的应用,对传统的医学实验教学产生了很大改变,打破了时间和空间上的限制,学生可以通过虚拟仿真技术对动物的内部结构进行有效的观察,以及实现动态化的观察[4]。比如要了解一些药物的成分和产生的身体反应,在传统的教学中,通过一定的讲述过程是无法实现有效教学的,学生也难以理解。因此,虚拟仿真技术的应用,实现了这些过程的快速进行和变化,同时,将这些反应过程和变化情况能够清晰的表现出来,帮助学生进行学习和理解。
2.4虚拟仿真技术避免了在具体实验中的危险情况
医学实验过程存在一定的危险性,会对人体的健康产生一定的危害,比如一些感染性的疾病等。所以,随着虚拟仿真技术在实验教学中的应用,避免了学生和实验对象的直接接触,而是通过虚拟的方式产生实验的客体,所以,不需要考虑实验过程中产生一些危险性的因素,因此,对相关的实验进行有很大的帮助。除此之外,虚拟仿真技术也很好的帮助学生积累了临床经验,有效的锻炼了学生的实际操作能力,有利于学生的综合水平提高和发展。结语随着虚拟仿真技术的发展和应用,改善了医学实验教学,虚拟仿真技术的应用,加深了学生对于医学知识的认识和理解,提高了医学实验教学的质量和效率。另外,虚拟仿真技术打破了时间和空间上的限制,完善了实验教学的设备,并有效的避免了在试验中的不安全因素,对医学实验教学具有重要的意义。
参考文献
[1]陈章宝,肖国君,邓君,罗红丽.虚拟仿真技术在药学实验教学中的应用研究[J]中国管理信息化,(10):86-87.
[2]冯军,胡晓松.虚拟仿真技术在医学实验教学中的应用[J].科技创新导报,2015(20):118-119.
[3]曹丁,李文建.虚拟现实技术在医学实验教学中的应用[J].中国医药指南,(03):367-368.
[4]杨晓晖,金玉忠,邵路才,刘颖.虚拟仿真技术在医学教学中的应用探究[J].电子测试,(19):135-137.
篇6:虚拟仿真技术在医学实验教学中的应用论文
随着科学技术的迅速发展,医学实验教学方面出现了许多的新技术和应用,对医学教学产生了很大的影响。其中虚拟仿真技术是目前比较先进的技术应用,且获得了广泛的应用和发展,特别是对计算机技术和多媒体技术的应用,提高了医学实验的教学质量,创新了医学实验教学的模式。虚拟实验教学是一种在计算机技术基础上发展起来的情景模拟技术,能够让用户体验到一种身临其境的感觉,实现和具体的情景接触,产生一定的体验,为实际的操作提供一定的基础。
1虚拟仿真技术的概述
虚拟仿真技术是在计算机技术的基础上发展起来的新兴的科学技术,是指利用多媒体技术的结合,创造形成一个有视觉、听觉和触觉的虚拟现实环境,让用户体验到一种身临其境的感觉。在这个虚拟的环境中,用户能够感受到空间中客体的存在,也可以和虚拟空间中的客体进行相关的互动,这项技术的应用,主要是加快用户对相关知识的认识效率。虚拟仿真技术涉及的方面比较多,主要包括计算机技术、多媒体技术、网络技术和人工智能技术等,另外,还有计算机的图像处理和模式的识别等,是现代仿真技术的有效发展和外延[1]。虚拟仿真技术的主要特点就是,让用户获得真实的体验,和虚构的客体进行交互,并产生一定的想象。在虚拟的空间中,实验人员可以进行和现实世界中同样的活动和实验,而且受到的外界影响因素比较小,实验产生的效果也更好一些。特别是在医学教学中的应用,能够有效的提高学生的实践能力和创新能力,因此,虚拟仿真技术的应用具有重要的意义。
篇7:虚拟仿真技术在物理实验教学的应用论文
虚拟仿真技术在物理实验教学的应用论文
以信息技术为工具,使课程内容的呈现方式、学生的学习方式、教师的教学方式和师生的互动方式实现全新的变革,优化教学过程中的各个要素和环节,这是数字化教学与课程融合的要求。将信息技术有效融入物理教学过程来营造一种新型的教学环境,可实现既能发挥教师主导作用又能充分体现学生主体地位的“自主、探究、合作”教与学,让学生的主动性、积极性、创造性较充分地发挥出来,使创新精神和实践能力的培养真正落到实处。笔者在探索数字化教学与物理课程融合过程中,发现了许多非常适合新时期物理实验教学的软件应用。本文主要以NB物理实验为例,阐述教学软件与物理实验教学融合的策略。
一、虚拟实验与物理课程融合的缘由
NB物理实验全称“NOBOOK虚拟仿真实验”(基于HTML5技术),支持多终端跨平台访问——电子白板、台式机、一体机、平板电脑等终端均可使用,适应Windows、IOS、Android等平台。不仅支持教师任意组装实验、不受实验步骤的限制,而且所有实验操作均可呈现准确的实验数据以及逼真的实验现象。NB物理实验分为NB电学实验、电磁学实验、力学实验、光学实验、热学实验和声学实验6个独立的APP。教师在课堂教学中可以打开相应的APP,通过投屏展示实验的操作过程,可较为直观地看到实验的一些现象。在学生终端上可安装这些软件,可以让学生根据自己的需要,自主设计实验方案、自主选择实验器材、自主搭配和组装实验仪器,并记录实验数据。该应用软件可帮助学生发现实验设计中的问题,以便在真实的实验环境下,减少实验过程中对仪器的损坏。学生在家里,也可随时通过软件进行相关的实验操作,并做数据分析。NB物理实验与物理课程融合的优势及条件如下:(1)NB物理实验是一种全新的网络技术与多媒体技术一体化的虚拟实验系统,它载有适用多系统的软件与APP、多类型的虚拟实验器材、多样化的'自主操控平台及多终端互动的教学平台,在真实实验的基础上可实现信息技术与物理实验教学的融合,在延续传统的同时弥补了其不足;(2)NB物理实验利用虚拟仪器做实验,用户可以自行设置各种参数,以获得理想的效果;(3)虚拟仪器的应用突破了现有实验条件的限制,排除了各种干扰因素对实验的影响(它与数字化实验系统的融合值得深入研究);(4)我国许多地区的教室多为多媒体教室,大都能配备大尺寸多媒体一体机,无线网络全覆盖,有些学校还拥有移动智能手机终端设备,这些都为NB物理实验进入课堂提供了条件。
二、基于数字化实验系统的物理实验融合应用
NB物理实验等数字化实验系统为我们提供了一个新的实验探究平台。应用此平台能让学生从数据读取、公式运算和图像描绘等烦琐的劳动中解脱出来,让学生有充足的时间和精力对物理现象进行多角度的感知和多视角的探究。同时,我们要认识到数字化实验系统与物理课程的有效融合需要先进的教育思想介入,它的合理应用本身就要求同步变革传统教育观念、教育思想与教育模式,代之以尊重人的主动性、首创性、反思性、合作性的全新的教育观念、教育思想与教育模式。笔者认为,NB物理实验优越性的充分发挥应基于新的实验教学理念。物理课堂是物理教学的主阵地,任何教学方式的改进都应该首先能够服务于课堂教学,数字化教学与物理课程的融合也不例外。高中阶段所有实验按内容可分为由教师演示的演示实验、由学生验证或测量数据的操作性实验和以探究潜在物理规律的探究性实验三类。
(一)NB物理实验对演示实验的融合
在物理实验中最常见、最普通的实验就是演示实验。物理教师在讲解概念的时候,因班级人数较多,空间相对较大等客观因素,导致很多学生对物理现象观察不清晰,影响学习。虚拟实验则能很好地解决这个问题。以光学实验为例,由于白天教室实验用光线可辨识度低,光学演示实验往往达不到预期效果。虚拟实验中实验光路图都能被实时展现在一体机屏幕上,实验效果直观。这样,大大地提高了学生对光学规律的理解能力。例如,利用NB光学实验进行光学折射定律与全反射规律的演示操作时,教师可添加装水的玻璃水槽用于观察同一光束在不同材料中的偏折情况,让学生清晰地观察到折射角度不同,从而使他们加深对光的折射现象的理解。
(二)NB物理实验对操作实验的融合
操作实验是为了培养学生的动手能力和理论联系实际的能力,一般在操作实验中不主张用虚拟实验代替真实实验。在高中物理教学中,很多电学实验都是操作实验。电学实验仪器数量较多且容易因错误操作造成损坏。所以在教学中要让学生借助虚拟实验观察实验过程,掌握正确的操作方法,避免在实验中出现过失。在实验中要把真实实验与虚拟实验结合,这样既解决了真实实验的困难,又弥补了虚拟实验的不足。另外,电学实验中仪器众多,只能允许学生在实验室进行短暂的电路连接等练习,造成学生的操作能力得不到有效提高。在真实实验的基础上,学生可通过NB物理实验不断练习,同样可以加深对该实验的理解。教师布置虚拟实验题目,让学生利用NB物理实验APP进行仿真实验,并将实验过程形成的NB文件发送给教师。教师通过电脑接收运行学生实验,检查掌握程度。具体操作如下。①选择需要的实验仪器,合理布局。②根据电路图,进行导线的连接练习,连接好后闭合开关。如果电路连接正确,平台中会显示电流方向(这样可加深学生对电路的理解)。③滑动滑动变阻器滑片改变阻值,读取数据,并点击“记录”,调出表格做记录。完成数据记录后,在表格下点击显示图像,在图像上点击鼠标右键选择连线,形成伏安特性曲线。
(三)NB物理实验对探究实验的融合
探究实验的目的就是培养学生透过现象看本质的能力和发现问题的意识,所以实验情境是很重要的。但在真实试验中,许多事物的现象会受外界因素影响,导致实验误差过大而影响实验效果,这就需要借助虚拟实验。虚拟实验在某种意义上也能起到学习引导作用,让学生更加容易发现物理规律,从而激发学习的兴趣。由于虚拟实验器材的添加不受现实条件限制,学生可根据实验需要同时进行多项实验,大大提升了探究的效率。以“探究影响导体电阻大小的因素”实验为例,该实验需要学生从控制变量的方法入手,探究导体的取材、导线长度、导线横截面积等对电阻的影响。对一般实验室来说,实验仪器有限,教师只能安排分组探究,这势必导致有些学生只能旁观。笔者的解决方案:学生在移动端利用NB电学实验进行虚拟探究,完成仪器的选择并连接电路,继续实验。为了提高探究效率,可再配上相同实验套件,同时进行控制变量实验。
三、总结与反思
NB物理实验作为一种新型实验工具,可以从多个角度与物理实验教学融合拓展。结合具体实验引导学生多角度、全方位地认识物理规律不仅有助于学生掌握实验仪器的使用规律和物理学的研究方法,还能形成线上线下的教学互动,逐渐形成新的教学思想方法,促使其推而广之,将上述思想方法应用于其他学科的学习以及日常的生产、生活之中。在教学活动中,为了达到预期目的,教学主体总是要采用一定的手段作用于对象。教学手段是教学活动不可缺少的组成部分。数字化实验技术为物理教学提供了先进的实验练习手段,但它本身并不代表先进的教学思想。先进的教育技术手段与先进的教学思想有机融合才能实现技术与课程的充分融合。因此,教师在教学活动中不能单纯注重教学手段,还要重视教学思想,重视教学过程和学生学习过程。基于NB物理实验的物理实验的融合拓展体现着先进的教学思想变革,同时还有待更多的一线教师从更多的角度去研究。
篇8:临床医学教育中虚拟仿真技术的应用论文
临床医学教育中虚拟仿真技术的应用论文
虚拟仿真技术就是采用以计算机技术为核心的现代高科技(包括计算机图形学、多媒体技术、人工智能、人机接口技术、传感器技术以及高度并行的实时计算机技术,同时它还包括人的行为学研究等多项关键技术)生成逼真的视、听、触觉一体化的特定范围的虚拟环境,通过对视觉,听觉的模拟再现来使人产生处于实景当中的感觉。计算机日益强大的处理能力使得在线医学教育、病人数据库、手术仿真、远程会诊、医疗专家系统等成为现实。随着虚拟仿真技术的快速发展,其在医学方面被越来越广泛地应用,如虚拟内窥镜、虚拟手术、虚拟静脉注射、虚拟康复训练以及各种用于医学实践教学的模拟虚仿真训练系统,利用这些计算机虚拟仿真技术进行医学临床教学、新生培训、技能测试、技术学习、手术计划等诸多方面的医学辅助教学,可以使学生全身心投入到虚拟环境中,与环境中各种对象相互融合,更加深入地学习所学课程。学生还可以通过使用具有交互性的模拟医疗设备实现虚拟仿真环境的操作,从而进行实践练习。目前,应用虚拟仿真技术的医学教育领域有很多,下面这要从基础医学、临床医学和远程医学教育几个方面阐述。
1虚拟仿真技术在基础医学教育中的应用
基础医学教育中的教学方式一般分为理论授课和实验操作两部分。其中理论教学的方式是课堂讲授加传统医学插图,学生大多感觉学习过程枯燥、不好理解、不好记忆。而利用虚拟仿真技术可以在虚拟的环境下,将人体各器官的解剖、生理学、病理学的数学模型存在数据库中,利用计算机显示屏上有意识地显示某些细节,学生可以将病人的各种病变部位分开或合在一起观察病变情况,同时可以利用此技术培养学生的人体解剖理论的认知能力。举例来说,目前解剖教学上应用的虚拟仿真人体解剖图的数字化的解剖图谱,利用这一图谱,学习者在虚拟的环境中可以自由地选择、观察、移动虚拟对象,并且虚拟的组织器官还能及时给予学习者感官上的反馈,这样就更容易理解和掌握解剖结构。比较典型的应用实例就是利用“虚拟人”数字化数据集进行三维重建,即“人体数字化解剖学”研究,创立虚拟仿真解剖学,同时提供CT、MRI及PET等方面的断层图像,进行一系列医学临床、教学及研究的虚拟模拟。具体步骤就是利用一台人体虚拟解剖电脑,教师可以讲授人体各部分结构的解剖知识,学生也可以在虚拟的组织和器官间的模拟操作感受触觉反馈,使学生更快地掌握手术要领和技术。学生在课堂上能以三维的形式看到人体数千个解剖结构的形状、位置及器官间的相互空间关系等,学习兴趣和效果显著提高。
2虚拟仿真技术在临床医学教育中的应用
在临床医学教育中,临床实践是重要的教学方式,临床实践是对医学学生动手能力培养的重要环节,加强实践技能训练已成为医学教育改革的重点。虚拟仿真技术引入医学临床实践教学是非常行之有效的教学方式。虚拟仿真技术在临床医学教育中最显著的应用是虚拟手术教学,即通过虚拟临床手术技术让学生在手术之前学习新的手术方法和流程,练习所制定的手术计划,在虚拟仿真手术之后,也能让学生温习或重复全部手术过程,并且能够对学生的临床技能进行一个客观的评定。现今医学院校的学生和教师都不能只是局限于书本的知识,必须不断地学习和提高自己的'临床技能,而在实践中常会遇到教育资源有限的问题,解决这一问题行之有效的手段就是利用虚拟仿真技术模拟复制手术场景,让学生不断在虚拟现实场景中进行实践训练。这种应用虚拟仿真技术的临床实践教育方式不仅可以让教师在教学中演示不同策略的手术流程,教授学生应对各种突发情况、避免手术失误、降低手术风险、减少病人损伤、提高手术成功率,而且同时还节约了教育资源,具有零风险、可反复操作等优势,学生可利用它完成手术的各个操作步骤,并对操作的过程和结果进行分析和总结,达到更多地积累临床实践技巧和经验的目的。虚拟仿真技术应用于医学临床实践教学能使学生有更多接触临床的经验,可以提高学生临床技能操作的能力、临床综合诊断思维能力,还可以激发学生的学习热情和潜力,使他们能够运用课堂上所学的临床理论知识较快地掌握临床诊疗实践规律,还有利于学生职业道德和行为规范的养成。
3虚拟仿真技术在远程医学教育中的应用
在远程医学教学中,经常会由于教学设备、试验场地或教学经费等方面的原因,使得一些应该开设的教学内容无法进行。利用虚拟仿真技术可以弥补这些方面的不足,学生足不出户便可以学习各种各样的知识,获得与现场学习一样的效果,从而加深对教学内容的理解。以往对于一些医学实验,在远程医学教学过程中一般采用电视录像的方式来取代实验课程,学生无法直接参与实验,利用虚拟仿真技术进行虚拟远程医学实验,则可以增加学生动手学习的机会。虚拟仿真技术应用于远程医学教育的基础是基于远程医疗的分支网真医学,即远程呈现医学,它把专家的知识通过通讯网络传输到需要的远程位置,在远程医疗应用领域发挥其独特的优势。网真医学是虚拟仿真技术的一个全新领域,它结合了高清视频、音频和交互式组件(计算机软件和硬件),在网络上创建独特的“面对面”体验的新型技术。使用者可以进入某个共享网络空间的图形环境,以远程控制操作或观察为目的的进行人机通信和交互,用这个方法帮助医生有效地进行手术和诊疗。网真医学应用与远程教育可以确保医学生以更有效的方式进行培训,例如记录操作过程、让学生探讨操作细节并拥有沉浸于运作房间的感觉。医学学生可以进入虚拟的手术是或实验室,在虚拟环境下激励一个完整的操作过程,教师也可以将操作中常见问题反馈给学生,从而提高每个人对某个问题的训练。利用虚拟仿真技术可以创建大量的三维人体组织结构,用于医学教学。随着网络技术的飞速发展,把创建的三维医学教学资源应用与远程医学教育,可以使学习者随时随地的学习,是资源得到充分利用。虚拟仿真技术应用于远程医学教育可以将生动的动态三维场景展现给学习者,提高了教学的质量和效果。
4虚拟仿真技术在医学教育中应用的意义
医学教育注重的是直观、形象、生动,传统的医学教学往往不够生动,难以具体化,难以直接展示人体的结构,疾病发生及发展过程等教学内容,同时又存在着医学教学成本大,不可重复执行的问题,这些弊端对学生更好的掌握医学知识极为不利。为了改善原有医学教学模式中存在的这些问题,使虚拟仿真技术应用于医学教学中的教学模式意义重大,该教学模式不仅调动了学生的学习兴趣,而且将抽象的内容具体化、形象化,给学生留下深刻的记忆,也给教师在教学中提供方便,从而达到提高教学水平和科研水平的目的。
参考文献:
[1]赵群,娄岩主编.医学虚拟现实技术及应用[M].北京:人民邮电出版社,:200-203
[2]王晓,姜燕.计算机技术在医学领域中的应用[J].科技世界,(18):15,30
[3]张晗.虚拟现实技术在医学教育中的应用研[D].济南:山东师范大学,:39-43
[4]范敏,戴培山.人体解剖生理学课程引入虚拟现实技术的教改探索[J].科技文汇,2014(10):103-104,111
[5]王文军,李冰,安川林.虚拟仿真技术技术在医学教学中的应用初探[J].中国医学教育技术,:231-233
[6]夏芳芳.虚拟现实技术及其在现代远程医疗中的应用[J].河南外科学杂志,(1):68-69
篇9:数控加工技术在飞机制造中的应用
数控加工技术在飞机制造中的应用
论述了飞机典型结构件的数控加工,井对数控技术在飞机制造中产生的影响进行了阐述.
作 者:李春玲 张晓军 LI Chunling ZHANG Xiaojun 作者单位:西安航空职业技术学院,710089 刊 名:中国科技信息 英文刊名:CHINA SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期): “”(6) 分类号:V2 关键词:数控加工技术 飞机结构件篇10:计算机仿真技术在物流中的应用论文
【摘要】本文主要针对计算机仿真技术的发展进行研究,探讨了计算机仿真技术在物流服务中的应用。随着计算机技术与物流行业的发展,自动化物流系统中对计算机仿真技术的应用逐渐增多,在计算机仿真技术的支持下,物流行业也呈现出快速发展的趋势。而当前针对自动化物流系统的研究还不多,本文也针对自动化物流系统中对计算机仿真技术的应用进行实践与探索,为自动物流系统的发展提供支持。
【关键词】物流服务;计算机仿真技术;应用
随着科学技术的发展,自动化技术在物流行业中的应用增多,提高了工作效率的同时,自动化系统也越来越复杂。对于管理者而言,需要在生产过程中谨慎考虑每一个决策。在对B2B、C2C服务模式的特性与共性研究基础上,对物流服务评价指标体系进行设计,通过确定物流服务质量评价维度,在不同模式下,对电子商务物流服务质量评价指标体系进行构建。在这一背景下,计算机仿真技术的出现满足了物流服务的需求,管理者也将计算机仿真技术用于自动化物流系统中,提高了管理质量及服务质量。
1计算机仿真技术与自动化物流系统概述
计算机仿真技术在计算机技术的发展背景下也呈现出快速发展的趋势。计算机仿真技术是对研究对象应用数学模型进行模式,实现对研究对象了解的目的。对于计算机仿真技术而言,包含的学科内容比较多,如控制、多媒体及计算机技术等,属于多领域、跨专业的综合性学科。现阶段,人们也越来越多的会应用到计算机仿真技术,其发展潜力非常大。尤其是在一些研究对象对人体有危害或自身存在危险性中,通过计算机仿真技术都能解决。如核电站、宇宙飞船等研究。在物流行业的发展中,提高物流服务质量是行业发展的基础,而自动化物流系统的应用,能够促使物流服务质量的提升。自动化物流系统属于复杂的系统工程,在物流各个作业环节中集合了光、机、电等技术,实现了全过程自动化作业。该系统属于综合性计算机集成化物流管理系统,包含自动化高架立体库、自动引导车及往复式穿梭车、自动化输送、逻辑控制等系统。
篇11:计算机仿真技术在物流中的应用论文
2.1仿真软件的选择
现阶段,市场中的计算机仿真软件种类非常多,适合物流系统仿真的软件数量也特别多,不同软件具有不同的特点、优势及局限。因此,在对物流系统仿真软件进行选择时候,要结合实际情况来选择。尽管仿真软件的种类较多,但其主要模块的功能都是一致的,主要包含以下模块:①Conveyer。仿真系统的速度、斜坡及宽度等参与均由该模块设置,由滚筒传输、非积放式传输及含积放式系统混合构成,其功能非常强大。②PathmOVer。在往复穿梭车、自动引导车及升降机等模型汽车中应用广泛且效果较好。③AS/RS。模块主要功能是自动存取,仿真系统自动仓的确定按照货架参数的选取实现。④Kine-matoc。对物流系统运行过程进行模拟是该模块的主要功能,对对象的自由度、运动方向等在仿真模型中定义,保证实体动作的详细模拟,如码盘动作、机械臂动作等。⑤BidgeCrane。机械臂的移动由该模块控制,实现对获取的拾起、下放等操作。⑥POWer&Free。与Conveyer模块的功能基本类似,都是对目标对象进行控制,不同之处是该模块主要针对的是悬挂在空中的对象。⑦Tanks&TIPes/Trains。主要针对气体、液体等物体进行处理,如配置、传输等。⑧AutOVie。用户可通过模型自定义相机的移动和场景,对高质量画面进行采集。同时,用户可对相机进行设置,实现采集画面的逼真,对图像可进行平移、缩放等处理。⑨Autostat。对仿真结果进行收集与分析,按照用户既定目标,给予参考方案,如降低成本、提高工作效率等方案。对仿真系统进行合理选择以后,就可以进行具体操作,
2.2建立仿真模型
按照系统工作流程与实际工作需求,对系统仿真模型进行构建,并对仿真系统相关运行参数进行确定。仿真模型建立以后,要进行逻辑控制程序的编写,依据自动化物流系统的工艺流程、物料流动过程及逻辑控制过程等仿真系统在对物料自动处理时需要的时间,对逻辑控制程序进行编写。
2.3仿真系统运行
在自动化物流系统中,应用计算机仿真技术,能够对物料出现的时间频率依据物流系统实际需求量进行计算,在物流自动化仿真系统中直接输入计算出的值,就能够对该仿真系统进行运行。根据物流系统生产班次,决定仿真系统的运行时间,二者的对应的关系,也可按照大物流系统来模拟。
2.4仿真结果优化分析
按照该仿真系统的'运行结果来看,需要对无流量是否满足需求、流程是否畅通、系统是否存在问题等进行分析。对无流量是否满足要求按照数据统计结果能够直接判断。与传统的物流方式不同,商务物流整合了物流与电子商务的资源。商务物流在我国也经历了多年的发展,当前商务物流模式主要包含B2B、C2C两种。企业对企业的商务物流采用B2B模式,主要针对企业电子商务物流进行研究;消费者对消费者的商务物流采用C2C模式,主要以零售电子商务为研究内容。本文结合两种服务模式的特点与共性,设计电子商务物流评价指标体系,为物流方案的科学、合理建立提供依据。
篇12:计算机仿真技术在物流中的应用论文
在通信、电力、生物、化工、交通等诸多行业和领域内,对计算机仿真技术已经普遍应用,并且随着技术的不断发展成熟,在更多的领域内必然会有更多的应用。在物流服务中应用计算机仿真技术,手下要对电子商务两种常用模式的特定与共性进行研究,B2B与C2C二者的共性主要表现为:在物流服务的内容方面二者是类似的;特性表现为:B2B是针对企业与企业之间的合作,而C2C是针对消费者对消费者之间的合作,将两种模式合作应用,能够使产业链更完整。在自动化物流仿真系统中,可对参数输入进行改变,实现对生产情况及波动进行仿真,模拟对系统带来的冲击,避免一些无法预料的因素出现,对系统堵塞可直观、形象的给出解决方案。能够在系统未投资建设前,就能够对自动化物流系统的生产信息及实际流程进行全面了解。现代物流产业在我国的起步时间较晚,因此在物流服务评价指标体系设计方面,还存在诸多不足,需要对电子商务物流服务从不同层面、不同角度来全面分析,对所涉及到的各类因素进行综合评估,并集合相关评价指标构成评价体系,实现不同模式下评价内容的不同。在实际工作开展中,要坚持遵循中心、重要、基本、关键及必要五大原则,确保评价指标体系的客观合理。本文对整体物流服务质量评价指标制度及物流服务质量评价量表进行参考,对评价的维度与模式从便利、可靠、响应及关怀四个方面确定,实现度电子商务物流服务的跟东与定位定价,促使我国物质服务质量的不断提升。
4结语
对自动化系统中应用计算机仿真技术的必要性进行分析,在此基础上对计算机仿真步骤和方法进行说明,讨论了物流行业中计算机仿真技术应用的前景。随着技术的不断成熟与发展,尤其是在物流领域内,对计算机仿真技术的应用必然会越来越多,加之在其它行业、领域内,也在不断对仿真技术进行应用,所以计算机仿真技术的发展前景非常广阔。本文同时也对电子商务物流模式进行研究,针对不同模式下服务质量评价指标体系的构建方法进行了简单介绍,为物流服务的客观、科学评价提供了依据。
参考文献
[1]范颖颖,王利勤.计算机仿真在物流系统管理中的应用研究[J].信息与电脑(理论版),,04(04):41+43.
[2]余小花.基于计算机仿真技术的自动化物流系统设计[J].自动化与仪器仪表,,12(19):66~67+70.
[3]李晶,侯倩倩,田彬.浅谈计算机仿真技术在我国公铁联运物流系统中的应用[J].通讯世界,2014,22(18):3~4.
[4]王莉.计算机仿真技术在自动化物流系统中的应用[J].自动化与仪器仪表,,04(15):51~52+55.
[5]钱钰.计算机物联网技术在物流领域中的应用与创新[J].通讯世界,2015,19(07):18.
篇13:高速切削刀具在数控加工中的应用论文
摘要:
随着科学技术水平的不断提高,作为先进制造技术的重要组成部分高速切削技术在模具加工制造中已得到越来越广泛的应用。本文结合高速切削技术的发展现状,阐述了高速切削技术的应用及其未来趋势。
关键词:
篇14:高速切削刀具在数控加工中的应用论文
一、高速切削技术和高速切削刀具
目前,切削加工仍是机械制造行业应用广泛的一种加工方法。其中,集高效、高精度和低成本于一身的高速切削加工技术已经成为机械制造领域的新秀和主要加工手段。
“高速切削”的概念首先是由德国的C.S~omom博士提出的,并于1931年4月发表了著名的切削速度与切削温度的理论。该理论的核心是:在常规的切削速度范围内,切削温度随着切削速度的增大而提高,当到达某一速度极限后,切削温度随着切削速度的提高反而降低。此后,高速切削技术的发展经历了以下4个阶段:高速切削的设想与理论探索阶段(193l—l971年),高速切削的应用探索阶段(1972-1978年),高速切削实用阶段(1979--1984年),高速切削成熟阶段(20世纪90年代至今)。高速切削加工与常规的切削加工相比具有以下优点:第一,生产效率提高3~1O倍。第二,切削力降低30%以上,尤其是径向切削分力大幅度减少,特别有利于提高薄壁件、细长件等刚性差的零件的加工精度。第三,切削热95%被切屑带走,特别适合加工容易热变形的零件。第四,高速切削时,机床的激振频率远离工艺系统的固有频率,工作平稳,振动较小,适合加工精密零件。
高速切削刀具是实现高速加工技术的关键。刀具技术是实现高速切削加工的关键技术之一,不合适的刀具会使复杂、昂贵的机床或加工系统形同虚设,完全不起作用。由于高速切削的切削速度快,而高速加工线速度主要受刀具限制,因为在目前机床所能达到的高速范围内,速度越高,刀具的磨损越快。因此,高速切削对刀具材料提出了更高的要求,除了具备普通刀具材料的一些基本性能之外,还应突出要求高速切削刀具具备高的耐热性、抗热冲击性、良好的高温力学性能及高的可靠性。高速切削技术的发展在很大程度上得益于超硬刀具材料的出现及发展。目前常用的高速切削刀具材料有:聚晶金刚石(PCD)、立方氮化硼(CBN)、陶瓷、Ti(C,N)基金属陶瓷、涂层刀具fCVD)~超细晶粒硬质合金等刀具材料。
二、高速切削刀具的发展情况
金刚石刀具材料。金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。金刚石刀具分为天然金刚石和人造金刚石刀具。然而,由于天然金刚石价格昂贵,加工焊接非常困难,除少数特殊用途外,很少作为切削工具应用在工业中。近年来开发了多种化学机理研磨金刚石刀具的方法和保护气钎焊金刚石技术,使天然金刚石刀具的制造过程变得比较简单,因此在超精密镜面切削的高技术应用领域,天然金刚石起到了重要作用。
立方氮化硼刀具材料。立方氮化硼(CBN)是纯人工合成的材料,是20世纪50年代末用制造金刚石相似的方法合成的第二种超材料——CBN 微粉。立方氮化硼(CBN)是硬度仅次于金刚石的超硬材料。虽然CBN的硬度低于金刚石,但其氧化温度高达1360℃ ,且与铁磁类材料具有较低的亲和性。因此,虽然目前CBN还是以烧结体形式进行制备,但仍是适合钢类材料切削,具有高耐磨性的.优良刀具材料。CBN具有高硬度、高热稳定性、高化学稳定性等优异性能,因此特别适合加工高硬度、高韧性的难加工金属材料。PCBN刀具是能够满足先进切削要求的主要刀具材料,也是国内外公认的用于硬态切削,高速切削以及干式切削加工的理想刀具材料。PCBN刀具主要用于加工淬硬钢、铸铁、高温合金以及表面喷涂材料等。国外的汽车制造业大量使用PCBN刀具切削铸铁材料。PCBN刀具已为国外主要汽车制造厂家各条生产线上使用的新一代刀具。
陶瓷刀具。与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷刀具材料的强度低、韧性差,制约了它的应用推广,而超微粉技术的发展和纳米复合材料的研究为其发展增添了新的活力。陶瓷刀具是最有发展潜力的高速切削刀具,在生产中有美好的应用前景,目前已引起世界各国的重视。在德国约70%加工铸件的工序是用陶瓷刀具完成的,而日本陶瓷刀具的年消耗量已占刀具总量的8%~l0%。
涂层刀具。涂层材料的发展,已由最初的单一TiN涂层、TiC涂层,经历了TiC-112o3-TiN 复合涂层和TiCN、TiA1N等多元复合涂层的发展阶段,现在最新发展了TiN/NbN、TiN/CN,等多元复合薄膜材料,使刀具涂层的性能有了很大提高。硬质涂层材料中,工艺最成熟、应用最广泛的是TiN。(氮)化钛基硬质合金(金属陶瓷)金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、Mo等构成。金属陶瓷的硬度和红硬性高于硬质合金而低于陶瓷材料,横向断裂强度大于陶瓷材料而小于硬质合金,化学稳定性和抗氧化性好,耐剥离磨损,耐氧化和扩散,具有较低的粘结倾向和较高的刀刃强度。
三、高速切削刀具的具体应用情况
理想的刀具材料应具有较高的硬度和耐磨性,与工件有较小的化学亲和力,高的热传导系数,良好的机械性能和热稳定性能。理想的刀具使得高速硬切削能够作为代替磨削的最后成型工艺,达到工件表面粗糙度、表面完整性和工件精度的加工要求。硬质合金刀具具有良好的抗拉强度和断裂韧性,但由于较低的硬度和较差的高温稳定性,使其在高速硬切削中的应用受到一定限制。但细晶粒和超细晶粒的硬质合金由于晶粒细化后,硬质相尺寸变小,粘结相更均匀地分布在硬质相的周围,提高了硬质合金的硬度与耐磨性,在硬切削中获得较广泛应用。
陶瓷刀具和CBN刀具是在高速硬车削和端面铣削中最常用的刀具。它们所具有的高硬度和良好的高温稳定性,使其能够承受在硬切削过程中高的机械应力和热应力负荷。与陶瓷刀具相比,CBN刀具拥有更高的断裂韧性,因此更适合断续切削加工。为保证工件较高的尺寸精度和形状精度,高的热传导率和低的热膨胀系数也应是刀具材料所应具有的重要性质。因此,具有优良综合性能的CBN刀具是最适合用于高速硬切削的刀具。聚晶金刚石刀具的硬度虽然超过立方氮化硼刀具,但即使在低温下,其对黑色金属中铁的亲和力也很强,易引起化学反应,因此不能用于钢的硬切削。
一般而言,PCD刀具适合于对铝、镁、铜等有色金属材料及其合金和非金属材料的高速加工;而CBN、陶瓷刀具、涂层硬质合金刀具适合于钢铁等黑色金属的高速加工。故在模具加工中,特别是针对淬硬性模具钢等高硬度钢材的加工,CBN刀具性能最好,其次为陶瓷刀具和涂层硬质合金。
结论
高速切削技术的问世改变了人对传统切削加工的思维和方式,极大提高了加工效率和加工质量。而高速切削与模具加工的结合,改变了传统模具加工的工序流程。高速切削刀具作为高速切削技术的关键,随着技术的不断完善,将为模具制造带来一次全新的技术革新。
参考文献
[1] 韩福庆 高速切削刀具材料的开发与选择[J] 化学工程与装备
[2] 周纯江 叶红朝 高速切削刀具相关关键技术的研究[J] 机械制造2008
[3]范炳良 林朝平基于高速切削刀具锥柄系统的分析与研究[J] 机械设计与制造 2008
[4]马向阳 李长河 高速切削刀具材料[J] 现代零部件2008
[5]李鹏南 张厚安 张永忠 胡忠举 高速切削刀具材料及其与工件匹配研究[J] 工具技术2008
[6]肖寿仁 高鸣智 邓晓春 高速切削刀具材料应用进展[J] 有色金属2008
篇15:制造工程师在数控加工的应用论文
3.1应用前的准备工作
数控加工在正式应用CAXA制造工程师前需要做好相关准备工作,其中最主要的就是要根据相关产品设计图纸要求制定具体的产品零部件加工工艺方案,主要工作流程如下;第一,确定加工物件的外在形式;第二,确定操作技术是否符合规范;第二,确定装夹方式是否符合操作标准;第三,确定选择使用的切削工具是否符合要求;第四,确定相关加工工艺参数;第五,对加工工可以说顺序进行调整等;最终形成一个具体的加工工艺方案。
3.2绘制产品三维模型
在确定具体的加工工艺方案基础上,就可以利用CAXA制造工程师软件绘制产品的三维模型。在实际绘制过程中,可以同时采用二维平面图与三维实体模型两种方式,即将二维平面图中的相关线利用软件的曲线投影功能引入到三维实体模型中,从而实现二维平面图与三维立体图数据的交换共享,这将会大大提高产品三维模型的绘制效率。绘制产品三维模型是CAXA制造工程师软件在数控加工中应用的最主要内容,是后续利用数控机床成功完成产品加工的关键。
3.3生成加工轮廓轨迹
这里的加工轮廓轨迹,确切来说就是利用数控机床加工产品时所用刀具的`运行轨迹;加工刀具运行轨迹设计科学、准确与否,直接影响到是否能利用数控机床成功加工所需产品,一旦加工刀具运行轨迹存在偏差,将会直接导致产品加工失败。要求用户能够根据产品的形状特点、加工工艺规程等灵活运用CAXA制造工程师中的平面区域粗加工、平面轮廓精加工、轮廓线精加工、等高线粗加工、参数线精加工、倒圆角加工等方法。
3.4加工轨迹仿真分析
在设计与生成加工轮廓轨迹后,为了保证设计的科学性、准确性,我们可以利用CAXA制造工程师软件来进行仿真分析;即在CAXA制造工程师软件中将加工轮郭轨迹调整为三维真实状态,来模拟实际切削过程,以此来确定刀具运行轨迹及相关材料运作过程是否存在错误,这就需要设计人员严格检验与刀具相关的设计细节,并且通过一些技术、手段进行优化,切实保证设计的精确性,避免因为设计错误导致产品加工失败。
3.5正式生成G代码
当完成加工轨迹仿真后,我们就可以选择符合加工轮廓轨迹的刀具在经过后置处理后,根据加工中心机床系统的不同、操作者要求不同、需要的格式不同等特点进行参数修改,修改后一定要保存相关设置,最终生成合适数控加工系统的代码指令程序,我们称其为G代码。在成功生成G代码程序,就可以通过运行G代码来控制数控机床进行产品加工操作;G代码是可以反复使用的,从而实现产品的批量生产。
3.6代码的传输与加工
在成功生成G代码后,为了保证数控机床能依据G代码指令工作,还需要我们使用专门的传输软件传输给数控机床,比较有代表性的G代码传输软如CAXADNC和华中数控通讯软件等,具体可以采用两种方式完成G代码传输:一种是固定传输,另一种是在线传输;固定传输指的是考虑到G代码程序短占用内存小,可以一次性传输到数控机床中,全部G代码程序将被保存于机床中;而在线传输指的考虑到G代码程序长且占用内存大,数控机床内存无法一次容纳全部程序,故采用在线传输方式,即边加工边传输。
4结语
数控加工技术在我国现代制造业领域的应用,极大地提高了我国现代制造业的生产水平,实现了我国现代制造业的飞跃性发展;而CAXA制造工程师软件在数控加工中的应用极大地提高了数控加工的技术水平与生产效率,对我国现代制造业发展注入了新鲜活力。目前,虽然CAXA制造工程师在数控加工中的应用已进入成熟时期,但仍然需要我们予以充分关注及深入研究,促进其在数控加工中的科学应用,促进我国现代制造业的健康发展。
参考文献
[1]张昱.CAXA制造工程师在数控加工中的应用[J].中国新技术新产品,2018(3):16-17.
[2]舒文骥.浅析CAXA制造工程师在数控铣加工自动编程方面的应用[J].机电信息,2017(6):115-116.
[3]吕名伟,阮娟娟.CAXA软件在机械数控加工技术中的应用[J].山东工业技术,2018(1):123.
【虚拟仿真技术在数控加工中的应用论文】相关文章:
4.数控车削加工工艺
7.数控论文






文档为doc格式