相反数练习题
“已向季春”通过精心收集,向本站投稿了6篇相反数练习题,以下是小编帮大家整理后的相反数练习题,仅供参考,欢迎大家阅读。
篇1:相反数练习题
相反数练习题
一、选择题
1下列两个数不是互为相反数的是( )
A.-0.25和 B. 与 C.-3与-(-3) D。 与0.2
2在下列5对数中,互为相反数的有( )
-(-5)与-5 .-(-12)与-(+12).+(+9.8)与-(-9.8) ④-[+( ⑤ 与+
A.2对 B.3对 C.4对 D. 5对
3.已知a=-a,则数a等于( )
A.0 B.-1 C.1 D.不确定
4.数轴上点A表示的数为1,则与点A相距3个单位长度的点B表示的数是( )
A.4 B.—2 C. 4或—2 D.—4
5.下列说法正确的是( )
A. —3.14是负数不是分数 B.π是正数,也是有理数
C.100是正整数也是有理数 D. 是分数不是有理数
7.下列说法:带“+”号的数是正数,带“—”号的数是负数;相反数等于本身的数只有0;数轴上原点两旁的两个点所表示的数互为相反数;④在一个数的前面添上“—”号就得到这 个数的相反数,其中正确的是( )
A.④ B.④ C.④ D.
8.一个有 理数的相反数大于它本身,这个数是: ( )
A、零 B、正数 C、负数 D、不可能 存在
二、填空题
9. 的相反数 是 ;3和 互为相反数,-(-5)表示的意义是 _ 。10. 从数轴上看,互为相反数的`两数的位置是位于 的两旁,到 的距离相等。
11. 如果一个数的相反数是最大的负整数,则这个数是 。
12. -(-8)的相反数是 ,-a的相反数是 。
13. 与【-(- )】互为相反数。
14.(1+a)与 互为相反数。
15.若m的倒数是 ,则m的相反数是 ;若a -2的相反数是-3,则a= 。
16.若数轴上的两个点A和B表示的两个数互为相反数,并且这两点间的距离是7,
则这两个点A和B所表示的数分别是 和 。
17.任何一个 的相反数都是正数;任何一个 的相反数都是负数;
的相反数是它本身。
18.如果一个数大于它的相反数,那么这个数一定是 。
三、解答题
19.已知m与n互为相反数,且m与n之间的距离为6.你能求出m与n这两个未知数?
20.已知a-3和—2互为相反数,求a与—a的值。
21.如图,是一个正方形纸盒的展开图,请把—21, 分别填入六个正方形中,使得折成正方形的相对面的两个数互为相反数。
22.淘气在做题时画一个数轴, 数轴上原有一点A,其表示的数量-3,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-3的相反数的位置,想一想,借助于数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度。
23.数轴上点A表示—5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B和点C各表示什么数?
1.2.3 相反数
答案
一1D 2B 3A 4C 5C 6B 7C 8C二9. ,—3,—5的相反数,10.原点,原点
篇2:相反数
教学目标
1.了解相反数的意义,会求有理数的相反数;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
相反数的定义 相反数的性质及其判定 相反数的应用
三、教法建议
这节课教学的主要内容是互为相反数的概念。
由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、相反数的相关知识
篇3:相反数
若 互为相反数,则 ,反之若 ,则 互为相反数。
4.多重符号化简
(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
篇4:相反数
一、素质教育目标
(一)知识教学点
1.了解:互为相反数的几何意义.
2.掌握:给出一个数能求出它的相反数.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释相反数的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的相反数,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的相反数.
2.难点:根据相反数的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入新课
1.互为相反数的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5, -5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.
[板书]2.3 相反数
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)
师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的相反数.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机―利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的相反数( )
(2)5是-5的相反数( )
(3)与互为相反数( )
(4)-5是相反数( )
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.
篇5:相反数
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的相反数.
2.分别说出9,-7,0,-0.2的相反数.
3.指出-2.4,,-1.7,1各是什么数的相反数?
4.的相反数是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数.2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是.”
[板书]a的相反数是-a.
师:的相反数是,可表示任意数―正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?
.
.
.
提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习
(出示投影3)
1.是______________的相反数,.
2.是_____________的相反数,.
3.是_____________的相反数,.
4.是_____________的相反数,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2 简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了相反数,归纳如下:
1.________________的两个数,我们说其中一个是另一个的相反数.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
【教法说明】通过问题形式归纳出本节的重点.
(四)回顾反馈
1.-1.6是__________的相反数,
____________的相反数是0.3.
2.下列几对数中互为相反数的`一对为( ).
A.和B.与C.与
3.5的相反数是________________;的相反数是___________;的相反数是________________.
4.若,则;若,则.
5.若是负数,则是___________数;若是负数,则是___________数.
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.
【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对相反数概念的理解情况,对学有余力的同学是一个提高.
八、随堂练习
1.填表
原数
0
篇6:相反数
3.的相反数是. 例,……
随堂练习答案
1.略 2.C B D
作业答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
【相反数练习题】相关文章:
1.相反数教案
2.相反数教学总结
5.爱莲说练习题
6.社戏练习题
7.循环小数练习题
8.be动词练习题
9.代数式练习题
10.燕子练习题






文档为doc格式