欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>二年级奥数题复习题

二年级奥数题复习题

2023-07-07 07:57:28 收藏本文 下载本文

“BearWennyJohns”通过精心收集,向本站投稿了12篇二年级奥数题复习题,下面是小编整理后的二年级奥数题复习题,欢迎您能喜欢,也请多多分享。

二年级奥数题复习题

篇1:二年级奥数题复习题

二年级奥数题复习题

1. 在下面个数之间填上合适的运算符号,使等式成立

6 6 6 6=0 7 7 7 7=13

6 6 6 6=2 7 7 7 7=14

6 6 6 6=3 7 7 7 7=15

2.蓝绳比红绳长25米,黄绳比红绳短16米,哪根绳最长?哪根绳最短?相差多少米?

3. 动物园里有38只白兔和黑兔,其中白兔的`只数是黑兔的3倍多2只,白兔和黑兔分别有多少只?

4.有两袋糖果,甲袋糖的数量是乙袋的5倍,如果从甲袋拿出18块放入乙袋,两袋糖的数量相等,原来甲、乙两袋分别有多少块糖?

篇2:人教版二年级奥数题

11.小朋友做操,第一队有15个同学,从第二队调3人到第一队以后,第二队的人数比第一队少6人。第二队原来有多少人?

答案:调完后第一队是15+3=18(人),这时第二队的人数比第一队少6人,第二队是18-6=12(人),求原来有多少人,把调走的加回来12+3=15(人)

答:第二队原来有15人。

12.王红到超市想买一个书包、一双球鞋和一个足球。标价为:书包28元,球鞋35元,足球26元。王红去超市至少要带多少元钱?

答案:依题意我们可以知道要想求出王红需要带多少钱,我们就要求出来他需要那些东西一共要多少钱,现在我们已经知道他们的单价,直接求总和就可以:28+35+26=89(元)

答:王红去超市至少要带89元。

13.一桶油连桶重19千克,吃了一半油后,连桶重12千克。吃掉了多少油?油桶里原来有多少千克油?

答案:用原来的重量减去现在的重量就是吃掉的重量:19-12=7(千克),所得的7千克是原来油的一半,原来油的重量是7+7=14(千克)

答:油桶里原来有14千克油。

14. 一根木材长14米,木工师傅把它锯成2米长的小段,要锯几次?

答案:14里面有几个2就是能几段14/2=7(段),每锯一次得1段,最后一次能得到2段。因些,锯的次数=段数-1=6(次)

15.一台冰箱的售价是1200元,比一台彩色电视机便宜900元,买这两件物品一共需要多少元?

答案:3300(元)。列式:1200+900=2100(元),1200+2100=3300(元),所以买这两件物品一共需要3300元

16.用1、2、3、4这四个数字可组成( )个不同的四位数,将它们按从小到大的顺序排列,第十五个数是( )。

答案:6×4=24(个),按从小到大的顺序排列,第15个数应该是首位数字为3,即3214。

17.30个小朋友排队去参观,平均分成2队小华排在第一队,她的前面有3人,她的后面有几人?

答案:案每个小队有30÷2=15人,所以小华后面有15-3-1=11(人)

18.一只蜗牛从20厘米深的沟底往上爬,每爬4厘米要用2分钟,然后停1分钟,这只蜗牛从沟底爬出来一共要用( )分钟。

答案:每次爬4厘米要用2+1=3(分)钟,20厘米里有20÷4=5(个)4厘米,要3×5=15(分)钟,但最后一次即爬出沟底,无需停1分钟,所以一共用15-1=14(分)钟。

19.四个人称体重,小王比小刘重,小刘比小丁重,小毛比小丁轻,四个人中,( )最重,( )最轻。

答案:小王最重,小毛最轻。

20.今年父亲年龄45岁,儿子13岁,3年后父亲的年龄是儿子的几倍?

答案:3年后父亲的年龄是儿子的3倍

篇3:人教版二年级奥数题

21. 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?

答案:妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为72÷(1+4+4)=8(岁),妈妈的年龄是8×4=32(岁),爸爸和妈妈同岁为32岁.

22. 甲乙丙丁各自参加篮球、排球、足球和象棋。现在知道:(1)甲的身材比排球运动员高。(2)几年前,丁由于事故,失去了双腿。(3)足球运动员比丙和篮球运动员都矮。猜猜就甲乙丙丁各参加什么项目?

答案:由(2)可知丁肯定是象棋运动员,由(1)(3)可知甲不是排球和足球运动员,那么甲只能是篮球运动员,由(3)可知丙不是足球运动员,那么只能是排球运动员了,剩下的乙就是足球运动员了。

23. 有一天,大熊老师在黑板上写了一列数字,然后他停下来,让小兔妮妮和熊猫冰冰来猜一猜. ⑴ 第25个数是几?⑵ 这25个数的和是多少?1,2,3,2,3,4,3,4,5,4,5,6,……

答案:9,141

24. 联欢会上,要把10个水果装在6个袋子里,要求每个袋子中装的水果都是双数,而且水果和袋子都不剩。应该怎样装?

答案:每个袋子放2个,再把5个袋子装在最后一个袋子里

25. 要把一个篮子里的5个苹果分给5个孩子,使每人得到1个苹果,但篮子里还要留下一个苹果,你能分吗?

答案:能.最后一个苹果留在篮子里不拿出来,把它们一同送给一个孩子.这是因为“篮子里留下一个苹果和每个孩子分得一个苹果”这两个条件并不矛盾

26. 淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元?

答案:比原来少的钱就是花掉的钱,小淘气一共花了:56+128=184(元),所以比原来的钱少了184元

27. 小林家有大、小两个鱼缸,原来两个鱼缸里的金鱼条数相等,如果从小鱼缸里拿4 条放到大鱼缸里,这时大鱼缸里的金鱼条数是小鱼缸里的2 倍,小鱼缸里原来有鱼多少条?

答案:原来大、小两个鱼缸里鱼的条数相等,如果从小鱼缸里拿4 条给大鱼缸,这时大鱼缸里的鱼比小鱼缸里的鱼多8 条。变化以后大鱼缸里的金鱼条数是小鱼缸里的2 倍,也就是比小鱼缸里的金鱼条数多1 倍,而这1 倍数正好是8 条。所以,原来小鱼缸里的鱼的条数是12条。

28. 一个筐里装着 52个苹果,另一个筐里装着一些梨。如果从梨筐里取走18个梨,那么梨就比苹果少12个。原来梨筐里有多少个梨?

答案:有几种思考方法 (1)根据取走 18个梨后,梨比苹果少 12个,先求出梨筐里现有梨 52-12=40(个),再求出原有梨(52-12)+18=58(个)。 (2)根据取走18个梨后梨比苹果少 12个,我们设想“少取 12个”梨,则现有的梨和苹果一样多,都是52个。这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨 52+(18-12)=58(个)。 (3)根据取走 18个梨后梨比苹果少 12个,我们设想不取走梨,只在苹果筐里加入18个苹果,这时有苹果52+18=70(个)。 这样一来,现有苹果就比原来的梨多了12个。由此可求出原有(52+18)-12=58(个)。

29. 兄弟两人去钓鱼,一共钓了23条,哥哥钓的鱼比弟弟的三倍还多3条,哥哥弟弟各钓了多少条?

答案:23-3=20

20/(3+1)=5条

弟弟钓了5条

哥哥钓了5*3+3=18条。

30. 小林家有大、小两个鱼缸,原来两个鱼缸里的金鱼条数相等,如果从小鱼缸里拿4条放到大鱼缸里,这时大鱼缸里的金鱼条数是小鱼缸里的2倍,小鱼缸里原来有鱼多少条?

答案:原来大、小两个鱼缸里鱼的条数相等,如果从小鱼缸里拿4条给大鱼缸,这时大鱼缸里的鱼比小鱼缸里的鱼多8条。变化以后大鱼缸里的金鱼条数是小鱼缸里的2倍,也就是比小鱼缸里的金鱼条数多1倍,而这1倍数正好是8条。所以,原来小鱼缸里的鱼的条数是12条。

篇4:二年级奥数训练题

二年级奥数训练题

1、1米与1克相比( )

A 无法比较 B 1米大 C 1克大

2、积是16的的算式是( )

A 32÷2 B 4×4 C 8+8

3、下面的单位中,不是重量单位的`是( )

A 元 B 千克 C 克

4、一个三位数。三个数字的和是26,这个数最大是( )

A 899 B 989 C 998

5、8070读作( )

A 八千七十 B 八千七 C 八千零七十

6、口算

5×8 = 24÷6 =

7、1千克梨有8个,1千克苹果比1千克梨的个数多1个,妈妈买了2千克梨和2千克苹果,共有苹果和梨( )个。

8、一只蜗牛向前爬25厘米,又朝后退15厘米,在朝前爬10厘米,结果前进了( )厘米。

9、小明第一天写5个大字,以后每一天都比前一天多写2个大字,6天后小明一共写了( )个大字。

10、一辆公共汽车上有6个空座位。车开到团结站,没有人下车,但上来了9人,空座位还有2个,上车的人中有( )人站着。

篇5:二年级的奥数训练题参考

关于二年级的奥数训练题参考

1、两箱苹果都重40千克,从第一箱中拿出8千克到第二箱后,第二箱比第一箱多( )千克。

2、学校校门的右边插了8面彩旗,每两面彩旗之间的距离都是2米,从第1面彩旗到第8面彩旗之间共有( )米。

3、一个三位数,十位上的数字是9,正好是个位数字的3倍,三个数位之和是13。这个三位数是( )

4、冬冬今年10岁,爸爸今年40岁,冬冬( )岁时,爸爸的年龄正好是冬冬的2倍。

5、小明栽树5棵,大强、李卫、大华和冬冬每个人栽的棵数和小明同样多。他们一共栽树( )棵。

6、星期天,小刚在家烧水、泡茶。洗茶壶:1分钟,烧开水:15分钟,洗茶杯:1分钟,拿茶叶:2分钟。问:小刚最少要( )分钟泡上茶。

7、晚上小华在灯下做作业的时候,突然停电,小华去拉了两下开关。妈妈回来后,到小华房间又拉了三下开关。等来电后,小华房间的灯( )(填“亮”或“不亮”)

8、花果山上的桃熟了,小猴忙到树上摘桃。第一次,它摘了树上桃的一半,回家时还随手从树上摘了2个;第二次,它将树上剩下的.8个桃全部摘回家。小猴共摘回( )个桃。

9、节日里,学校门前的彩灯从左到右按2个红3个黄4个蓝的顺序排列。从左到右看,第12只彩灯是( )色,第3只彩灯是( )。

10、把一杯水倒入空瓶,连瓶共重140克,如果倒入三杯水,连瓶共重20克。空瓶的重量是( )克。

篇6:训练题小学二年级奥数

训练题小学二年级奥数

41、一只苹果的重量等于一只桔子加上一只草莓的重量,而一只苹果加上一只桔子的重量等于9只草莓的重量,请问,一只桔子的'重量等于几只草莓的重量。

42、有一个天平,九个砝码,其中一个砝码比另八个要轻一些,问至少要称几次才能将轻的那个找出来?

43、按规律填数:

(1)54321 43215 32154 ( ) 154321

(2) 1,2,3(7) 2,3,4(14) 3,4,5

(3)1,4,7,10,( ),16,,( )

(4)1,2,3,7,11,16,( ),29

(5)2,5,4,5,6,5,( ),5

(6)7,8,10,13,17,( )28

44、10个一百是( ),10000里面有( )个一千。

45、3572最高位是( )位,读作( ),九千零五十写作( )。

46、一个2分币大约重4( );小明今年7岁,他的体重约是28( )。

47、90里面有( )个十,290里面有( )个十。

48、百位上的6比十位上的6多( )。

49、49个苹果平均分给9个小朋友,每人分( )个,还剩( )个。

50、判断题(对的在括号里打“√”,错的打“×”)

(1)、一个数除以4,所得的余数最大是3。 ( )

(2、48÷3×2 = 48÷6 ( )

(3、一个苹果重120千克。 ( )

(4、千位右面一定是万位。 ( )

篇7:二年级奥数应用题20题

二年级奥数应用题20题

1、一辆空调车上有42人,中途下车8人,又上来16人,现在车上有多少人?

2、面包房一共做了54个面包,第一队小朋友买了8个,第二队小朋友买了22个,现在剩下多少个?

3、个组一共收集了94个易拉罐,其中第一组收集了34个易拉罐,第二纽收集了29个易拉罐。那第三小组收集了多少个易拉罐?

4。新型电脑公司有87台电脑,上午卖出19台,下午卖出26台,还剩下多少台?(用两种方法解答)

5。班级里有22张腊光纸,又买来27张。开联欢会时用去38张,还剩下多少张?

6。少年宫新购进小提琴52把,中提琴比小提琴少20把,两种琴一共有多少把?

7。一辆公共汽车里有36位乘客,到福州路下去8位,又上来12位,这时车上有多少位?

8、甲数是20,乙数比甲数多5,乙数是多少?

9、有25个苹果,梨比苹果少7个,有多少个梨?

10、小青有28张画片,照片比画片多16张。小青有多少张照片?

11、男生有35人,男生比女生多2人,女生有多少人?

12、男生有35人,男生比女生少2人,女生有多少人?

13、动物园有20只黑熊,黑熊比白熊多8只,白熊有多少只?

14、动物园有20只黑熊,白熊比黑熊多8只,白熊有多少只?

15、红领巾养鸡场有公鸡44只,母鸡比公鸡多16只。母鸡有多少只?

16、红领巾养鸡场有母鸡60只,母鸡比公鸡多14只,公鸡有多少只?

17、红领巾养鸡场有母鸡60只,公鸡比母鸡少14只,公鸡有多少只?

18、红领巾养鸡场有公鸡44只,公鸡比母鸡少16只。母鸡有多少只?

19、上手工课,一班节约了15张纸,二班比一班多节约了8张纸。二班节约了多少张纸?

20、上手工课,一班节约了15张纸,比二班多节约了8张。二班节约了多少张纸?

篇8:小学二年级奥数题及答案

小学二年级奥数题及答案

计算题。 ( 共 6 题)

1. 从小熊家到小猪家有一条小路,每隔 45 米种一棵树,加上两端共 53 棵;现在改成每 隔 60 米种一棵树.求可余下多少棵树?

答案:该题含植树问题、相差关系两组数量关系.从小熊家到小猪家的距离是 45×(53-1)=2340(米), 间隔距离变化后,两地之间种树 2340÷60+1=40(棵),所以可余下树 53-40=13(棵) ,综合算式为 53-[45×(53-1)÷60+1]=13(棵).

2. 5 个人 2 小时植树 20 棵,6 个人 3 小时植树多少棵?

答案:要求 6 个人 3 小时植树多少棵,必须先求出 5 个人 1 小时植的棵数,再求出 1 个人 1 小时所植 的棵数。20÷5÷2×6×3=2×6×3=36(棵)。所以 6 个人 3 小时植树 36 棵。

3. 正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔 5 米.甲、乙从一个 角上同时出发,向不同的方向走去,甲的速度是乙的 2 倍,乙在拐了一个弯之后的第 5 棵树与甲相遇(把角上的树看作第一棵树)。操场四周栽了多少棵树?

答案:因为甲的速度是乙的两倍,乙走了操场的一条边,甲走了两条边,乙拐了一个弯之后走到第 5 棵树,实际走了 4 个间隔,那么甲应该走了 8 个间隔,相遇的树就是甲拐弯以后走的第 9 棵树,所以 这一边有 9+4=13(棵)树.操场周围的树一共有(13-1)×4=48(棵)。

4. 某校学生植树,每人分担 2 棵树的任务,若一个人单干,挖一个坑需要 10 分钟,取 树苗(每人每次最多可取 4 棵)需 20 分钟,运水(每人每次运的水可浇 4 棵树)需要 20 分钟,栽 1 棵树需要 10 分钟,问一个人单干需要多少分钟?若两个人合作统筹安排需要 多少分钟?

答案:一个人需要 10×2+20+20+10×2=80 分钟; 两个人需要 20(一个人挖 2 个坑,一个人取树苗)+20(一个人挖 2 个坑,一个人 2 栽棵树)+20(一 个人栽 2 棵树,一个人运水)= 60 分钟。

5. 在一条长 50 米的公路两边植树,每隔 10 米种一棵,两端都种,这条路上共种多少棵 树?

答案:在一条长 50 米的公路两边植树,我们先考虑一边种了多少棵,每隔 10 米种 1 棵,两端都种, 50 米里面有 5 个 10 米,也就是说中间的间隔有 5 个,那么一边就可以种 6 棵树,一边种 6 棵树,两 边就是 6+6=12(棵)树.

6. 某公园里有三棵树,它们的树龄分别由 1、2、3、4、5、6 这六个数字中的不同的两 个数字组成,而且其中一棵的树龄正好是其他两棵树龄和的一半,你知道这三棵树各是 多少岁吗?

答案:这道题的`实质就是把 1、2、3、4、5、6 六个数分成三组,每组两个数,组成二位数,使其中的

两个二位数之和等于第三个二位数的 2 倍。顺便说一下,把生活中的趣味问题转化成为纯数学

型的题 目是一种重要的本领,同学们要从小就注意增强这种能力,以便将来能够运用数学知识解决实际工作 中遇到的难题。 仔细观察、大胆尝试,将这六个数分组、组合,可得出的三个数是 12,34,56,因 为 12+56=34×2 即这三棵树的树龄是 12 岁、34 岁、56 岁。这道题有几种不同的答案,请你动动脑筋 找出另外的答案。

篇9:小学二年级奥数训练题

小学二年级奥数训练题

1、哥哥给了弟弟2支铅笔后还剩5支,这时两人的铜笔一样多,弟弟原来有铅笔支。

2、林林、红红、芳芳三个小朋友买糖吃。林林买了7粒,红红买了8粒,芳芳没有买。三个小朋友要平分吃,芳芳一共付了1元钱,其中给林林()角,给红红()。

3、三个人吃3个馒头,用3分钟才吃完;照这样计算,九个人吃9个馒,需要()分钟才吃完?

4、环形跑道上正在进行长跑比赛。每位运动员前面有7个人在跑,每位运动员后面也有7个人在跑。跑道上一共有()个运动员?

5、把16只鸡分别装进5个笼子里,要使每个笼子里鸡的`只数都不相同,应怎样装?请把每只笼子里的鸡的只数分别填入下面五个方框中。

6、今天红红8岁,姐姐13岁,后,姐姐比红红大()岁。

7、汽车每隔15分钟开出一班,哥哥想乘9时10分的一班车,但到站时,已是9时20分,那么他要等()分钟才能乘上下一班车。

8、从底楼走到3楼,用了24秒;那么从1楼走到6楼,需要()秒。

9、二(1)班小朋友排成长方形队伍参加体操表演。红红左看是第6名,右看是第2名,前看是第4名,后看是第3名。二(1)班共有()小朋友。

10、汽车场每天上午8时发车,每隔8分钟发一辆。那么从8时到8时40分,共发了()辆车?

篇10:奥数题及答案

1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。

2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?

3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?

4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。

5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?

6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。要过河时间最少?是多少?

四年级奥数题:速算与巧算(一)

1.【试题】计算9+99+999+9999+99999

2【试题】计算99+19999+1999+199+19

3【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)

4【试题】计算 9999×2222+3333×3334

5【试题】56×3+56×27+56×96-56×57+56

6【试题】计算98766×98768-98765×98769

四年级奥数题:年龄问题

1、父亲45岁,儿子23岁。问几年前父亲年龄是儿子的2倍?

2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。问李老师和王刚各多少岁?

3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。

4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了?

5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁?

6、前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。

7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?

四年级奥数题:牛吃草问题解析

历史起源:英国数学家牛顿(16421727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。

主要类型:

1、求时间

2、求头数

除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。

基本思路:

①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。

基本公式:

解决牛吃草问题常用到四个基本公式,分别是∶

(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);

(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;

(3)吃的天数=原有草量÷(牛头数-草的生长速度);

(4)牛头数=原有草量÷吃的天数+草的生长速度

第一种:一般解法

“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”

一般解法:把一头牛一天所吃的牧草看作1,那么就有:

(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)

(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)

(3)1天新长的草为:(207-162)÷(9-6)=15

(4)牧场上原有的草为:27×6-15×6=72

(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)

所以养21头牛,12天才能把牧场上的草吃尽。

第二种:公式解法

有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?

解答:

1) 草的生长速度:(21×8-24×6)÷(8-6)=12(份)

原有草量:21×8-12×8=72(份)

16头牛可吃:72÷(16-12)=18(天)

2) 要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数

所以最多只能放12头牛。

小学四年级奥数题及答案和题目分析

一、按规律填数。

1)64,48,40,36,34,( )

2)8,15,10,13,12,11,( )

3)1、4、5、8、9、( )、13、( )、( )

4)2、4、5、10、11、( )、( )

5)5,9,13,17,21,( ),( )

二、等差数列

1.在等差数列3,12,21,30,39,48,…中912是第几个数?

2.求1至100内所有不能被5或9整除的整数和

3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和

三、平均数问题

1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .

2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .

3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?

4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.

23, 26, 30, 33

A、B、C、D 4个数的平均数是多少?

5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是。

四、加减乘除的简便运算

1)100-98+96-94+92-90+……+8-6+4-2=()

2)1976+1977+……-1975-1976-……-1999=()

3)26×99 =()

4)67×12+67×35+67×52+67=()

5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)

五、数阵图

1、△、□、分别代表三个不同的数,并且;

△+△+△=+;+++=□+□+□;△+++□=60

求:△= = □=

2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.

3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.

4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。

六、和差倍问题

1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?

4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?

5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?

6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?

七、年龄问题

1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?

2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?

3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?

4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?

八、假设问题

1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?

2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?

3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?

4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?

5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?

和差倍

果园里有梨树、桃树、核桃树共526棵,梨树比桃树的2倍多24棵,核桃树比桃树少18棵.求梨树、桃树及核桃树各有多少棵?

1、在□中填入适当的数字,使乘法竖式成立。

2、在□中填入适当的数字,使除法竖式成立。

1、天天带了一些苹果和梨到敬老院慰问。每次从篮里取出2个梨和4个苹果送给老人,最后当梨正好分完时,还剩下27个苹果。这时他才想起原来苹果是梨的3倍多3个。原有苹果、梨各多少个?

2、40名同学在做3道数学题时,有25人做对第一题,有28人做对第二题,有31人做对第三题。那么至少有多少人做对了三道题?

答案:

1.先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。共需要1+10=11分钟。

2.大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)

3.一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。

4.所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。

解:应按丙,乙,甲,丁顺序用水。

丙等待时间为0,用水时间1分钟,总计1分钟

乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟

甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟

丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,

总时间为1+3+6+16=26分钟。

5.大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。所以花费的总时间为:2+1+10+2+2=17分钟。

解:2+1+10+2+2=17分钟

6.要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。

解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟

然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟

最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。

总共用时(2+1)+(6+2)+2=13分钟。

1.【解析】在涉及所有数字都是9的计算中,常使用凑整法。例如将999化成10001去计算。这是小学数学中常用的一种技巧。

9+99+999+9999+99999

=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)

=10+100+1000+10000+100000-5 =111110-5 =111105

2【解析】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。不过这里是加1凑整。(如 199+1=200)

199999+19999+1999+199+19

=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5

=200000+20000+2000+200+20-5 =222220-5 =22225

3【分析】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。

解:解法一、分组法

(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)

=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)

=1+1+1+…+1+1+1(500个1)=500

解法二、等差数列求和

(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)

=(2+1000)×500÷2-(1+999)×500÷2

=1002×250-1000×250=(1002-1000)×250=500

4【分析】此题如果直接乘,数字较大,容易出错。如果将9999变为3333×3,规律就出现了。

9999×2222+3333×3334 =3333×3×2222+3333×3334

=3333×6666+3333×3334 =3333×(6666+3334) =3333×10000

=33330000。

5.【分析】:乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘数后乘数前面的符号。同样的,乘法分配率也可以反着用,即将一个乘数凑成一个整数,再补上他们的和或是差。

56×3+56×27+56×96-56×57+56

=56×(32+27+96-57+1)=56×99=56×(100-1)=56×100-56×1

=5600-56=5544

6. 【分析】:将乘数进行拆分后可以利用乘法分配律,将98766拆成(98765+1),将98769拆成(98768+1),这样就保证了减号两边都有相同的项。

解:98766×98768-98765×98769

=(98765+1)×98768-98765×(98768+1)

=98765×98768+98768-(98765×98768+98765)

=98765×98768+98768-98765×98768-98765=98768-98765=3

年龄问题【答案】:

1、一年前。

2、刘红10岁,李老师28岁。

(10+8-8)÷(2-1)=10(岁)。

3、妹妹7岁。姐姐14岁。

[27-(3×2)]÷(2+1)=7(岁)。

4、小象10岁,妈妈19岁。

(28-1)÷3+1=10(岁)。

5、大熊猫15岁,小熊猫5岁。

(28-4×2)÷(3+1)=5(岁)。

6、父亲50岁,儿子20岁。

(15+10)÷(7-2)+15=20(岁)

7、王涛 12岁,妈妈34岁。爸爸36岁,奶奶58岁,爷爷 60岁。

提示:爸爸年龄四年前是王涛的4倍,那么现在的年龄是王涛的4倍少12岁。

(200+2+12+12+2)÷(1+5+5+4+4)=12(岁)。

篇11:奥数题及答案

过桥问题(1)

1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?

分析:这道题求的是通过时间.根据数量关系式,我们知道要想求通过时间,就要知道路程和速度.路程是用桥长加上车长.火车的速度是已知条件.

总路程: (米)

通过时间: (分钟)

答:这列火车通过长江大桥需要17.1分钟.

2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?

分析与这是一道求车速的过桥问题.我们知道,要想求车速,我们就要知道路程和通过时间这两个条件.可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出.

总路程: (米)

火车速度: (米)

答:这列火车每秒行30米.

3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?

分析与火车过山洞和火车过桥的思路是一样的.火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥.这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程.

总路程:

山洞长: (米)

答:这个山洞长60米.

和倍问题

1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?

我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?

(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)

(2)秦奋的年龄:40÷5=8岁

(3)妈妈的年龄:8×4=32岁

综合:40÷(4+1)=8岁 8×4=32岁

为了保证此题的正确,验证

(1)8+32=40岁 (2)32÷8=4(倍)

计算结果符合条件,所以解题正确.

2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?

已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和.看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度.

甲乙飞机的速度分别每小时行800千米、400千米.

3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?

思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?

(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?

(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?

思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书.根据条件需要先求出哥哥剩下多少本课外书.如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量.

(1)兄弟俩共有课外书的数量是20+25=45.

(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3.

(3)哥哥剩下的课外书的本数是45÷3=15.

(4)哥哥给弟弟课外书的本数是25-15=10.

试着列出综合算式:

4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?

根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨.根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍.于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨.最后就可求出甲库原来存粮多少吨.

甲库原存粮130吨,乙库原存粮40吨.

列方程组解应用题(一)

1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?

依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组.

两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数

B制出的盒身数×2=制出的盒底数

用86张白铁皮做盒身,64张白铁皮做盒底.

奇数与偶数(一)

其实,在日常生活中同学们就已经接触了很多的奇数、偶数.

凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数.

因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数).因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数).

奇数和偶数有许多性质,常用的有:

性质1 两个偶数的和或者差仍然是偶数.

例如:8+4=12,8-4=4等.

两个奇数的和或差也是偶数.

例如:9+3=12,9-3=6等.

奇数与偶数的和或差是奇数.

例如:9+4=13,9-4=5等.

单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数.

性质2 奇数与奇数的积是奇数.

偶数与整数的积是偶数.

性质3 任何一个奇数一定不等于任何一个偶数.

1. 有5张扑克牌,画面向上.小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?

同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下.要想使5张牌的画面都向下,那么每张牌都要翻动奇数次.

5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下.而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数.

所以无论他翻动多少次,都不能使5张牌画面都向下.

2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?

不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.

如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.

奥赛专题 -- 称球问题

例1 有4堆外表上一样的球,每堆4个.已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来.

解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球.

2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来.

解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上.若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中.

第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆.

第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品.

例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来.

把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示.把A、B两组分别放在天平的两个盘上去称,则

(1)若A=B,则A、B中都是正品,再称B、C.如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论.如BC的情况也可得出结论.

(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或BC不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B

(3)若AB的情况,可分析得出结论.

奥赛专题 -- 抽屉原理

【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日.为什么?

【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月.如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日.

【例 2】任意4个自然数,其中至少有两个数的差是3的倍数.这是为什么?

【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数.而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”.我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数.换句话说,4个自然数分成3类,至少有两个是同一类.既然是同一类,那么这两个数被3除的余数就一定相同.所以,任意4个自然数,至少有2个自然数的差是3的倍数.

【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的.

[奥数题及答案]

篇12:奥数训练题

关于奥数训练题

91、16+16+16+8=( )×( )。

92、已知:○+□=15,○-□=1。那么○=( ),□=( )。

93、一些笔平均分给8个同学刚好分完,最少有( )支笔。

94、63减去7,减( )次结果是0,用算式( )。

95、确定一个顶点,可以画( )个角。一个角的`两条边延长,这个角的大小( )。

96、判断(对的打√,错的打×,共10分)

(1.在乘法算式里,积不一定比每个因数大。( )

(2.一个方桌的一个角被截去后,这个方桌就剩下三个角。( )

(3. 9乘一个数,这个数每增加1,积就增加9。( )。

(4. 13名同学做纸花,每4人用一张纸,最少要用3张纸。( )

(5. 36是4的9倍,就是36里面有4个9。( )。

97.操作题(10分)

(1.画一条线断,长度是1厘米的4倍。(4分)

(2.在图中添一条线段,使它增加4个直角。(6分)

98.计算(16分)

(1.列竖式计算(12分)

68-27-13 54+14+28

18+(72-27) 86-(35-14)

(2.在括号中最大能填几?(4分)

8×( )﹤71 47﹥9×( )

( )×7﹤60 23﹥4×( )

99.列式计算(16分)

(1. 一个因数是8,另一个因数比36少27,积是多少?

(2. 54里面有几个9?

(3. 6的8倍是多少?

(4.被除数是24,除数是3,商是多少?

100.(每小题7分,共35分)

(1.一只手有5个手指,那么两个人共有多少个手指?

(2.有4盆黄花、5盆红花,每盆都开6朵花,一共开了几朵花?

(3.二⑴班有男生28人,有女生24人,二⑵班比二⑴班多3人,二⑵班有多少人?

【二年级奥数题复习题】相关文章:

1.小学二年级奥数综合应用题_小学奥数题训练

2.巧解奥数题

3.三年级奥数题及答案

4.小学奥数题及答案

5.奥数题规定时间例题

6.六年级小学生必考奥数题

7.四年级奥数题及答案

8.奥数题,动脑筋作文500字

9.五年级奥数题及答案

10.百分数应用题三年级奥数题

下载word文档
《二年级奥数题复习题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部