长方体和正方体的表面积(人教版五年级教案设计)
“陈连升”通过精心收集,向本站投稿了20篇长方体和正方体的表面积(人教版五年级教案设计),下面小编为大家整理后的长方体和正方体的表面积(人教版五年级教案设计),欢迎阅读与借鉴!
篇1:长方体和正方体的表面积(人教版五年级教案设计)
教学目标
(一)理解长方体和正方体表面积的意义。
(二)理解并掌握长方体和正方体表面积的计算方法。
(三)培养和发展学生的空间观念。
教学重点和难点
(一)长方体、正方体表面积的意义和计算方法。
(二)确定长方体每一个面的长和宽。
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程设计
(一)复习准备
1.口答填空。
(1)长方体有( )个面,一般都是( ),相对的面的( )相等;
(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;
(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。
2.说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)
(二)学习新课
1.长方体和正方体表面积的意义。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?
学生讨论。(把六个面展开放在一个平面上。)
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)
教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
2.长方体表面积的计算方法。
(1)请同学拿着自己的长方体(用展开图折上)。教师:请量出它的长、宽和高,说一说哪些面大小相等?指出相邻的三个面各用哪两条棱作为长和宽?
学生四人一组边操作边讨论后归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;前后两个面大小相等,它是由长方体的长和高作为长和宽的;左右两个面大小相等,它是由长方体的高和宽作为长和宽的。 教师:对长方体实物,我们已经会找它每个面对应的长和宽了,在平面图上会不会找呢?
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)
(图像要验证相对的面相等,展示每个面对应的长和宽。)
教师:想一想,长方体的表面积如何计算?
学生讨论后归纳,老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
(2)请同学们用新学的知识来解答下面的问题:例1(投影片)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?
学生口答老师板书:(或学生板书,同时其余同学填书上。)
解法1:6×5×2+6×4×2+5×4×2
=60+48+40
=148(厘米2)
解法2:(6×5+6×4+5×4)×2
=(30+24+20)×2
=74×2
=148(厘米2)
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高2.5米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。列式:
4×3+4×2.5×2+3×2.5×2
3.正方体表面积的计算方法。
(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?
学生:一个面的面积乘以6。
教师:用棱长来表示它的表面积。
学生:棱长×棱长×6
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6
=9×6
=54(厘米2)
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本P26做一做。(请两位同学写投影片,其余同学做本上。)
用学生投影片集体订正。
(三)巩固反馈
1.口答课本 P27:1。
2.计算课本P27:2。(各请两位同学用投影片写,集体订正。)
3.口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。 ( )
(2)一个棱长 4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。 ( )
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。 ( )
(四)课堂总结及课后作业
1.什么是长、正方体的表面积。长、正方体的表面积如何计算。
2.作业:课本P27:3,4,5。
课堂教学设计说明
长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。
教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。
本节新课教学分为三部分。
第一部分教学长、正方体表面积的意义。
第二部分教学长方体表面积的计算方法。
第三部分教学正方体表面积的计算方法。
板书设计
篇2:长方体和正方体的表面积2(人教版五年级教案设计)
教学目标
1.理解长方体和正方体表面积的意义.
2.理解并掌握长方体和正方体表面积的计算方法.
3.培养和发展学生的空间观念.
教学重点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学难点
1.长方体、正方体表面积的意义和计算方法.
2.确定长方体每一个面的长和宽.
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件.
学具:长方体、正方体纸盒、剪刀.
教学过程
一、复习准备.
(一)口答填空.
1.长方体有( )个面,一般都是( ),相对的面的( )相等;
2.正方体有( )个面,它们都是( ),正方形各面的( )相等;
3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
4.这是一个( ),它的棱长是( )厘米,它的棱长之和是( )厘米.
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小.(板书课题:长方体和正方体的表面积)
二、学习新课.
(一)长方体和正方体表面积的意义.
1.教师提问:什么叫做面积?
长方体有几个面? 正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2.教师明确:这六个面的总面积叫做它的表面积.
3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积.
4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积.
(二)长方体表面积的计算方法【演示课件“长方体的表面积”】
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.
2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
3.练习解答例1.
例1.做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
4.巩固练习.
一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面.
列式:4×3+4×2.5×2+3×2.5×2
(三)正方体表面积的计算方法【演示课件“正方体的表面积”】
1.教师提问:正方体的表面积如何求吗?
学生:棱长×棱长×6
2.试解例2.
一个正方体纸盒,棱长3厘米,求它的表面积.
=9×6
=54(平方厘米)
答:它的表面积是54平方厘米.
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面.列式:
教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,
审题时要分清求的是哪几个面的和.
3.巩固练习:一个正方体的面积是1.2分米,求它的表面积.
三、巩固反馈.
1.一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?
2.一个正方体的棱长是5厘米,它的表面积是多少平方厘米?
3.判断正误,并说明理由.
(1)长方体的三条棱分别叫它的长、宽、高.( )
(2)一个棱长4分米的正方体,它的表面积是: =48(平方分米)( )
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小.( )
篇3:长方体和正方体的表面积3(人教版五年级教案设计)
教学目标
1.使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法.
2.培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念.
教学重点
表面积的意义.
教学难点
长方体表面积的计算方法.
教学过程
一、复习准备.
1、说出长方形面积的计算公式.
2、看图回答.
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空.
这个长方体上、下两个面的长是( )宽是( ).
左、右两个面的长是( )宽是( ).
前、后两个面的长是( )宽是( ).
3、想一想.
长方体和正方体都有几个面?(6个面)
二、揭示课题.
今天这节课我们就来学习和研究有关这6个面的一些知识.
三、教学新课.
(一)长、正方体表面积的意义.
1.老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、
“左”、“右”、“前”、“后”标在6个面上.
2.沿着长方体和正方体的棱剪开并展平.(老师先示范,学生再做)
3.你知道长方体或者正方体6个面的总面积叫做它的什么吗?
教师明确:长方体或者正方体6个面的总面积,叫做它的表面积.
(板书:长方体和正方体的表面积.)
(二)长方体表面积的计算方法.
例1.做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?
1.这题的问题,实际上就是要我们求什么?
2.长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?
3.学生分组讨论.
解法(一)
6×5×2+6×4×2+5×4×2
= 60+48+40
= 148(平方厘米)
解法(二)
(6×5+6×4+5×4)×2
=(30+24+20)×2
= 74×2
= 148(平方厘米)
4.比较上面两种解答方法有什么不同?它们之间有什么联系?
解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和.解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二).
四、巩固练习.
1.一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?(用两种方法计算)
2.一个长方体铁盒,长18厘米,宽15厘米,高12厘米.做这个铁盒至少要用多少平方厘米的铁皮?
五、课堂小结.
通过解答例1和做一做,你发现长方体表面积的计算方法吗?
结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2
=(长×宽+长×高+宽×高)×2
六、课后作业.
1.一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?
2.一个长方体的形状大小如下图.
(1)它上、下两个面的面积分别是多少平方分米?
(2)它前、后两个面的面积分别是多少平方分米?
(3)它左、右两个面的面积分别是多少平方分米?
七、板书设计
长方体和正方体的表面积
长方体或者正方体6个面的总面积,叫做它的表面积.
例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?
答:至少要用148平方厘米的硬纸板.
探究活动
小小设计师
活动目的
1、理解正方体表面积的意义.
2、发展学生的空间观念.
活动形式
每4名学生为一组,分小组设计.
活动题目
纸箱厂要用硬纸板制作立方体.用下面的六个正方形连接在一起,组成的平面图形经折叠后正好能构成立方体,这样的图形我们就叫立方体的表面展开图.请你设计不同的立方体表面展开图.
篇4:长方体正方体表面积优秀教案设计
教学内容
人教版五年级下册P33~35页的内容
教学目的
1、通过动手操作,建立表面积的概念
2、经历探索长方体和正方体表面积计算方法的过程
3、掌握长方体和正方体表面积计算方法,能正确地计算长方体和正方体的表面积
4、了解长方体和正方体表面积计算在实际生活中的应用,体会数学的价值。
5、结合长方体和正方体表面积计算培养学生的探索精神、空间观念和解决问题的能力
教学重点
长方体和正方体表面积的意义和长方体和正方体表面积计算方法
教学难点
根据长方体的长、宽、高,确定长方体每个面的长、宽是多少
教学过程
一、自主探究 解决问题
(一)、动手操作,探索长方体正方体表面积的概念
分组操作
(1)每个学生拿一个长方体纸盒,沿着上面与前面相交的棱、左面与上面、前面、后面相交的棱以及右面与上面、前面、后面相交的棱将纸盒剪开,再展开,看一看,展开后的形状。
(2)在展开后的图形中,用“上”、“下”、“前”、“后”、“左”、“右”标明六个面。
(3)你有什么发现
{生的发现如果不在点上,师可提示思考:a这六个面与原来的长方体的六个面有什么关系?
b这个平铺的面的总面积与原来长方体的什么有关系?}
(4)在生独立操作思考之后,可以将自己的发现,说给小组内的同学听。注意:听的同学要边听边思考你的同学说的哪些与你不一样。
(预设:一部分学生能很清楚地表达。但是,还有一部分学生应该是比较茫然的。)
[如果生有不同的剪法,老师的做法:展示同学中的具有代表性的展开图。在展示的过程中,让学生体会“展开的图形不同,但是都是六个面。并且都是相对的面相等。]
(5)再次将这个平铺的图形,折起来还原成长方体。在折的过程中,注意观察那些面是长方体的上下面、左右面、前后面。
(6)为了区别,我们可以给相对的面涂上相同的颜色(画成相同的阴影)。再展开,观察自己所图的颜色,想象中折成一个长方体。
(7)通过这个过程,师生共同小结长方体6个面的总面积叫做它的表面积
【注:(4)(5)(6)环节可视学情增删】
(8)出示正方体。提问:你能用刚才的方法,将这个正方体剪开,展开,然后找到它的面积与这个正方体的六个面的关系吗?每个面的边长是原正方体的什么?
(9)教师归纳板书:长方体或正方体6个面的总面积,叫做它的表面积。
过渡:同学们,通过自己的探究,以合作交流的方式,学会了这么多知识,那么怎样计算出长方体、正方体的表面积呢?老师还想让你们去发现,你们有信心接受挑战吗?
(二)、探索长方体、正方体的面积计算方法
(1)观察这个长方体的长、宽、高,(注意,手中的长方体不能随意转动)认准,然后展开,在展开图上用不同颜色标出长、宽、高。
①思考讨论:长方体每个面的长和宽与原长方体的长、宽、高有什么联系?
②填一填
a 上、下每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚;
b 前、后每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚;
c 左、右每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚。
(2)观察思考:怎样求长方体的表面积?
(3)你能想办法试着求出你手上的长方体的表面积吗?[用汉字表示出每个面的面积和总面积]
【注:这个过程,也可以让学生测量三条棱,再计算出表面积(根据时间和学生的状况而定)】
(4)出示例题 探究长方体表面积计算方法
做一个长0.5m,宽0.3m,高0.4m的长方体募捐箱,至少要用多少平方米硬纸板?
上、下每个面,长_____,宽_____,面积是________________
前、后每个面,长_____,宽_____,面积是________________
左、右每个面,长_____,宽_____,面积是________________
这个募捐箱的表面积是:_____________________
①学生分析题意,试着解答.教师巡视,相机辅导。
②找两个有代表性的学生上黑板
③学生汇报:让有不同解法学生说出解法及解题思路。
④分组讨论:比较两种解法有什么不同?有什么联系?哪种解法简便?
不同:第一种方法是先分别算出上、下面的面积和,前后面的面积和,以及左、右面的面积和,然后加起来。第二种方法是先算上面、前面、左面三个面的面积和,再乘以2。
联系:根据乘法分配律可以把第一个算式改变成第二个算式。第二个算式更简便些。
⑤计算长方体表面积时,最关键的是找出什么
(计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。)
⑥思考:如果按我们算好的硬纸板的面积去领正合适的纸板,能做出我们需要的募捐箱吗?为什么?
(5)、总结出长方体表面积的计算方法。
(6)、小练习:
1.募捐箱做好后,想找一些漂亮的红纸装饰一下箱子的外面,观察一下哪些面需要装饰漂亮又省纸?那需要多少红纸?(小组讨论解决)
2.我会填(练习六的第一题的前2个图)。
a、两个长方体中朝着我们的面(前面)的面积分别是_____和______。
b、两个长方体的右侧面的面积分别是______和_______。
c、两个长方体向上的面的面积分别是______和_______。
(7)、迁移类推。出示例2。探究正方体的表面积计算方法。
过渡:经过刚才的练习你能熟练掌握长方体的表面积计算方法吗?再给你一次机会你有信心还做对吗?有信心是件好事情!请快速计算出长方体的表面积是多少。(课件出示长方体)
长16cm,宽12cm高14它的表面积是多少?
(课件演示长方体长渐变短12cm,宽12cm,高渐变矮12cm)它的表面积是多少?
师:这是什么图形?长方体的长宽高一样长时变成了正方体,正方体的表面积等于什么?
给你正方体的棱长你会计算正方体的表面积吗?听好一个正方体它的棱长是1.2cm分米,它的表面积是多少?
【如果没有多媒体条件的学校,老师的做法:不做任何提示,直接出示例2生独立完成。老师巡视,发现个别问题及时个别纠正。普遍问题抽生上黑板板演,集体纠正。在纠正的过程中完善关于正方体的表面积的计算。】
在这个基础上,让学生在独自做完的前提下,说说自己是怎么样想的。其实就是一个思考的过程)。这一部分,让学生自己做,给同学说。与同学的相比找到自己的不足,然后向同伴学习。】
二、巩固应用,强化提高
1.师:长方体和正方体在生活中随处可见,掌握了它们表面积的计算方法可以解决生活中的许多问题。看!工人师傅就遇到这样一个问题,出示例1,你能帮助他解决吗?
(生读题,理解题意,明确要求)
2、老师周末在家收拾屋子遇到了这样的问题,老师发现家里的衣柜布罩太旧了得换块新的,如图衣柜长0.75m,宽0.5m,高1.6m,老师至少要买多少平方米的布?你能帮助解决吗?
(先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。)
3.计算正方体的表面积。35页做一做
4.机动
三、全课小结,课外延伸
今天我们研究了什么问题?你有什么收获?
篇5:长方体正方体表面积优秀教案设计
学习目标:
1、能说出什么是长方体和正方体的表面积,会说出它们的表面积公式,会计算长方体和正方体的表面积。2、能用长方体和正方体的表面积知识解决生活中的实际问题。
学习重难点:能用长方体和正方体的表面积知识解决生活中的实际问题。
学习流程:
一、问题引入
出示长方体问:长方体的长、宽、高各是多少?再分别指出它前面长和宽,并口算它的面积。
二、自学讨论
1.自学长方体和正方体的表面积的概念。
(1)拿一个长方体或正方体纸盒,沿着棱剪开,再展开,看一看,展开后的形状。并用“上”、“下”、“前”、“后”、“左”、“右”标明六个面。
(2)你有什么发现?结合你手中的长方体说说什么叫它的表面积?
2.自学长方体的表面积的计算方法。
(1)演示长方体展开图。
①思考讨论:长方体每个面的长和宽与长方体的长、宽.高有什么联系?
②填一填
上、下每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚;
前、后每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚;
左、右每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚
(2)观察讨论:怎样求长方体的表面积?并列出算式。
(3)自学例1做一个长微波炉的包装箱,至少要用多少平方米硬纸板?
①求至少要用多少平方米硬纸板救是求长方体的什么?
②比较各种解法有什么不同?有什么联系?哪种解法简便?
④计算长方体表面积时,最关键的是找出什么?
思考:如果按我们算好的硬纸板的面积去领正合适的纸板,能做出我们需要的包装箱吗?为什么?
(4)总结出长方体表面积的计算方法。
3.自学学习正方体表面积的计算。
三、展示互动
1. 34页做一做。 2.35页做一做。
四、反馈提升
1.一个长方体的饼干盒,长10cm,宽6cm,高12cm。如果围着它贴一圈商标(上下面不贴),这张商标纸的面积至少要多少平方厘米?
2.看谁最聪明!
如果把一个长方体切分成两个长方体时,这两个长方体的表面积的和比原长方体的表面积是增加了还是减少了?为什么?
五、评价。
篇6:长方体正方体表面积优秀教案设计
学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。”(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。
教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。
引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历-和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。
篇7:《长方体和正方体的表面积》教案设计
一、教学构思
长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:
1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:
一、引导学生学习正方体表面积的计算方法
1.回忆
上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?
2.联想:
(拿起一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积 是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?
3.归纳引入新课:
正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)
4.教学例2
提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?
(课堂实录:有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)
(点评:良好的开端是成功的一半,一堂课是否有好的开头是上好一堂课的关键。针对小学生的心理特点,上课一开始,我首先利用长方体和正方体的模型进行导入,先请学生思考用什么方法计算正方体的表面积,接着根据以前所学的知识进行推导,从而引出新的计算方法,使得学生愉快主动地进入学习情境,强化了有意注意,激发学生的求知欲望,对新的知识进行探索。通过教学的导入,明确了教学的目标,确定了研究方向,这时再引导学生学习就事半功倍了。)
师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。
二、鱼缸的制作问题
说明:我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算。如例3。
1.帮助学生回忆鱼缸的形状(长方体,但是没有上面)
2.如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)
3.教学例3
(出示长方体模型,把它看成鱼缸的模型)
(1)鱼缸缺少哪个面的玻璃?(上面)
(2)要求需要多少平方分米玻璃,要算几个面的面积和?哪几对面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高 底面=长*宽)
(3) 指名学生板演,集体订正。
(点评:在教学中采用学生生活中较熟悉的物体“鱼缸”启发学生如何计算制作一个鱼缸所需材料的面积,也就是计算长方体某几个面的面积之和。这个事例在生活中较普遍,再加上利用一些模具进行教学,使得学生在学习中能够更好地联系实际情况进行学习。以上这一系列的活动表现了完整的`探究过程,都体现让学生经历整个教学的探究过程。)
(4)改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?
学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。
学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。
学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同
说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。
(点评:数学是很严谨的,所以在学生叙述的时候要规范学生的语言。我在教学的时候还注重评价,运用语言和体态及时给予适当的鼓励和指导,促进学生的学习和发展。第三位同学回答地最完善,所以我表扬了他在叙述数学问题时所具有的严谨性,同时要求全班同学在这方面要向他学习。)
4、练习
书P42页练习二的第一、二 题。
(点评:要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)
篇8:长方体的表面积(人教版五年级教案设计)
教学目标
1.通过操作观察,使学生知道长方体和正方体表面积的含义.
2.初步学会长方体和正方体表面积的计算方法.
3.培养学生的动手操作能力和空间观念.
教学重点
建立表面积概念,初步学会计算长方体和正方体的表面积.
教学难点
正确建立表面积的概念.
教学步骤
一、铺垫孕伏.
1.长方体的特征是什么?
2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?
二、探究新知.
导入:同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容.
(一)建立长方体表面积的概念.
1、教师提问:什么叫做面积?
长方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2、教师明确:这六个面的总面积叫做它的表面积.
3、学生两人一组相互说一说什么是长方体的表面积.
4、教师板书:长方体6个面的总面积,叫做它的表面积.
(二)长方体表面积的计算方法.【演示课件“长方体的表面积”】
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.
2.教学例1.
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积.
第一种解法:
长方体表面积=6个面积的和
6×4+6×4+4×5+4×5+6×5+6×5
=24+24+20+20+30+30
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
第二种解法:
长方体表面积=上下面面积+前后面面积+左右面面积
6×5×2+6×4×2+4×5×2
=60+48+40
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
第三解法:
长方体表面积=(下面面积+前面面积+右面面积)×2
(6×5+6×4+5×4)×2
篇9:《长方体和正方体的表面积》数学教案设计
教学目标
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重难点
掌握长方体和正方体表面积的计算方法。
教学工具
长方体、正方体纸盒,剪刀,投影仪
教学过程
【复习导入】
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
【新课讲授】
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
课后小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
课后习题
1、填空。
(1)一个正方体棱长5厘米,它的棱长和是( ),表面积是( ),体积是( )。
(2)一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是( ),占地面积是( ),表面积是( ),体积是( )。
(3)一个长方体方钢,横截面积是12平方厘米,长2分米,体积是( )立方厘米。
(4)一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水( )升。
(5)一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重( )千克。
(6)正方体的棱长扩大3倍,棱长和扩大( )倍,表面积扩大( )倍,体积扩大( )倍。
(7)用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体( )块。
(8)一个长方体的长、宽、高分别是a米、b米、h米。如果高增加2米,体积比原来增加( )立方米。
2、判断。(正确的在括号内打“√”,错的在括号内打“×”)
(1)正方体是由6个完全相同的正方形组成的图形。( )
(2)棱长6厘米的正方体,它的表面积和体积相等。( )
(3)a?表示 a×3 。( )
(4)一个长方体(不含正方体),最多有两个面面积相等。( )
(5)一个长方体(不含正方体),最少有两个面面积相等。
板书
长方体和正方体的表面积(1)
长方体的表面积=(长×宽+长×高+宽×高) ×2
正方体的表面积=边长×边长×6
篇10:《长方体和正方体的表面积》数学教案设计
教学目标
1.1 知识与技能:
(1)理解长方体和正方体表面积的意义,掌握长方体和正方体表面积的计算方法。
(2)在理解和推导长方体和正方体表面积的计算方法的过程中,培养抽象概括能力、推理能力和思维的灵活性,同时发展空间观念。
1.2过程与方法:
学会解决实际生活中有关长方体和正方体表面积计算的问题。
1.3 情感态度与价值观:
培养学生的分析能力,发展学生的空间观念。
教学重难点
2.1 教学重点:
建立表面积的概念以及理解并掌握长方体表面积的计算方法。
2.2 教学难点:
根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学工具
课件、题卡
教学过程
一、复习引入
(一)填空。
1、长方体一般是由6个 长方形 (特殊情况有两个相对的面是 正方形 )围成的立体图形。
2、在一个长方体中,相对的面 完全相同 ,相对的棱 长度相等 。
3、正方体是由6个 完全相同的正方形 围成的立体图形。
(二)
(1)计算各长方体中正面的面积。4×2=8(平方厘米)
(2)计算各长方体中右侧面的面积。3×2=6(平方厘米)
(3)计算各长方体中上面的面积。4×3=12(平方厘米)
二、新知探究
1.初步认识长方体的表面积。
师:我们先来探究什么是长方体、正方体的表面积。(教师利用课件出示长方体牙膏盒)请同学们仔细观察:沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,你发现了什么?
生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体的外表展开后是由6个长方形组成的。
2.初步认识正方体的表面积。
师:同学们观察的很仔细!(再出示正方体药盒课件)按同样的方法剪开,再展开,你又发现了什么?
生1:我发现正方体展开后也变成了平面图形。
生2:我发现正方体的外表展开后是由6个正方形组成的。
3.认识长方体、正方体表面积的含义。
师:说得对!请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。师:从学生手中选一个长方体和一个正方体展开图贴在黑板上。问:通过观察课件和动手操作实物模型,谁知道什么叫做长方体或正方体的表面积?
生1:长方体或正方体的表面积就是指长方体或正方体外表的面积,也就是上下、前后、左右六个面的面积和。
生2:简单地说就是长方体或正方体六个面的总面积,叫做它的表面积。
我们知道了什么是长方体和正方体的表面积,怎样计算表面积呢?
4、探索活动:
“演示课件长方体的表面积”
上、下每个面,长_ 0.7米__,宽 _0.5米__,面积是 _0.35平方米___;
前、后每个面,长__0.7米 __,宽__0.4米__,面积是__0.28平方米___;
左、右每个面,长__0.5米 _,宽__0.4米 _,面积是___0.2平方米____。
教师温馨提示:
上下两个面大小------,它是由长方体的------和------作为长和宽的;
前后两个面大小相等,它是由长方体的----和----作为长和宽的;
左右两个面大小相等,它是由长方体的----和----作为长和宽的.
长方体的表面积如何计算?
教师温馨提示:
分别求出相对面的面积,再相加。
小组交流:集体研讨:
学生归纳,老师板书:
长方体表面积:长×宽×2 + 长×高×2 + 高×宽×2
或:(长×宽+ 长×高+ 高×宽)×2
5. 出示例1
做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?
学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。
生1:先算3个不同面的面积和再乘2。
(0.7×0.5+0.7×0.4+0.5×0.4)×2
生2:先分别求出两个相对面的面积和,再相加
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2
所以长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
6、一个正方体墨水盒,棱长6.5厘米。制作这个墨水盒至少需要多少平方厘米的硬纸板?
想:求至少用多少平方厘米的硬纸板,就是要求什么?自己试一试!
(6.5×6.5+6.5×6.5+6.5×6.5)×2
=(42.25+42.25+42.25)×2
=42.25×3×2
=253.5(平方厘米)
因为正方体的特性所以:
6.5×6.5×6
=42.25×6
=253.5(平方厘米)
答:制作这个墨水盒至少需要253.5平方厘米的硬纸板。
正方体表面积=棱长×棱长×6,用字母表示:S=6a2
三、巩固提升
1、计算下列图形的表面积。(单位:厘米)
(15×12+15×8+12×8)×2=792(平方厘米)
(18×9)×4+(9×9)×2=810(平方厘米)
25×25×6=3750(平方厘米)
10×10×6=600(平方厘米)
2、一个正方体礼品盒,棱长1.2dm。如果实际用纸是表面积的1.5倍,包装这个礼品盒至少用多少平方分米的包装纸?
1.2×1.2×6=8.64(平方分米) 8.64×1.5=12.96(平方分米)
答:包装这个礼品盒至少用12.96平方分米的包装纸。
3、一个玻璃鱼缸的形状是正方体,棱长3dm。制作这个鱼缸时至少需要玻璃多少平方分米? (鱼缸的上面没有盖。)
3×3×5=45(平方分米)
答:制作这个鱼缸时至少需要玻璃45平方分米。
4、亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(如下图,没有底面)。至少需要用布多少平方米?
0.75×0.5+0.5×1.6×2+0.75×1.6×2
=0.375+1.6+2.4
=4.375(平方米)
答:至少需要用布4.375平方米。
课后小结
本节课学习了什么?
长方体或正方体六个面的总面积,叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
正方体表面积=棱长×棱长×6,用字母表示:S=6a2
板书
长方体和正方体的表面积
长方体或正方体六个面的总面积,叫做它的表面积。
例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?
(0.7×0.5+0.7×0.4+0.5×0.4)×2
=0.35×2+0.28×2+0.2×2
=0.7+0.56+0.4
=1.66(m2)
答:至少要用1.66m硬纸板。例2:一个正方体墨水盒,棱长6.5厘米。制作这个墨水盒至少需要多少平方厘米的硬纸板?
6.5×6.5×6
=42.25×6
=253.5(平方厘米)
答:制作这个墨水盒至少需要253.5平方厘米的硬纸板。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
正方体表面积=棱长×棱长×6,用字母表示:S=6a2
篇11:长方体和正方体的表面积
教学目标
(一)理解长方体和正方体表面积的意义。
(二)理解并掌握长方体和正方体表面积的计算方法。
(三)培养和发展学生的空间观念。
教学重点和难点
(一)长方体、正方体表面积的意义和计算方法。
(二)确定长方体每一个面的长和宽。
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程设计
(一)复习准备
1.口答填空。
(1)长方体有( )个面,一般都是( ),相对的面的( )相等;
(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;
(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。
篇12:长方体和正方体的表面积
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)
(二)学习新课
篇13:《长方体和正方体表面积》试题
《长方体和正方体表面积》试题
一、填空
1、一个正方体的棱长为A,棱长之和是( ),当A=5厘米时,这个正方体的棱长总和是( )厘米。
2、一个长方体的长是6厘米,宽是5厘米,高是4厘米,它的上面的面积是( )平方厘米;前面的面积是( )平方厘米;右面的的面积是( )平方厘米。这个长方体的表面积是( )平方厘米。
3、一个长方体最多可以有( )个面是正方形,最多可以有( )条棱长度相等。
4、把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了( )平方厘米。
5、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝( )厘米。
6、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是( )厘米,宽是( )厘米,它的面积是( )平方厘米;最小的面长是( )厘米,宽是( )厘米,它的面积是( )平方厘米。
7、一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的`棱有( )条,面积是20平方分米的面有( )个。
8、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是( )。
9、一个正方体的棱长总和是72厘米,它的一个面是边长( )厘米的正方形,它的表面积是( )平方厘米。
10、至少需要( )厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
二、计算,求它们的棱长之和、 底面积、侧面积和表面积。
1、长文体长宽高分别为4厘米3厘米、2厘米
2、正方体 棱长 1.5厘米
三、应用题。
1、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?
2、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?
3、一个通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?
4、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)
5、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?
6、在一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?做12节这样的通风管呢?
7、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?
8、把一根长20厘米,宽5厘米,高3厘米的长方体木料沿横截面锯成2段,表面积增加多少?
四、思考题
1、一个长方体底面是一个边长为20厘米的正方形,高为40厘米,如果把它的高增加5厘米,它的表面积会增加多少?
2、一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,求原来长方体的表面积?
3、一个长方体侧面积是360平方厘米,高是9厘米,长是宽的1.5倍,求它的表面积。
4、一个正方体的表面积是384平方厘米,它的棱长是多少?
篇14:长方体和正方体的体积(人教版五年级教案设计)
教学目标
(一)理解并掌握长方体和正方体体积的计算方法。
(二)能运用长、正方体的体积计算解决一些简单的实际问题。
(三)培养学生归纳推理,抽象概括的能力。
教学重点和难点
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学用具
教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。
学具:1厘米3的立方体20块。
教学过程设计
(一)复习准备
1.提问:什么是体积?
2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。
教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)学习新课
1.长方体的体积。
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:
教师:这些长方体有什么共同点?不同点?
问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?
(因为它们都含有同样多的体积单位--12个1厘米3。)
教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
学生讨论后,师生共同归纳:
表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。
同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。
(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。
学生说出摆法和体积后。请看电脑动画图像:
一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。
教师板书:
同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。
学生操作,看电脑动画图像。教师板书:
3(厘米) 3(厘米) 2(厘米) 18(厘米3)
教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?
学生口答后,老师用电脑图演示。然后板书:
5(厘米) 4(厘米) 3(厘米) 60(厘米3)
教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:V=abh。
出示投影图:
(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。
答:它的体积是84厘米3。
练习:(投影出题,学生口答。)
一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)
2.正方体体积。(1)请学生看电脑动画录像:
长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?
问:这个正方体的体积可以求出来吗?
学生口答,老师板书: 3×3×3=27(厘米3)。
投影出一个正方体图。(可以用翻页变换它的棱长。)
问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?
学生口答,老师板书: 2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。
用V表体积,a表示棱长,公式可写成:V=aaa或者V=a3。
(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
学生口答,老师板书:53=5×5×5=125(分米3)。
答:体积是125分米3。
做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说长方体和正方体的体积计算方法和字母公式。
教师:请讨论长方体和正方体的体积计算方法相同还是不相同。
学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
(三)巩固反馈
1.口答填空。课本P35练习七:2,3。
2.口答填表:
3.判断正误并说明理由。
①0.23= 0.2×0.2×0.2; ( )
②5x2=10x; ( )
③一个正方体棱长4分米,它的体积是:43=12(分米3); ( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )
(四)课堂总结及课后作业
1.长方体的体积计算方法及公式。
正方体的体积计算方法及公式。
2.作业:课本P35练习七:4,6。
课堂教学设计说明
本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作,观看动画录像等多种方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,设计通过动画录像引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。练习中针对乘方运算和单位不统一的易错点,设置题目进行训练,这样可以提高学生运用所学知识解决实际问题的准确性。
新课教学共分两个部分:
第一部分教学长方体体积计算方法。分为三个层次。通过摆长方体,使学生认识到长方体形状不同但只要含有同样多的体积单位,它们的体积就相等;通过操作和动画图,帮助学生发现体积与长、宽、高之间的数量关系,即体积公式;运用体积计算解决实际问题。
第二部分学习正方体体积计算方法。也分三层。通过图像推出正方体体积计算公式;解决简单的实际问题;沟通长、正方体体积公式的区别与联系。
板书设计
篇15:长方体和正方体的认识(人教版五年级教案设计)
教学目标
(一)掌握长方体和正方体的特征,认识它们之间的关系。
(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
(三)渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)长方体和正方体的特征。
(二)立体图形的识图。
教具准备
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。
学具:长方体和正方体纸盒。
教学过程设计
(一)复习准备
请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;然后老师说明这些图形都在一个平面上,叫做平面图形。
教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。请学生先观察,再请两三位来摸一摸,然后问:这些物体的各部分都在一个面上吗?学生:它们的各部分不在一个面上。
教师:我们看到的这些物体,它们的各部分不在一个面上,它们的形状都是立体图形。
教师:这些物体在原来的位置不动,我们还能在它们所占的位置上放别的物体吗?(请一位同学演示。)
学生:不能。
教师:可见立体图形都占有一定的空间。
教师请学生从教具中挑出长方体后,说明本节课要进一步认识长方体有什么特征,并板书课题:长方体的认识(留出写“正方体”的空)。
(二)学习新课
1.长方体的特征。
(1)请同学取出自己准备的长方体。
教师:请用手摸一摸长方体是由什么围成的?
学生:面。(教师板书:面)
教师:请用手摸一摸两个面相交处有什么?
学生:有一条边。
教师:这条边称为棱。(板书:棱)
教师:请摸一摸三条棱相交处有什么?
学生:尖。
教师:相交的这点称为顶。(板书:顶。)
(2)教师:请同学们用自己的长方体,参考讨论提纲来研究长方体的特征。
投影片出示讨论提纲:
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?校的位置、长短有什么关系?
③长方体有多少个顶?
学生讨论并归纳后,教师板书:长方体:
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶:8个。
请学生观看动画图(用电脑软件或实物展示)
出示有一组对面是正方形的长方体,展示同上,要表示有四个面相等;
第三步:出示8个顶点。
教师:请完整地说一说长方体的特征?(先请同桌两人互相说,然后请一两位同学拿着学具给全班同学说。)
(3)老师:长方体是立体图形,画在纸上如何与平面图形区别呢?
教师:(拿一个长方体正对学生)请观察,你能看到几个面?哪几个面?
请几位观察角度不同的同学回答。
教师:看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。(介绍的同时用动画图像展示。)
教师:出示长方体框架请观察,再出示框架的投影图。(如图)请指出框架上的12条棱分几组?并指出哪几条棱是一组的?
请指出相交于一个顶点的三条棱。
教师:请量一量自己的长方体上相交于一个顶点的三条棱,看一看长度是否相等?
教师:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
练习:请分别说出下面两个长方体的长、宽、高各是多少?第二个长方体与第一个长方体有什么区别?(投影片)
2.正方体特征。
(1)展示动画图像:(或抽拉投影图)
第一步:长方体中的长边缩短,使长、宽、高相等;
第二步:长方体中的短边伸长,使长、宽、高相等。
教师:看一看新得到的长方体与原来长方体比较有什么变化?
学生:长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。
教师:请同学取出自己准备的正方体,(也叫立方体)观察,对照长方体的特征来研究正方体的特征。(把课题补充完整--加上“正方体”。)
学生讨论、归纳后,教师板书:正方体:
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
请看动画图像。
(2)教师:请对比长方体和正方体的特征,说一说它们的相同点与不同点。
学生讨论后归纳:长方体和正方体在面、棱、顶点的数量上都相同;在面的形状、面积、棱的长度方面不相同。
教师:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。
学生:正方体是特殊的长方体。
教师板书集合图:
(三)巩固反馈
1.量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?
2.根据图中数据口答填空。(投影片)
(1)长方体的长是( )厘米,宽( )厘米,高( )厘米。12条棱长的和是( )厘米。
(2)这幅图中的几何体是( )体,12条棱长的和是( )分米。
(3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和2.5厘米。它上面的面长是( )厘米,宽( )厘米,左边的面长( )厘米,宽( )厘米,相交于一个顶点的三条棱长和是( )厘米。
3.判断。正确的在括号里画√,错误的画×。(投影片)
(1)长方体的六个面一定是长方形; ( )
(2)正方体的六个面面积一定相等; ( )
(3)一个长方体(非正方体)最多有四个面面积相等; ( )
(4)相交于一个顶点的三条棱相等的长方体一定是正方体。 ( )
(四)课堂总结及课后作业
1.说一说长方体和正方体的特征和它们之间的关系。如何看图纸上的立体图。
2.作业:教材P22练习五:1,2,3。
课堂教学设计说明
学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。
本节新课教学分为两大部分。
第一部分教学长方体的特征。共分三个层次进行:让学生通过感官了解长方体的面、棱和顶;利用教具学具和讨论提纲,帮助学生自己去认识并概括出长方体的特征;通过图像和练习,学生会看平面上的立体图,掌握长、宽、高。
第二部分教学正方体的特征。共分两个层次进行:利用长方体长、宽、高的变化来认识正方体的特征,会看立体图;对比长方体和正方体的相同点和不同点,认识它们之间的关系。
扳书设计
篇16:长方体和正方体教案设计
体积和容积
1.联系学生的实际生活,引导学生通过观察实物、模型或操作学具,认识长方体和正方体。
长方体的认识
1.学生在低年级时虽然接触过正方体,但只是直观形象地认识。
2.多数学生的空间想象力还很薄弱。
3.部分学生在探究“面的大小关系”和“棱的长短关系”时,可能出现迷茫状况,需要教师在学生探究活动时,不断参与和观察学生活动情况,及时给予恰当的补充。
长方体和正方体是最基本的立体图形,从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。学生在低年级时虽然接触过长方体和正方体,但只是直观形象的认识,本节课就是要在学生初步认识正方体、了解长方体的特征的基础上,进一步探索正方体的特征。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也为进一步学习其他立体图形打好基础。例2着重引导学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱、顶点的特征,体会正方体和长方体的联系与区别。学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维过程一般又都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学达到事半功倍的效果。
1.强调知识迁移。
让学生把学习长方体的特征的学习方法迁移到学习正方体的特征上来,使他们快速准确地达到学习目标。
2.引导学生自主探索。
学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱和顶点的特征,体会正方体和长方体的联系与区别,比较完整地把握长方体和正方体的特征。
3.老师引导学生按照面、棱、顶点的次序,引导学生找出它们的相同点和不同点并整理成表格。
在学生基本掌握了长方体、正方体各自的特征后,可以引导学生按照面、棱、顶点的顺序,通过讨论交流,来总结和概括它们的相同点和不同点,最后整理成表格,使学生明确正方体是特殊的长方体。把本节的重点内容以图文表结合的形式生动形象地展现出来,使学生印象深刻。
正方体的特征歌
正方体,立体型,6面8顶12条棱;
12条棱,共一组,它们的长度都相等;
6个面都是正方形,它们的面积都相等。
篇17:长方体和正方体教案设计
教材第3页的例3和第6页的例4。
1.通过实际操作,使学生建立长方体和正方体表面积的概念。
2.使学生知道长方体和正方体表面积的含义。
3.使学生初步学会计算长方体和正方体的表面积。
1.建立表面积的概念,初步学会计算长方体和正方体的表面积。
2.正确建立表面积的概念。
长方体纸盒,正方体纸盒,。
长方体和正方体的特征各是什么?(口答)
标出长方体纸盒和正方体纸盒的6个面,并说出长方体上面、左面的长和宽分别是多少,面积分别是多少。
1.建立长方体和正方体表面积的概念。
(1)学生操作。
将标有上、下、左、右、前、后6个面的正方体沿棱剪开并展开。
(2)观察。
请学生观察展开图中的正方形与原来正方体的面之间的关系。
(3)小结。
通过观察,引导学生总结出正方体表面积的概念。
板书:正方体6个面的总面积叫作它的表面积。
请学生指一指正方体的表面积。
(4)再次操作。
请学生将标有上、下、左、右、前、后6个面的长方体沿棱剪开并展开。
(5)思考。
展开后的图形与原来长方体的面之间的关系是什么?
观察展开后的图形,你会想到什么?
引导学生明确长方体中面积相等的面是相对的面。
长方体的每个面的长和宽各是多少?
通过思考,学生们会发现每个面的长和宽与长方体的长、宽、高的关系。
小结:长方体的表面积是6个面的面积之和。长方体每个面的长和宽与长方体的长、宽、高有着密切的联系。
(6)反馈。
出示下面的图形。
根据长方体的长、宽、高分别说出长方形各个面的长和宽。
长方体的表面积是由哪些面组成的?
师生共同总结长方体和正方体表面积的含义。
2.学习长方体表面积的计算方法。
出示例4。
做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用硬纸板多少平方厘米?
(1)读题,分析题意。
(2)学生试着解答。
教师巡视,帮助指导。
(3)聆听学生的解题思路。
求至少要用硬纸板多少平方厘米,就是求长方体几个面面积的和?你准备怎样计算?首先要找出每个面的长和宽。根据长方体的长、宽、高可以计算出每个面的面积,把6个面的面积合在一起就是表面积了。
教师指名板演解题过程。
学生甲:分别求出3组相对的面的.面积,再相加。
6×4×2+5×4×2+6×5×2
=48+40+60
=148(c2)
学生乙:分别求出每组相对的面中一个面的面积,相加后再乘2。
(6×4+5×4+6×5)×2
=(24+20+30)×2
=74×2
=148(c2)
学生丙:分别求出6个面的面积,再相加。
6×5+6×5+5×4+5×4+6×4+6×4
=30+30+20+20+24+24
=148(c2)
(4)自主分析比较,发现哪种解法简便?
通过分析比较,发现学生乙的方法最简便。
(5)讨论。
计算长方体表面积最关键的是什么?(根据长方体的长、宽、高,找出每个面的长和宽)
3.试一试。
板书:做一个棱长3分米的正方体纸盒,至少要用硬纸板多少平方分米?
(1)学生独立完成。
(2)集体订正。
教师指名说出怎样算简便。
教师根据学生的叙述板书:3×3×6=54(平方分米)
1.下面哪个图形沿虚线折叠后能围成长方体?先想一想,再折一折。
① ②
2.求下面长方体和正方体的表面积。
一个长方体的长是宽的2倍,宽是高的3倍,棱长总和为80厘米。求它的表面积。
课堂作业新设计
1. ①不能 ②能
2.(8×3+8×5+3×5)×2=158(c2) 7×7×6=294(c2)
思维训练
如果把高看作“1”,那么宽就是“3”,长是“3×2=6”。因为长方体共有4条长、4条宽、4条高,而其棱长总和为80厘米,所以“1份”为80÷ =2(厘米),长是2×6=12(厘米),宽是2×3=6(厘米),高是2×1=2(厘米),表面积是(12×6+12×2+6×2)×2=216(平方厘米)。
教材习题
教材第3页练一练
1. 2.第1个和第3个能。
练习一
1. 左图:长7c 宽4c 高3c 中图:长6d 宽4d 高5d
右图:长20 宽8 高8
2. (1)右图是正方体,左图是长方体。 (2)正方体的棱长是5c,有6个面完全相同。
(3)长方体的长是5c,宽是4c,高是5c;有2个面是相同的正方形,其余4个面完全相同。
3. (1)长方形 长5c,宽4c (2)长方形 长5c,宽3.5c (3)长方形 长4c,宽3.5c
(4)长方体的下面与上面完全相同,后面与前面完全相同,左面与右面完全相同。
4. 左图:长3厘米,宽2厘米,高2厘米。
中图:长、宽、高都是3厘米,即棱长是3厘米的正方体。
右图:长5厘米,宽2厘米,高2厘米。
6. 第一列的两个展开图和第二列第一个和第三个展开图,沿虚线折叠后都可以围成长方体。
7.
8. 10×4=40(c2) 7×3=21(2) 4×4=16(c2)
9. (1)a+b+c 4(a+b+c) (2)12a 72
动手做
分析:因为长方体或正方体都是由6个面围成的,所以无论是围成长方体或者是正方体都至少需要6张硬纸片。
方法:把各类硬纸片依次命名为A、B、C、D、E。
围长方体:
选法一:选4张A 2张B 选法二:选4张A 2张E 选法三:选4张C 2张E
选法四:选4张D 2张B 选法五:选2张A 2张C 2张D
围正方体:
选法一:选6张B 选法二:选6张E
教材第6页试一试
3×3×6=54(平方分米)
教材第6页练一练
5×4×2+5×2.5×2+2.5×4×2=85(c2) 4×4×6=96(c2)
篇18:长方体和正方体教案设计
正方体(长方体)6个面的总面积叫作它的表面积。
做一个棱长3分米的正方体纸盒,至少要用多少平方分米的硬纸板?
3×3×6=54(平方分米)
篇19:小学五年级下册数学《长方体和正方体的表面积》的教案设计
人教版小学五年级下册数学《长方体和正方体的表面积》的教案设计
教学内容:
长方体和正方体的表面积概念,长方体和正方体表面积的计算
教学目标 :
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重点:
掌握长方体和正方体表面积的计算方法。
教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题
教具运用:
长方体、正方体纸盒,剪刀,投影仪
教学过程:
一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1.教学长方体和正方体表面积的.概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出上、下、前、后、左、右六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出上、下、前、后、左、右六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.70.4+0.70.4+0.50.4+0.50.4+0.70.5+0.70.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.70.42+0.50.42+0.70.52=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)2
(0.70.4+0.50.4+0.70.5)2=0.832=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1. 完成教材第23页做一做。
2.完成教材第24页做一做。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
板书设计:
长方体和正方体的表面积(一)
篇20:数学教案-长方体和正方体的表面积
教学目标
1.使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法.
2.培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念.
教学重点
表面积的意义.
教学难点
长方体表面积的计算方法.
教学过程()
一、复习准备.
1、说出长方形面积的计算公式.
2、看图回答.
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空.
这个长方体上、下两个面的长是( )宽是( ).
左、右两个面的长是( )宽是( ).
前、后两个面的长是( )宽是( ).
3、想一想.
长方体和正方体都有几个面?(6个面)
二、揭示课题.
今天这节课我们就来学习和研究有关这6个面的一些知识.
三、教学新课.
(一)长、正方体表面积的意义.
1.老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、
“左”、“右”、“前”、“后”标在6个面上.
2.沿着长方体和正方体的棱剪开并展平.(老师先示范,学生再做)
3.你知道长方体或者正方体6个面的总面积叫做它的什么吗?
教师明确:长方体或者正方体6个面的总面积,叫做它的表面积.
【长方体和正方体的表面积(人教版五年级教案设计)】相关文章:
8.长方体的表面积






文档为doc格式