欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>立体几何练习题

立体几何练习题

2023-08-19 07:59:33 收藏本文 下载本文

“如也”通过精心收集,向本站投稿了3篇立体几何练习题,以下是小编为大家整理后的立体几何练习题,希望能够帮助到大家。

立体几何练习题

篇1:空间向量与立体几何的练习题

空间向量与立体几何的练习题

1.如图所示,在四棱锥PABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形, ,M为PC上一点,且PA∥平面BDM.

(1)求证:M为PC中点;

(2)求平面ABCD与平面PBC所成的锐二面角的大小.

2.如图,平面平面ABC, 是等腰直角三角形,AC =BC= 4,四边形ABDE是直角梯形,BD∥AE,BD BA, , ,求直线CD和平面ODM所成角的正弦值.

3.如图,已知四棱锥PABCD的底面为等腰梯形,AB∥CD, ACBD,垂足为H,PH是四棱锥的高,E为AD的中点.

(1)证明:PE

(2)若APB=ADB=60,求直线PA与平面PEH所成角的`正弦值.

4.如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,BAD=90,ACBD,BC=1,AD=AA1=3.

(1)证明:AC

(2)求直线B1C1与平面ACD1所成角的正弦值.

5.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点, AA1=AC=CB=22AB.

(1)证明:BC1∥平面A1CD;

(2)求二面角D-A1C-E的正弦值.

6.如图,在圆锥PO中,已知PO=2,⊙O的直径AB=2,C是 的中点,D为AC的中点.

(1)证明:平面POD平面PAC;

(2)求二面角B-PA-C的余弦值.

7.如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1-DN-M的大小为.

(1)当=90时,求AM的长;

(2)当cos =66,求CM的长.

8.四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60.

(1)求AC1的长; (2)求BD1与AC夹角的余弦值.

篇2:立体几何证明题

立体几何证明题

立体几何证明题

如图,原题意就是一个正方体,然后E、F分别是A'B、B'C的中点,求证EF//面ABCD。

那些虚线是我做的辅助线,EM⊥AB,FN⊥BC,连接MN;然后EG⊥BB',连接FG,EF。然后证那个五面体EGF-MBN是个三棱柱,从而证得EF//面ABCD,可不可以?

3

证明:(1)连接BG并延长交PA于点H..

因为PA,PB,PC两辆垂直,,所以PC⊥面PAB..所以PC⊥GF...

因为G为△PAB的重心,,所以HG=1/3BH,,又因为PF=1/3PB..所以GF平行PH,,所以∠GFB=∠APB=90°....

即GF⊥PB...因为PB在面PBC上,,PC也在面PBC上..又PB∩PC=P...

所以GF⊥面PBC...

(2)在BC上取异于E的一点K,,使得CK=1/3BC...

因为BF=2/3PB,,BK=2/3BC,,所以所以△BFK∽△BPC...所以FK=2/3PC=2/3PB..即FK=BF..

因为E为BK中点,,BF=FK..所以FE⊥BC...

4

1.设P点的射影是H因为PB=PC=PD,所以H必是BC,DC的中垂线的交点,因为BH^2+PH^2=CH^2+PH^2=DH^2+PH^2又因为A是BC,DC的中垂线的`交点,所以A与P重合,PA垂直于平面ABCD.2.取AB中点F,过F做FM垂直AB于M,则∠EMF为所求角因为EF=1/2AP=1,FM=1/2BN=√3/2(N为AC中点)则可求得

5

取CD和BC的中点M,N,连接PM,PN,AM,AN,因为三角形ABC和三角形PBC都为等腰三角形,所以PN垂直于BC,AN还垂直于BC,所以BC垂直于面PAN,所以BC垂直于PA,同理证PA垂直于CD,即可。第二问,建空间直角坐标系,求两个面的法向量,再用向量夹角公式就可求出,结果为arccos(根号下21)/7.

6

PA⊥AB PA⊥AC,∴PA⊥面ABC

∴PA⊥BC,

又∵AB⊥BC

∴BC⊥面PAB,∴BC⊥AE

又因为 AE⊥PB

∴AE⊥面PBC,∴AE⊥PC

又∵ AF⊥PC

∴ PC⊥平面AEF

7

3

证明:(1)连接BG并延长交PA于点H..

因为PA,PB,PC两辆垂直,,所以PC⊥面PAB..所以PC⊥GF...

因为G为△PAB的重心,,所以HG=1/3BH,,又因为PF=1/3PB..所以GF平行PH,,所以∠GFB=∠APB=90°....

即GF⊥PB...因为PB在面PBC上,,PC也在面PBC上..又PB∩PC=P...

所以GF⊥面PBC...

(2)在BC上取异于E的一点K,,使得CK=1/3BC...

因为BF=2/3PB,,BK=2/3BC,,所以所以△BFK∽△BPC...所以FK=2/3PC=2/3PB..即FK=BF..

因为E为BK中点,,BF=FK..所以FE⊥BC...

篇3:立体几何证明

立体几何证明

立体几何证明

高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的`性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。

2

四个判定定理:

① 若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

② 如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。

③ 如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。

④ 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

从平面拓展到空间的角相等或互补的判定定理:

空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。

四个性质定理:

① 一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。

② 两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。

③ 垂直于同一平面的两条直线平行。

④ 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

标准只要求对于四个性质定理用综合几何的方法加以证明。对于其余的定理,在选修2的“空间向量与立体几何”中利用向量的方法予以证明。

(2)立体几何初步这部分,我们希望能使学生初步感受综合几何的证明。在处理证明时,要充分发挥几何直观的作用,而不是形式上的推导。例如,平行于同一平面的二直线平行的证明方法,有的老师就是采用了一种很

【立体几何练习题】相关文章:

1.立体几何测试题

2.立体几何知识点

3.高中立体几何应该怎么学习

4.高三年级数学立体几何知识点

5.空间向量与立体几何知识点

6.爱莲说练习题

7.社戏练习题

8.循环小数练习题

9.be动词练习题

10.代数式练习题

下载word文档
《立体几何练习题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部