《长方体和正方体的体积》教学设计
“滚啊滚”通过精心收集,向本站投稿了19篇《长方体和正方体的体积》教学设计,下面是小编为大家整理后的《长方体和正方体的体积》教学设计,仅供大家参考借鉴,希望大家喜欢!
篇1:长方体和正方体体积教学设计
教学目标:
1、知道容积的意义。
2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。
3、会计算物体的容积。
教学重点:
1、容积的概念。
2、容积与体积的关系。
教学难点:容积与体积的关系。
教具:量筒和量杯、不同的饮料瓶、纸杯
教学过程:
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是。
三、新授:
1、认识容积及容积单位:
(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。
(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
(3)演示:体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。
1升(l)=1000毫升(ml)
将1升的水倒入1立方分米的容器里。
小结:
1升(l)=1立方分米(dm3)
1升=1立方分米
1000毫升1000立方厘米
1毫升(ml)=1立方厘米(cm3)
练一练:
1.8l=()ml;3500ml=()l;15000cm;3=()ml=()l;1.5dm3=()l
(4)小组活动:
(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?
5×4×2=40(立方分米)40立方分米=40升
答:这个油箱可以装汽油40升。
做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)
小结:计算容积的步骤是什么?
3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?小组设计方案:
西红柿的体积=350—200=(ml)
=(cm3)
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2。5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:p55、16
五、作业:
第三单元长方体和正方体体积教学设计第五课时容积相关内容:课题六:用方程和用算术方法解应用题的比较平行四边形的面积教案质数和合数教学设计小数乘整数《2,5倍数的特征》教学实录《2和5的倍数的特征》教案第四单元分数的意义和性质求两个数的最大公因数(小学数学五年级上册第三单元)简单立体图形的组合.
篇2:长方体和正方体体积教学设计
教学目标
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
教学过程
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、学习新课.
(一)长方体的体积【演示动画“长方体体积1”】
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.【演示动画 “长方体体积2”】
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: V=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.【演示课件“正方体体积”】
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用V表体积,a表示棱长
V=a·a·a或者V=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
长
方
体
长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
10
2
4
正
方
体
棱长/米
体积(立方米)
6
30
0.4
2.判断正误并说明理由.
① ( )
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们学习了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
六、板书设计.教学目标
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
教学过程
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、学习新课.
(一)长方体的体积【演示动画“长方体体积1”】
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.【演示动画 “长方体体积2”】
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: V=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.【演示课件“正方体体积”】
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用V表体积,a表示棱长
V=a·a·a或者V=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
长
方
体
长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
10
2
4
正
方
体
棱长/米
体积(立方米)
6
30
0.4
2.判断正误并说明理由.
① ( )
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们学习了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的'体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
六、板书设计.
篇3:长方体和正方体体积教学设计
教学目标:
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
教学重点和难点:
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学过程:
一、复习引入
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)
(3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)
三、议一议
长方体和正方体的体积公式有什么相同点?
长方体和正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
如果用S表示底面积,上面的公式可以写成:
V=Sh
四、巩固练习
计算下面图形的体积
板书设计:
正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高
V=a3 V=Sh
篇4:长方体和正方体体积教学设计
一、教材分析:
本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。
二、教学目标:
1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。
2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。
3、培养学生数学的应用意识。
重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。
难点:理解体积公式的意义。
三、教法与学法
学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。
为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习.
四、教学过程
(一)激情引趣,揭示课题。
任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。
1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。
2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。
这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。
(二)操作想象,探索公式。
小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。
具体的过程是:
(1)让学生以小组为单位用棱长1厘米的小正方体摆长方体,边摆边在表格里记录:长、宽、高和体积
(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。
(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?
这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。
(4)用字母表示公式,要注意书写形式的指导。
(5)完成例1,学以致用,加深理解。
通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。
(三)巩固练习,扩展应用
练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:
1通过让学生完成教科书第43页的“做一做”的第一题,先让学生动手操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。
2.做第43页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。
拓展运用:
完成练习七第5—8题,让学生运用公式计算。
设计意图:学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。
(四)总结全课,质疑解惑。
(1)谈收获:让学生说说这节课学习了什么?
(2)质疑解惑:还有什么疑问。
这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。
篇5:长方体和正方体体积教学设计
教学基本
内容六年制小学数学第十一册P25—26。
教学目的和要求
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生初步的归纳推理、抽象概括的能力。
教学重点
及难点探索并掌握长方体和正方体体积的计算方法。
长方体和正方体体积公式的推导。
教学方法
及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。
学法指导
讨论交流,并认真听讲思考。
集体备课个性化修改
预习阅读书本25、26页,并初步理解解
教学环节设计
一、以旧引新
师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)
二、探究新知
1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。
师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。
师:将摆出的长方体放在桌上,并编号。
请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。
引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。
问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?
师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?
依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?
师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?
2、验证、交流后归纳出长方体的体积计算公式及字母公式。
通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?
通过交流得出公式:长方体的体积=长×宽×高。
问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?
交流得出:V=abh.
3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。
师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?
交流得出:正方体的体积=棱长×棱长×棱长。
重点理解的含义,进一步明确的读法、写法。
做“试一试”。
作业做“练一练”。
做练习六第2题
课堂作业:做练习六第1、2题
板书设计
执行情况与课后小结
篇6:《长方体和正方体的体积》教学设计
长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:
一、重视引导学生经历知识的探究过程。
究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。
二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。
三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。
四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。
总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?
可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。
篇7:长方体正方体体积教学反思
教学中,我注意了培养学生的数学语言能力,重视学生的口头表达,同学们在操作活动中产生了大量的思维语言,小学生的特点就是急于把这些想法告诉老师和同学。我在教学时安排了边摆边记录,再汇报的活动,让学生养成及时记录实验数据的习惯,同时为整理、分析数据准备好必要的材料,更有利于有条理地分析汇报,从而提高语言表达能力。
教学过程就是学生实现认知目标的过程,在这个过程中,给学生思维空间,给学生自主探索的机会,让学生多维多向思考,同时实现师生互动,也就遵循了学生的认知规律,使学生获得了最佳的认知效果。
通过本节课的教学,我认识将主动权还给学生的必要性,这样更能让学生充分体会到学习的乐趣,并能使他们获得成就感。教学是课堂创新和开发的过程,在以后的教学中,()需要我付出更多的心血来激发学生的潜能。
有好的方面,但仍有许多不足,下面就我上的这一节课存在的问题从以下几个方面自评一下。
第一、课件设计还不够完美。如:在关闭flash课件的主页面后,出示幻灯片时应设计一个封面,这样就自然些,而不会显得太突然,而我却将一个封面删取了;还有我后面还设计了一个拓展性的题就是利用长方体和正方体组成的一个动画机器人,让同学们想一想如何知道它的体积,并且还有分解后的图。这道题按我原来的设计是个很能调动学生积极性的题。但时间计划不周这道题没有出示出来,深感遗憾!
第二、教学过程中细心程度不够,有些慌。在随意展示学生填好的表时没有先认真看一下,结果出现学生在长、宽、高数值后面带的单位是cm3而不是cm。
第三、数学教学理论,数学教材钻研的纵深度不够。对数学理论的掌握,数学教材的把握火候不到,对数学有些专业性术语掌握的还有些欠妥。
篇8:长方体正方体体积教学反思
长方体正方体体积教学反思
《长方体和正方体的体积》计算,是在理解了体积的概念和体积的单位以后教学的,上课前我做了大量的准备,课后认真反思有欣慰也有遗憾。
1、复习导入设计巧妙
开课复习了体积概念,常用的体积单位,再通过比较物体的大小得出观察不能判断体积的大小,引出新课《长方体和正方体体积的计算》,整个过程简洁明了,内容紧扣主题,为上好本节课开好了头。
2、小组合作,培养自主学习能力,发展了空间观念。
体积对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次重大的发展。然而此时,学生对立体的空间观念还很模糊,我注意到实物或教具的演示和学生的动手操作的作用,以发展学生的空间观念,培养学生自主学习能力,加深对长方体计算公式的理解。在教学时,让学生拿12个1立方厘米的小正方体,摆放出不同的'长方体,并把排数,个数,层数的数据填入实验报告单,启发学生思考,根据记录这些数据,比较数据,再引导学生进一步思考,小正方体的个数,排数,层数与长方体的长、宽、高有关系。最后,得出长就是个数,宽就是排数,高就是层数,从而发现长方体体积的计算公式,并用字母表示。在教学完长方体的计算公式后,通过练习继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。
整个过程,发展了学生的空间观念,加强实际操作能力,学生清楚地理解长方体体积计算公式的来源,并能够根据所给的已知条件正确地计算有关图形的体积。学生的动手能力也得到了提高,合作意识也曾强了。
3、在知识的生成,巩固应用阶段,我将新知的传授与练习题巧妙地结合在一起,体现了知识间的连贯性,学生在轻松愉悦的氛围中学到知识,使得教学内容一气呵成!
4、能联系实际生活,设计达标测评题
达标测评题有梯度,遵循由易到难的规律,抢答是简单的体积计算,通过抢答激活了课堂,接着是考查学生的应变能力,判断能力,再接着走进生活,解决生活中的数学问题,计算零件的体积,升旗台的体积,最后出示拓展延伸题为优生提供了创新的机会,通过一系列的练习,使学生的知识得到了内化,升华,达到了教学的目的。
5、课堂虽然是经过精心设计的,但是还不够严谨,比如课堂用语的简练性、学具教具的充分利用、学生 上台操作机会、评价方法的多样性等各方面还有待学习改进。
篇9:《长方体和正方体体积》教学反思
《长方体和正方体体积》教学反思
本节课教学的主要任务是使学生理解体积的概念,知道计量体积要用体积单位。认识常用的体积单位:立方厘米、立方分米、立方米,建立关于1立方厘米、1立方分米、1立方米的实际大小的空间概念。
本节课教学的关键是提供充分的直观素材,让学生通过观察、触摸、拼摆、想象等多种活动,积累感知,建立表象,形成概念,教学设计从比较线段的长短,平面图形的大小、立体图形的大小引入,让学生在与长度、面积等概念的比较中认识体积,便于帮助学生在概念系统中理解新概念新课分三个层次。
首先是通过观察实验,从实验情境中领悟物体占有空间物体所占空间有大有小物体所占空间的大小叫做物体的体积。接着让学生观察和比较实物的大小,体验到要确切知道物体体积的大小,要用体积单位来计量。并引导学生由常用的长度单位、常用的面积单位去作猜想──常用的体积单位有哪些?在此基础上,通过观察、比划、想象、比较;建立1立方厘米、1立方分米、1立方米的实际大小的空间观念。第三层次,通过小组合作拼一拼、摆一摆、说一说体积大小,深化对体积和体积单位的认识,并进一步理解:计量体积,就是看物体所含体积单位的个数。最后,对全课内容进行整理归纳,形成整体认知。巩固练习对教科书练习七的第1题稍作引申,放在最后,要求学生记录下摆出的几种不同长方体的长、宽、高和它们的体积,并想一想你发现了什么,为下一课学习体积的计算做铺垫。本节课教学的主要任务是使学生理解体积的.概念,知道计量体积要用体积单位。认识常用的体积单位:立方厘米、立方分米、立方米,建立关于1立方厘米、1立方分米、1立方米的实际大小的空间概念。
本节课教学的关键是提供充分的直观素材,让学生通过观察、触摸、拼摆、想象等多种活动,积累感知,建立表象,形成概念,教学设计从比较线段的长短,平面图形的大小、立体图形的大小引入,让学生在与长度、面积等概念的比较中认识体积,便于帮助学生在概念系统中理解新概念。
篇10:长方体和正方体的体积计算教学设计
《长方体的体积》教学设计
辽宁省大石桥市周家镇中心小学
李丽娟
【教学目标】
1、结合具体情景和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。
2、学生在动手操作,主动参与学习活动过程中发现知识的规律,掌握数学知识、思维能力培养,学生的学习能力得到训练。
3、在观察、操作、探索的过程中,学生的动手操作能力得到提高,空间观念得到进一步的发展。
【教学重点】长方体和正方体体积的计算方法. 【教学难点】长方体体积公式的推导
【教具准备】课件 大小不一的两个物体 大小相近的长方体与正方体 【学具准备】正方体小方块
教学实施具体过程:
一、创设情境 发现问题
1、大家都爱吃水果,那么西瓜和苹果哪个大?哪个小?(西瓜大苹果小)
其实刚才我们在比它们的什么?(比较它们的体积)体积指的是什么?(体积是指物体所占空间的大小)
2、那么常见的体积单位有哪些呢?
3、出示长方体、正方体学具:那你能猜猜这个长方体学具的体积是多少吗?那这个正方体的体积和长方体比较,哪个会大一些呢?
4、看来同学们的意见出现了分歧,那么怎样才能准确的比较出它们的大小呢?谁说说看?(看看它们哪个体积大哪个就大?)
5、同学们说的都有道理,今天这节课我们就一起来研究长方体(正方体)体积的计算方法。
二、观察思考 提出猜想
1、猜想:我们学过长方形面积计算公式,谁来说说长方形面积与什么有关?(长方形面积与长和宽有关),长方体的体积可能与什么有关?下面请看课件。
出示三组长方体进行比较引导学生使学生初步认识到长方体的体积与它的长、宽、高都有关。
三、观擦实验,验证猜想
1、那么长方体的体积与它的长、宽、高到底有怎样的关系呢?凭空想象是不行的,数学是要讲究依据的,要通过反复的实践证明才行 课件演示
(1)看一看下面的长方体的体积是多少?为什么?
体积是4立方厘米。为什么?因为他它含有4个1立方厘米的体积单位。
我们已经知道,长方体的体积就是指长方体所含有的体积单位数。所以求长方体的体积就是求长方体所含有多少个这样的体积单位。下面我们运用1立方厘米的体积单位来研究长方体的体积计算方法。
(2)再加上这样的两排,这个长方体的体积是多少?你是怎么想的?
学生1:12立方厘米。追问怎么得到的?
学生2:一排是4立方厘米, 3排就是4×3=12立方厘米。??
(3)再加上这样的一层,这个长方体的体积是多少? 学生1:24立方厘米。 追问:能说说你是怎么计算的?
学生2:一层是12立方厘米,2层就是
12×2=24立方厘米 再追问:这个长方体的长宽高分别是多少? 学生3:长是4厘米,宽是3厘米,高是2厘米。
2、启发:生活中计量物体的体积,都用“切成若干个体积单位”来计算,是不行的,同学们通过观察刚才老师在课件上的演示你发现了没有长方体的体积与它的长、宽、高到底有怎样的关系?谁能把你的发现大胆的说给大家?
学生1:长方体的体积就等于长、宽、高的乘积。 学生2:长方体的体积=长×宽×高??
3、用字母表示长方体的体积公式
4、长方体的体积计算公式的应用
(1)师问:在生活中,怎样计算长方体的体积? 课件出示习题
(3)迁移推导,再次尝试 推导正方体的体积计算公式 正方体的体积=棱长×棱长×棱长, 用字母表示:V=a×a×a = a3 应用公式计算
(4)继续观察
使学生明确阴影部分的面积是上面各个图形底面的面积,称为底面积。然后导出
长方体(正方体)的体积=底面积×高
V=S×h 四.学以致用
巩固提高
1、填一填
2.判断(判断对错,说明理由)
(1)一个正方体的棱长是2米,它的体积是8立方米。(
) (2)一个长方体的长30厘米,宽2分米,高5厘米,它的体积是30×2×5=500(立方厘米)。
(
)
(3)一个棱长为6分米的正方体,它的表面积和体积相等。(
) 3.提高题
(1)一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?(只列式)
(2)一个正方体的棱长总和是36厘米,它的体积是多少? 4.实际应用
(1)雄伟的人民英雄纪念碑矗立在__广场上,石碑的高是14.7米,宽2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?
解:V=abh =2.9×1×14.7
=42.63(m3)
答:这块巨大的花岗岩石碑的体积是42.63立方米。 (2)有一种正方体形状的魔方,棱长是6厘米,体积是多少立方厘米?
V= a =6×6×6
=216(cm3)
答:这种魔方的体积是216立方厘米。
五、谈谈你今天的收获 板书设计:
长方体的体积
长方体的体积=长×宽×高
V=a×b×h
= abh
正方体的体积=棱长×棱长×棱长
V=a×a×a
a
= 3
长、正方体的体积=底面积×高
V=S×h
篇11:长方体和正方体的体积计算教学设计
教材解读 体积对学生来说是一个新概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。教材加强了对体积概念的认识。教材通过学生更熟悉、更直观的“乌鸦喝水”的故事、石头放入盛水的杯子里的实验等,以生动形象的方式,为学生体会物体占有空间,理解体积概念提供丰富的感性经验。然后,引导学生观察比较电视机、影碟机和手机的大小,说明不同的物体所占空间的大小不同,从而引入体积概念。
学习目标 1、理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米。
2、理解并掌握长方体和正方体体积的计算方法。
3、正方体的体积计算解决一些简单的实际问题。培养学生归纳推理,抽象概括的能力
教学重、难点 体积的含义和常用的体积单位。
教、学具准备 前置作业、多媒体设备、红笔、12个体积1厘米的小正方体
预习提 纲
1、什么叫做体积?
2、常用的体积单位有哪些?
3、长方体(或正方体)的体积该怎样计算?
教 学 流 程
学生学习活动 教学板块或教师活动
一、独立自学
结合预习提纲自学课本27至31页。 1、1米、1分米、1厘米是( )单位。
1平方米、1平方分米、1平方厘米是( )单位。
2、乌鸦是怎样喝到水的?说明了什么?
3、电视机 影碟机 手机哪个所占的空间大?哪个体积?哪个最小?
4、物体所占空间的大小叫做( )
二、互动交流
学生分小组进行讨论交流 1.实验观察
观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?
图片观察:投影出示课本上的洗衣机、影碟机、手机,哪一个物体所占的空间大?
2.教学体积单位。
(1)介绍体积单位。
常用的体积单位有:立方米、立方分米、立方厘米。
(2)1立方米、1立方分数、1 立方厘米的体积各有多大。
1立方厘米:一个指尖的大小
1立方分米:一个粉笔盒的体积
3、推导体积公式
(1)分别用8个、12个小正方体摆成不同的长方体,,观察发现,每排小正方体的个数相当于长方体的长,排数相当于长方体的宽,层数相当于长方体的高
(2)发现规律得出长方体的体积公式
(3)根据长方体和正方体的关系推导正方体的体积公式
学生学习活动 教学板块或教师活动
三、总结评价
总结这一节课的收获,并提出自己的问题 1、物体所占空间的大小叫物体的
体积。
2、常用的体积单位有立方厘米、立方分米、立方米。
3、长方体的体积=长×宽×高
4、正方体的体积=棱长×棱长×棱长
四、巩固或提高
完成同步指导上的相关作业。 独立完成,核对时说一说自己是怎样想的?怎样做的?
教 学 反 思
长方体和正方体的体积计算教学设计
篇12:《长方体和正方体体积的计算》教学设计
《长方体和正方体体积的计算》精品教学设计
[教学内容]
教科书第27页的内容,练习六第4-8题
[教材简析]
这部分教材是学生已经掌握长方体和正方体的特征,了解体积的意义,初步掌握长方体和正方体体积公式的基础上,引导学生进一步探索长方体和正方体的体积公式,在探索中通过分析、比较、归纳,掌握“长方体(正方体)的体积=底面积×高”这一直棱柱体积的通用公式。
“练一练”和练习六第4—8题,先直观看图计算,再比较长方体(正方体)的体积=底面积×高与前面所学长方体、正方体体积计算方法的不同和联系,在比较中巩固上述公式的推理过程,然后在练习中解决一些实际问题。这样由浅入深,既巩固了长方体(正方体)的体积=底面积×高的体积公式,又使学生学会解决实际问题,体会到数学在日常生活中的应用,感受数学的价值,还发展学生的空间观念。
探索并掌握长方体(正方体)的体积=底面积×高的计算是本节课的重点。
[教学目标]
1、使学生在具体的情境中,经历比较、讨论、验证、归纳等数学活动过程,探索并掌握长方体(正方体)的.体积=底面积×高的计算方法,能解决与体积计算有关的一些简单实际问题。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好书学得的自信心。
[教学过程]
一、观察直观图形,认识并计算长方体、正方体的底面积
(出示长方体、正方体)谈话:同学们,我们学过了长方体、正方体的特征和表面积。请同学们在小组中找出这两个图形的底面分别是哪两个面?
根据学生的回答,教师在图中涂色呈现出底面。
提问:这两个图形的底面积是哪两个面的面积?
根据学生的回答,教师板书“底面积”定义。
再提问:怎样计算长方体和正方体的底面积?
根据学生的回答,明确长方体、正方体底面积的计算方法,教师板书计算公式。
[评:《数学课程标准》要求:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,在学生理解和掌握长方体、正方体特征和表面积基础上,让学生自己归纳、探索底面积的定义和计算公式,体现数学学习是一个再创造过程。]
二、探索长方体(正方体)的体积=底面积×高的计算方法
1、提问:我们前面学习的长方体、正方体体积是如何计算的?
根据学生的回答,教师板书体积公式
2、谈话:长方体和正方体的体积也可以这样来计算:长方体(正方体)的体积=底面积×高
3、提问:在小组中讨论为什么可以这样来计算长方体、正方体的体积?
学生在小组中讨论得出结论,教师帮助学生进行相应整理
4、请同学们尝试用字母表示这个公式
根据学生的回答,教师板书字母公式
[评:观察、思考、讨论、交流等都是《数学课程标准》所提倡的数学活动。在这里,先把公式直接告诉学生,让学生在借助已有知识的基础上,凭借他们自己的经验,在小组中充分交流、合作,在探索、比较中充分理解长方体(正方体)的体积=底面积×高的推理过程。]
三、分析、比较加深长方体(正方体)的体积=底面积×高的理解
1、出示“练一练”第1题
⑴、学生独立思考完成
⑵、讨论:这样计算长方体和正方体的体积与原来的计算方法有什么不同?有什么联系?
2、出示“练一练”第2题
独立做题,在班内共同订正
[评:在学生独立解决问题中,关注这种计算公式与原来计算公式的不同与联系,进一步巩固长方体(正方体)的体积=底面积×高的计算方法,感受数学的魅力。]
四、巩固练习、拓展应用
1、做练习六第4题
⑴、借助实物帮助学生理解占地面积的实际含义
⑵、使学生明确“所占空间”就是储物柜的体积
⑶、独立做题,在班内共同订正
[评:让学生在实际应用中,巩固用“底面积×高”计算长方体体积的方法,感受这种方法在解决实际问题过程中的作用。]
2、做练习六第5题
⑴、结合图让学生指一指这根横截面的位置
⑵、引导学生想象:如果将这根木料竖起来,木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?可以怎样计算它的体积?
[评:引导学生联系“长方体体积=底面积×高”这一方法,理解用“横截面面积×长”计算长方体体积的方法,有利于学生从不同角度加深对体积计算方法的理解。]
3、做练习六第6题
⑴、使学生明确黄沙铺成的形状是长方体,铺的厚度是长方体的高
⑵、明确要求“用方程解”
[评:这是一个在长方体沙坑铺黄沙的实际问题,让学生根据长方体的体积以及长和宽(或底面积),求它的高,既体现了知识的综合应用,又有利于提高学生应用公式解决实际问题的能力。]
4、做练习六第7题
⑴、弄清题中两个问题的联系与区别
⑵、引导学生寻找计算花坛所占空间大小以及花坛内泥土体积所需要的条件
⑶、提示:从里面量,花坛的高没有变,但底面正方形的边长只有1.3-0.3×2=0.7(米)
[评:通过让学生计算花坛所占的空间和花坛里有多少泥土这两个问题,让学生在比较中进一步明确体积和容积的不同意义。]
5、做练习六第8题
⑴、合理选择相应的信息解决实际问题
⑵、独立思考,在班内共同订正
[评:通过跑道上铺三合土和塑胶的实际问题,培养学生合理选择信息解决有关体积计算的实际问题的能力。]
五、激励评价,问题延伸
谈话:请同学们说说这节课你有什么收获?你是怎样知道的?回家后选择你身边的长方体或正方体,测量并用今天学习的知识计算它的体积。
[评:课堂总结不但关注学生知识与技能的掌握,而且关注了学生的学习过程,还把课堂中学到的知识延伸到生活中,体现了生活中处处有数学的理念。]
篇13:《长方体和正方体的体积计算》教学设计
教学目标:
1、理解并掌握长方体和正方体体积的计算方法。
2、能运用长、正方体的体积计算解决一些简单的实际问题。
3、培养学生归纳推理,抽象概括的能力。
教学重点和难点
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学用具
1立方厘米的正方体若干块,正方体和长方体教具
教学过程设计
(一)复习准备
1.提问:什么是体积?常用的体积单位有哪些?
2.请每位同学拿出4个1厘米3的正方体,摆成一个长方体。
教师:这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。如果想知道我们这间教室的体积应该怎么办呢?(引导学生理解有的物体是不能切开的,能不能运用学过的知识来解决。)能不能通过测量、计算来求出教室的体积呢?今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)引导探索
1.长方体的`体积。
师:“要想求长方体的体积,你们猜想可能与什么有关呢?”
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
同学分小组活动,教师巡视。教师:观察上表,你发现了什么?看一看这些数据与长方体的体积有什么关系?
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
进一步验证:同桌合作,用小正方体摆出自己喜欢的长方体,看看长方体的体积是否等于长、宽、高的乘积。
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:V=abh。
(2)练习:(学生口答。)出示老师的长方体教具,给出长、宽、高,求体积。
师:现在老师测量了教室的长是7、5米,宽是6米,高是3米,教室的体积是多少,你们知道吗?学生快速计算。
2.正方体体积。
根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?
学生口答,老师板书: 正方体体积=棱长×棱长×棱长。
用字母表示公式:用V表体积,a表示棱长,公式可写成:V=a·a·a或者V=a3。
(2)教学例2
学生试做,指名板演。
做一做:出示老师的正方体的教具,求体积。(学生口答)
(三)巩固反馈
练习七5、6题。
(四)课堂总结
篇14:长方体和正方体的体积
教学目标
(一)理解并掌握长方体和正方体体积的计算方法。
(二)能运用长、正方体的体积计算解决一些简单的实际问题。
(三)培养学生归纳推理,抽象概括的能力。
教学重点和难点
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学用具
教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。
学具:1厘米3的立方体20块。
教学过程设计
(一)复习准备
1.提问:什么是体积?
2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。
教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)学习新课
篇15:长方体和正方体的体积
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
同学分小组活动,教师巡视。然后分别请摆成不同形状的'长方体的同学回答,教师板书:
教师:这些长方体有什么共同点?不同点?
问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?
(因为它们都含有同样多的体积单位――12个1厘米3。)
教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
学生讨论后,师生共同归纳:
表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。
同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。
(2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。
学生说出摆法和体积后。请看电脑动画图像:
一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。
教师板书:
同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。
学生操作,看电脑动画图像。教师板书:
3(厘米) 3(厘米)2(厘米)18(厘米3)
教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?
学生口答后,老师用电脑图演示。然后板书:
5(厘米) 4(厘米)3(厘米)60(厘米3)
教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:V=abh。
出示投影图:
(3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。
答:它的体积是84厘米3。
练习:(投影出题,学生口答。)
一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)
2.正方体体积。(1)请学生看电脑动画录像:
长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?
问:这个正方体的体积可以求出来吗?
学生口答,老师板书: 3×3×3=27(厘米3)。
投影出一个正方体图。(可以用翻页变换它的棱长。)
问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?
学生口答,老师板书: 2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。
用V表体积,a表示棱长,公式可写成:V=a・a・a或者V=a3。
(2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
学生口答,老师板书:53=5×5×5=125(分米3)。
答:体积是125分米3。
做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说长方体和正方体的体积计算方法和字母公式。
教师:请讨论长方体和正方体的体积计算方法相同还是不相同。
学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
(三)巩固反馈
1.口答填空。课本P35练习七:2,3。
2.口答填表:
3.判断正误并说明理由。
①0.23= 0.2×0.2×0.2;( )
②5x2=10x;( )
③一个正方体棱长4分米,它的体积是:43=12(分米3);( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )
(四)课堂总结及课后作业
1.长方体的体积计算方法及公式。
正方体的体积计算方法及公式。
2.作业:课本P35练习七:4,6。
课堂教学设计说明
本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作,观看动画录像等多种方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,设计通过动画录像引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。练习中针对乘方运算和单位不统一的易错点,设置题目进行训练,这样可以提高学生运用所学知识解决实际问题的准确性。
新课教学共分两个部分:
第一部分教学长方体体积计算方法。分为三个层次。通过摆长方体,使学生认识到长方体形状不同但只要含有同样多的体积单位,它们的体积就相等;通过操作和动画图,帮助学生发现体积与长、宽、高之间的数量关系,即体积公式;运用体积计算解决实际问题。
第二部分学习正方体体积计算方法。也分三层。通过图像推出正方体体积计算公式;解决简单的实际问题;沟通长、正方体体积公式的区别与联系。
板书设计
篇16:长方体和正方体体积练习题
长方体和正方体体积练习题
一、填空:
1、叫体积。
2、长方体体积公式是:;用字母表示:
3、正方体体积公式是:;用字母表示:
4、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。
5、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是占地面积是,表面积是,体积是。
6、一个长方体方钢,横截面是边长4厘米的正方形,长2分米,体积是立方厘米。
7、一个长方体水池占地24平方米,深3.5米,它能蓄水立方米。
8、一个长方体木料,长4米,如果把它截3段,表面积增加24平方分米,这根木料的.体积是。
9、用棱长3厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。
10、将一个长2米,宽3分米,高2.6分米的长方体木料,将它平均截成两段,表面积增加平方分米。
二、操作题:
右图是长方体展开图,测量所需数据,并求长方体体积。(取整厘米)
三、解决问题。
1、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)
2、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?
3、有一个底面积是250平方厘米、高16厘米的长方体,里面盛有8厘米深的水。现在把一块石头浸没到水里,水面上升3厘米。这块石头的体积是多少立方厘米?
4、一根方钢长3米,它的横截面是一个边长为4厘米的正方形,已知每立方分米的方钢重7.8千克,这根方钢重多少千克?
5、一张长方形铁皮长26分米,宽18分米,在它的四个角剪去边长3分米的正方形,焊成一个长方体,这个长方体的容积是多少升?
6、一个游泳池,长50米,宽20米,深2米,现在要给游泳池的四壁和底面抹水泥,抹水泥的面积是多少平方米?
7、一根铁丝,可以做成长8厘米,宽6厘米,高4厘米的长方体框架,如果用它来做一个正方体框架,做成的正方体框架棱长是多少厘米?
8、一块橡皮泥,先捏成一个棱长6厘米的正方体,后来,又改捏成一个长8厘米,宽3厘米的橡皮泥,这时高是多少厘米?
篇17:《长方体和正方体的体积》教学反思
通过一段时间对微课的了解以及使用微课进行教学和指导学生运用微课进行学习和复习,我设计了一堂关于运用微课进行教学的展示课《长方体正方体的体积》。
我在网上搜来的成功微课运视频,将长方体的形成过程,由点到线、由线到面,由面到体形象直观的展示给学生,学生对长方体的体积的计算方法的学习兴趣浓厚、理解起来简单明了。在此基础上,教学中进一步通过动画引入正方体体积计算,学起来浅显易懂。学完微课,我设计了师生通过解决“你学到了什么”这一问题,在回顾交流中掌握了教学重点,通过解决“你还有哪些困惑”这个问题,师生在探索讨论中突破了教学难点。经过课后检测分析,教学效果特别不错。
虽然还有需要改进的地方,但通过展示课,我更进一步认识到怎样运用微课才能使数学课堂教学更加有效,为下 一步的改进提供真实有力地素材。
篇18:《长方体和正方体的体积》教学反思
作为仅有两年教龄的新老师,我总感觉自己在教学方面存在很多的不足,但是具体有哪些不足,应该怎样改正,我却不是很清楚。这次磨课过程中,老师们给我提了很多宝贵的教学建议,很细致也很有效,而且我自己也更注重自我反思了,让我对自己的教学有了更深入的了解,明确了自己的不足和今后努力的方向。
在《长方体和正方体的体积》这节课中,难点是理解长方体和正方体的体积公式的推导过程,所以我把主要的时间和精力都放在怎样顺利地引导学生通过自己的实验、观察推导出公式。第一次课中,因为做完实验没有要求学生观察、思考有什么发现,大部分学生都没能发现每排个数、排数、层数和长、宽、高对应的关系,所以公式的推导有点突兀;第二次课中,我吸取了之前的经验,先叫学生观察了,但是我引导学生说发现的时候,引导得不够具体到位,学生不知道我的意图,所以推导公式的过程显得有些单薄;第三次课中,我把复习当中的数小正方体的个数计算长方体的体积这个内容的PPT课件改成了循序渐进的,先是出示一排,学生数完后,在此基础上出示两排的,引导学生说出“每排个数×排数=总个数”,最后出示三层的,引导学生说出“总个数=每排个数×排数×层数”这样学生的思路非常清晰,对这个公式理解深刻,为后面的教学打好基础。而且学生的实验和讨论都很充分,所以公式推导得很顺利。但是有点不足的是,我没有分步骤及时板书,而是等到公式都出来后才板书,没有体现课堂的生成资源。
在练习方面,第一次课我设计的练习大部分偏难,特别是最后一道练习,涉及容积的内容,应该在学习完容积之后才能做的。而且我的设计大部分参考了《黄冈小状元》里面的练习类型,想着课堂上练习了,学生做当天的作业会比较顺利,没有考虑到这些练习是否应该在第一节新授课出现。通过这次的磨课,我以后设计练习的时候会更加注重练习与课程的紧密联系和练习的层次。
在学生的`状态方面,老师们反映学生回答问题和小组讨论的积极性不高。我觉得问题在于我平时的教学习惯,比较少安排学生合作讨论,而且对孩子们的评价比较单一,没有及时鼓励和奖励。我在以后的教学中会多运用小组合作讨论的教学手段,对于积极发言的孩子除了口头表扬,还要统计次数,及时奖励。
在我个人教学状态方面,第一次课用的班级不是我自己教的班级,但是我反而比较放得开,一是因为第一次课的教学设计是完全由我自己设计的,二是因为不知道自己的不足,无知者无畏吧,所以上得比较轻松。第一次课后,老师们给我提了很多很好的建议,我就尽量按照大家的建议修改自己的设计,但是结果却适得其反。我上课的时候总想着自己这个时候应该做什么,越想越紧张,反而上得不好。通过这次课,我明白了,对于大家的建议我要懂得取舍,要把它融入自己的教学设计,不能为了采纳建议而不管自己能不能利用好。另外,我觉得通过这次磨课,我开始学着放下自己的心理负担,课前认真备课,课中投入教学,课后积极反思。
篇19:长方体和正方体体积的教学反思
本节课的目的是让学生通过实践活动,探索并掌握长方体、正方体体积的计算方法,图在观察、操作、探索的过程中,提高动手操作能力,进一步发展学生的空间观念。因此课一开始,我并没有设置“漂亮”的教学情境,而是在学生用数方块的方法得出几个立体图形体积的基础上,数出小长方体的体积,目的有二:一是抛弃繁索的动作,直奔中心;二是快速刺激学生的探索欲望。果然,课上学生的兴趣快速激起,为后面的探索活动提供了足够的情感准备,并羸得了充分的操作探索时间。
本节课,我最满意的是长方体和正方体体积的探索过程及结果。由于在前几节课拼搭立体图形中,学生曾用8块小正方块既搭出了长方体也搭出了正方体,因此在本节课中,有好几个小组的学生通过同一次的操作活动,就能同时得出长方体和正方体的体积计算公式,并且正确地阐述了原因——正方体是特殊的长方体。同时学生能根据长方体与正方体的关系——正方体是长、宽、高都相等的长方体,进一步的揭示了正方体的体积=棱长×棱长×棱长与长方体的体积=长×宽×高之间的联系与区别。在这一个环节的操作探索活动中,学生通过数据的.记录与分析,发现长方体体积与长、宽、高之间的关系,知道了求长(正)方体体积所必需具备的条件,并根据数据抽象归纳出体积公式,这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。同时在整个的观察、操作、探索的过程中,更进一步地理解与掌握长方体与正方体之间的联系与区别,有助于知识体系的重组与构建,学生的空间观念也得到了进一步的发展,这也是本节课的意图之一。
不足之处是练习的安排,应该更有层次和梯度,使学生在理解基础知识和掌握基本技能的基础上,在适当有些拓展,提高课堂四十分钟的效率,提高学生分析问题和解决问题的能力。
【《长方体和正方体的体积》教学设计】相关文章:
10.长方体和正方体专项练习题






文档为doc格式