《长方体和正方体的表面积》教案
“蔓蜻分”通过精心收集,向本站投稿了19篇《长方体和正方体的表面积》教案,以下是小编为大家准备的《长方体和正方体的表面积》教案,欢迎大家前来参阅。
篇1:长方体和正方体的表面积教案
长方体和正方体的表面积教案
长方体和正方体的表面积 教学目标:(一) 让学生理解长方体和正方体表面积的意义,初步学会长方体和正方体表面积的计算方法。 (二) 根据现实情境和信息,通过动手操作 小组合作 观察思考等解决问题的方法,去探索感受长方体和正方体的表面积的概念和长方体表面积计算方法,培养学生动手操作 观察 抽象概括探索问题的能力和初步的空间概念。 (三) 使学生感受到数学与生活的密切联系,培养学生初步的数学意识。 教学重点:长方体和正方体表面积的概念和长方体表面积的计算。 教学难点:确定长方体的每一个面的长和宽。 教学方法:运用引导探索的教学策略,以“用活教材,练活习题,激活课堂”为教学途径,创设一定的教学情境,让学生感受到数学从生活中来,又应用于生活。 教具准备:教师准备长方体和正方体表面积展开的教具,学生每人准备长方体和正方体纸盒和火柴盒各一个。 教学过程: 一 直揭课题: 长方体和正方体的表面积 师问:看了这个题目,你想到了什么?想知道什么? 二 复习准备:(投影出示题目) 三 学习新课: (一) 长方体和正方体表面积的意义。 1、教师出示长方体教具,问: ①这个盒子是什么形状的,它有几个面? ②我们把它放在桌面上最多只能看到几个面? ③如果要使六个面一眼全看到,有什么办法?(把六个面展开放在一个平面上) 2、让学生拿出各自的长方体纸盒,教师指导学生沿着上面与前面相交的棱、左面与上面、前面、后面相交的棱以及右面与上面、前面、后面相交的棱将纸盒剪开。 让学生将剪开的纸盒展平、合上,再展平,观察原来长方体的各个面展平后各在什么位置,并分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面,教师注意订正。 3、教师选一个展开图贴在黑板上,请一个学生在展开图上指出原长方体的各个面。 4、学生和剪长方体的方法一样剪开正方体,并分别用“上”、“下”、“前”、“后”、“左”、“右”标明原正方体的6个面,教师注意订正。 5、教师选一个正方体展开图贴在黑板上,然后问:每个面是什么形状?有几个面积相等的.面?每个面的边长是原正方体的什么? 师:现在我们是不是很清楚的看到了长方体和正方体的六个面? 教师归纳板书:长方体或正方体6个面的总面积,叫做它的表面积。(学生齐读概念) (二)长方体表面积的计算方法。 1、多媒体演示展开动画 观察展开过程,出示下列问题::长方体有几个面?哪些面的面积相等?有几组相等的面?上、下、前、后、左、右各个面的长和宽分别是原长方体的什么? 2、小组讨论并汇报(讨论和回答时可让学生对着长方体盒子说) (引导学生答出:上、下每个面的长和宽分别是原长方体的长和宽,前、后每个面的长和宽分别是原长方体的长和高,左、右每个面的长和宽分别是原长方体的宽和高。) 3、空间想象 通过想象在头脑中建立一个立体的长方体形象; 4、练习六第l、2题。(第一幅图让学生说出前面的长和宽,再答出前面的面积,后两幅图直接答出前面的面积,每一幅图前面面积算出后,追问:后面的面积是多少?要求前、后面的总面积怎么列式?) (三)教学例1: 例1(出示幻灯片5)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板? ⑴要求做这个长方体纸盒需要用多少厘米硬纸板就是要计算这个长方体的什么? ⑵长方体的表面积包括几组面积相等的长方形? ⑶每组面积相等的长方形的长、宽、各是多少?(学生独立填空) ⑷学生小组讨论并试作:如何计算出这个长方体的表面积? ⑸指名学生说出自己的算法,教师板书。 解法1:6×5×2+6×4×2+5×4×2 =60+48+40 =148(平方厘米) 解法2:(6×5+6×4+5×4)×2 =(30+24+20)×2 =74×2 =148(平方厘米) 答:至少要用148厘米2纸板。 ⑹比较两种方法 ⑺教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。 四、巩固反馈 做例1下面的做一做中的题目。先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。 五、全课总结 (1)长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。 (2) 长方体的表面积如何计算 六、布置作业: 练习六第3、4题。 七、板书设计:长方体和正方体的表面积篇2:教案-长方体和正方体的表面积
教案-长方体和正方体的表面积
一、复习旧知,导入新课; 二、小组合作,探究新知; 1.探索长方体表面积的概念。 分组操作: (1)每个学生拿一个长方体纸盒,沿着棱剪开,再展开,看一看,展开后的形状。 (2)在展开后的图形中,用“上”、“下”、“前”、“后”、“左”、“右”标明六个面。 (3)你有什么发现? (4)师生共同小结:长方体6个面的总面积,叫做它的表面积。 2.探索长方体的表面积的计算方法。 (1)出示长方体展开图。 ①思考讨论:长方体每个面的长和宽与长方体的长、宽、高有什么联系? ②填一填 上、下每个面,长=长方体的vw,宽=长方体的vw; 前、后每个面,长=长方体的vw,宽=长方体的vw; 左、右每个面,长=长方体的vw,宽=长方体的vw。 (2)观察思考:怎样求长方体的表面积? (3)教学例题。 做一个长 0.5m,宽0.3m,高0.4m的长方体募捐箱,至少要用多少平方米硬纸板? ①学生分析题意,试着解答.教师巡视,相机辅导。 ②学生汇报: 启发学生明确题目中的已知条件和所求问题,要求“做这样一个长方体纸盒要用多少平方厘米的`硬纸板”就是要计算这个长方体的表面积,首先要找出每个面的长和宽,根据长方体的长、宽、计算每个面的面积,每个面的面积之和就是表面积。 让有不同解法学生说出解法及解题思路。 0.5*0.3*2+0.5*0.4*2+0.3*0.4*2 (0.5*0.3+0.5*0.4+0.4*0.3)*2 ③分组讨论: 比较两种解法有什么不同?有什么联系?哪种解法简便? 不同:第一种方法是先分别算出上、下面的面积和,前后面的面积和,以及左、右面的面积和,然后加起来。第二种方法是先算上面、前面、左面三个面的面积和,再乘以2。 联系:根据乘法分配律可以把第一个算式改变成第二个算式。第二个算式更简便些。 计算长方体表面积时,最关键的是找出什么? 思考:如果按我们算好的硬纸板的面积去领正合适的纸板,能做出我们需要的募捐箱吗?为什么? (4)总结出长方体表面积的计算方法。 (三)结合实际,灵活应用 1.募捐箱做好后,想找一些漂亮的红纸装饰一下箱子的外面,观察一下哪些面需要装饰漂亮又省纸?那需要多少红纸?(小组讨论解决) 2.一个长方体的饼干盒,长10cm,宽6cm,高12cm。如果围着它贴一圈商标(上下面不贴),这张商标纸的面积至少要多少平方厘米? 如果把一个长方体切分成两个长方体时,这两个长方体的表面积的和比原长方体的表面积是增加了还是减少了?为什么? (四)总结评价,知识升华 1. 今天你运用了什么学习方法? 2. 学习上有什么收获? 3. 你感受最深是什么?篇3:《长方体和正方体的表面积》教案
《长方体和正方体的表面积》教案
同学们好,下面我们来学习“长方体和正方体的表面积。”在没学新课之前你们回忆一下,长方体和正方体的面积怎样求?我们先来复习一下长方形和正方形面积公式,长方形的面积=长x宽,正方形的面积=边长x边长。
这是一个长方体,它是由六个长方形围成的,相对的两个面的面积相等。这是一个正方体,它是由六个正方形围成的,并且六个面都是相等的正方形,那么,什么叫长方体或正方体的表面积呢?
长方体或正方体六个面的总面积,叫做它的表面积。
下面我们来观察长方体,只要我们求出每个面的面积,再把它们相加就可以了。如果把长方体展开,会得到怎样的图形呢?
我们分别展开长方体的上下面、左右面、前后面,就变成这样一个平面图形,它的上面和下面是两个完全相等的长方形,请你们认真观察,这两个长方形的长和宽分别是长方体的哪条边?分别是长方体的长和宽,那么上下两个面的面积就等于长x宽x2。我们再来观察一下前后面,前后面也是完全一样的`长方形,它的长和宽又分别是长方体的哪两条边呢?分别是长方体的长和高,同学们很快就能求出前后面的面积,前后面的面积等于长x高x2。最后再来观察一下左右两个面,它的长和宽又分别是长方体的哪两条边。分别是长方体中的高和宽,同学们很容易就能求出左右面的面积,左右面的面积等于高x宽x2。
现在老师把这个平面图形还原成长方体,你们再仔细观察一下,上面、前面、右面分别和长方体的哪两条边有关系,上面和长方体的长宽有关系.前面和长方体的长高有关系,右面和长方体的高宽有关系、我们只要求出上面、前面、右面的面积,用它们的和再乘2,就求出了长方体的表面积。所以,长方体的表面积=(长x宽十长x高十宽x高)x2,会求长方体的表面积,求正方体的表面积就简单多了,正方体是由六个完全一样的正方形围成的,每个正方形的边长又都是正方体的棱长。用棱长乘棱长先求出一个面的面积,再来乘6就可以了,所以正方体的表面积等于棱长x棱长x6,也可以写成棱长的平方x6。我们掌握了长方体和正方体表面积的求法,就可以解决生活中的实际问题了。
篇4:长方体和正方体的表面积教案
教学目标
(一)理解长方体和正方体表面积的意义。
(二)理解并掌握长方体和正方体表面积的计算方法。
(三)培养和发展学生的空间观念。
教学重点和难点
(一)长方体、正方体表面积的意义和计算方法。
(二)确定长方体每一个面的长和宽。
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程设计
(一)复习准备
1.口答填空。
(1)长方体有( )个面,一般都是( ),相对的面的( )相等;
(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;
(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。
2.说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)
(二)学习新课
篇5:《正方体长方体的表面积》教案
教学目标:
1.理解什么是立体图形的表面积;
2.掌握正方体与长方体的表面积的计算方法;
3.正确利用所学知识解决生活实际问题。
教学重点:
篇6:《正方体长方体的表面积》教案
教学难点:
如何利用所学知识解决生活实际问题。
教学准备:
长方体,正方体,多媒体。
教学过程:
一、联系实际,揭示课题
同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。
在粉刷之前,校方提前进行了资料收集,收集的资料如下:
1. 每个教室的长8米,宽5米,高3米;
2. 每个教室要对四壁和屋顶进行粉刷;
3. 每个教室门窗的面积共20平方米;
4. 每个教室要粉刷三次;
5. 第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。
6. 我校共有 个教室需要粉刷。 你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗? (揭示课题)
二、师生交流,提出问题
师:同学们,看到这个课题,你想知道什么?
生1:什么叫表面积?
生2:长方体与正方体的表面积怎么求?它们的表面积之间有什么关系?
生3:学了这些知识有什么用处?
[用与实际相联系的事例来引发学生的兴趣,使学生愿意学。这也正是符合了心理学中:教学过程始终是伴随着学生的情绪,并且智力活动也受其极大的影响的论点。在良好的情景创设下,学生学习十分容易地投入。]
三、师生互动,探究问题
1. 学生操作,解决问题;
(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。 (学生操作) 我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。
(出示学生得到的正方体表面的展开图。)
(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?
[学生通过操作得到正方体表面的展开图,由于沿着不同的棱剪开,就得到的正方体表面的展开图也不同,因此会有多种展开图,至于有哪几种展开图之一知识在二年级下的学习中已经解决,教师不需要展开。]
2. 组内交流,发表见解;
(1)正方体表面的展开图有6个正方形的面组成。 (2)它们的形状都相同。
(3)它们的面积都相等。
3. 教师引导,深入探究;
(1)想一想可以怎么求这6个面的面积总和。 先求出1个面的面积,再乘以6,就是这6个面的面积总和。
(2)请你试着求一求你手中的正方体6个面的面积总和。
注意:先测量棱长的尺寸,再计算,取整厘米数。 (学生计算) 看书巩固,掌握方法; 刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的.介绍,请打开书,翻到P39,看书回答:
(1)什么是正方体的表面积?
(2)正方体的表面积的计算公式是什么?
[学生通过对自己手中的正方体表面的展开图的观察,自主探究,得出了什么是正方体的表面积。正方体的表面积可以怎么求的结论。最后通过看书规范自己的结论。]
四、巧加点拨,学而致用
1.追随上知,质问质疑
拿出手中的长方体纸盒,指出它的表面积,说说什么是长方体的表面积? 知道它的面积该怎样计算吗?
2.迁移知识,灵活运用
学生利用所学方法推导长方体的表面积计算公式。
3.组际交流,发表见解
4.看书小结,掌握方法
请打开书,翻到P40,看书回答:
(1)什么是长方体的表面积?
(2)长方体的表面积的计算公式是什么?
5.引用方法,灵活解答
算一算你同桌手中长方体的表面积。
[凡是学生能独立思考的,就放手让学生自己获得;凡是能通过小组合作解决的问题,就通过班级适当交流取得共识。当学生独立思考、合作学习都不能很好解决时,教师再适时指导、点拨。]
篇7:《长方体和正方体的表面积二》教案
学习内容:
求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。
学习目标:
1、利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2、通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲
教学重点:
能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。
教学难点:
求一些不是完整六个面的长方体、正方体的表面积。
教具运用:
课件
教学过程:
一、复习导入
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)
1、做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2、一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授
1、教材25页第5题
(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?
(2)学生读题,看图,理解题意。
(3) 上下面不贴说明什么?(说明只需要计算4个面的.面积,上下两个面不计算)
(4)学生尝试独立解答。
(5)集体交流反馈。
方法一:10122+6122=240+144=384 (cm2)
方法二:(1012+612)2=(120+72)2=384 (cm2)
答:这张商标纸的面积至少需要384平方厘米。
2、教材26页第8题
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)
(2)学生读题,看图,理解题意。
(3)提问鱼缸的上面没有盖说明什么?(说明只需计算正方体5个面的面积之和)
(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。
335=95=45 (dm2)
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业
完成教材第26页练习六第9、10题。
四、课堂小结
提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?
五、课后作业
完成练习册中本课时练习。
板书设计:
长方体和正方体的表面积(2)
一个长方体的饼干盒,长10cm、宽6cm、高12cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?
方法一:10122+6122
=240+144
=384 (cm2)
方法二:(1012+612)2
=(120+72)2
=384 (cm2) 答:这张商标纸的面积至少需要384平方厘米。
一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?
335
=95
=45 (dm2) 答:制作这个鱼缸时至少需要玻璃45平方分米。
篇8:《长方体和正方体的表面积》的教案及反思
《长方体和正方体的表面积》的教案及反思
教学目标:
1、建立表面积概念。
2、小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。
3、运用公式实际应用,并提升学生的数学思维能力。
教学重点:
1、长方体表面积公式的求法探究。
2、公式的实际应用。
教学难点:
长方体表面积公式中长宽,长高,宽高呈现后,能够清晰的知道它们分别求的是哪些面的面积。
教具、学具的准备:长方体盒、正方体盒、桔子、长方体展开图、课件
教学研究过程:
一、回忆长方体、正方体特征,重建表象
1、师:我们已经初步认识了长方体和正方体,谁来说说长方体、正方体有哪些特征?
2、生:汇报
(长方体有6个面,每个面都是长方形或有两个相对面是正方形;长方体相对的面面积相等;长方体有8个顶点,12条棱,每平行的四条棱长度相等)
(正方体6个面都是完全相等的正方形,正方体是特殊的长方体,它的12条棱都相等)
3、师小结并引出课题
同学们对长方体、正方体认识的很好,今天我们一起共同来研究长方体、正方体的表面积。(板书课题)
二、建立表面积概念,认识表面积
1、师:看到这个课题,你最想知道或最想了解什么?
2、生交流: 什么是表面积?
怎样求表面积?
求表面积在生活中有什么用途?
表面积和以前所学的面积有什么不同?
3、师拿一桔子;提出:你知道桔子的表面积指的是哪里吗?
生摸一摸,说一说。
4、师:物体表面的总面积叫做物体的表面积,长方体的表面积指的是哪里,那正方体呢?
5、生指一指,摸一摸,说一说。
三、探求长方体表面积计算方法、正方体表面积计算方法
1、师:我们知道什么是表面积,如何来求它们的表面积呢?
小组内两两合作,把你如何求长方体表面积的思路与你的同桌进行交流。
(师在小组间巡视)
2、生交流汇报各种求长方体表面积的方法。
3、交流比较各种求法,继而得出长方体表面积计算方法(汉字与字母公式表示)
长方体表面积=(长宽+长高+宽高)2
S= 2(ab+ah+bh)
4、课件展示:通过课件的展示,让学生直观感受长方体
表面积方法的研究过程。
5、生总结:正方体表面积计算方法(含字母)
正方体表面积=棱长棱长6
S=6a2
四、基本反馈练习
1、计算一香皂盒的表面积
师:老师手里这个盒子的长为10cm,宽为7cm,高为3cm,
请你计算这个盒的表面积。
生试做,并指生上台板演
2、课件出示(三个立体图形),分别计算它们的表面积。
3、生在实物投影仪前讲解交流。
五、解释应用(课件出示题目)
1、一长方体铁盒长18厘米,宽15厘米,高12厘米,做这个铁盒至少要用多少平方厘米的铁皮?
a、生交流思路
b、列式。
2、一正方体无盖木箱,棱长5分米,这一箱子的表面积是多少?
a、生试做
b、交流思路
3、一间长8米,宽6米,高4米教室,门窗面积是15平方米,要粉刷四壁和房顶面,粉刷面积是多少平方米?
a、小组内交流思路
b、全班交流解题策略
c、生计算
3、谈收获或体会
通过这节课的研究与交流,你的收获或体会是什么?
反思:本着让学生的主体性得到充分体现,实施学生主体参与教学的理念,在课堂教学中体现主体实验的两条基本原则,即诚心诚意的让学生做主人,严肃严格的基本训练。通过老师提供的材料,创设一切有利于学生主体参与的环境氛围,在教师的引领及点拨下,让孩子们自己去认知、去概括归纳总结,亲历知识形成的过程,在建构知识的过程中让更多的孩子体验成功的快乐,使孩子们真正成为课堂学习中幸福的主人,使孩子们获得有效的数学学习,学习质量得到提高。本着这一教学理念,这节课设计了以下几个大的框架。
框架一:从回忆长方体、正方体特征,重建长方体、正方体表象,为解决本解决本节课的知识搭建一个前台。
框架二:建立表面积概念
在提供实物这一材料下,通过看一看、指一指、摸一摸、说一说,调动多个感官来很好的认识、理解表面积这一概念。
框架三:探求表面积计算方法
在深刻建立表面积概念的基础上,通过小组的两两合作,由已建立的知识经验通过合作交流很快得到长方体表面积不同的求法,并从中比较,选择出较简捷的方法,继而得到公式,由于正方体是特殊的长方体,在长方体研究透彻后,轻松的得出求正方体表面积的计算方法。
框架四:巩固练习
公式得出后的基本应用,通过老师手中香皂包装盒表面积的计算,及时对知识进行反馈。
框架五:解释应用
把所学的数学知识用来解决生活中的实际问题,会加深对数学知识的理解,使孩子们体会到学习数学的巨大作用,并在应用中提升对数学理解的质量,由基本练习到变式练习,再到提升练习的设计,在交流思路的过程中,还渗透了审题意识及习惯的养成,并使孩子们体悟到遇到具体情况进行具体的分析,灵活而又准确的找到解题方法。
框架六:谈本节课的收获
孩子们从知识目标上谈,同时从情感态度价值观方面谈自身的体会与收获,对数学这一许多人认为枯燥的学科中产生丰富的情感,激发起孩子们热爱数学的美好情感。
在这节课中,每一个孩子学习数学的主动性被极大的调动了起来,从问题的提出到交流,整个过程可以看到孩子们都在主动热烈的参与,特别是在探求长方体表面积不同的求法时,孩子们智慧的火花不时的在课堂上迸发,有的从长方体两个相对的面为一组去分析,得到求法;有的把长方体的上面、前面和左面分为一组去求;还有的孩子从长方体展开的平面图去求,更可贵的是有的孩子能够想到用底面周长乘以高再加上、下两面面积的方法得到长方体的.表面积。对问题的思考具有创新性与独特性,思维的深度得以发展。另外,孩子们语言的表述清晰、准确,声音洪亮,手拿学具示范时动作落落大方,谈体会与收获时精彩的发言给老师留下了深刻而美好的印象。从这节课上,可以看出孩子们对数学的情感是积极的,参与是主动的,同时,在达到完成教学目标的同时,数学思维得到了较好的发展,获得了有效学习。
这节课存在着一些遗憾的地方,例如:在探求长方体表面积方法的交流过程中,由于课堂上的生成情况较多,在处理时由于教学艺术的欠缺,耗时太长,以至于最后的几道提升练习来不及在课堂上完成,更多的精彩没有展现出来,留下了较大的遗憾。从这节课上,我收获了很多,同时,认识到自己在教学中还存在着较多的不足与问题。做为教师,课堂上当孩子们在热烈交流的过程中,要学会调控与把握,与教学目标关系不大时,要适时的把学生拉回来,一节课的时间是有限的。因此,教师要在钻研教材的基础上,要合理安排好时间,使孩子们在每一节课上的数学思维都得以发展与提升。这是一项长期而又艰巨的过程,它需要经验的积累,特别需要教师的教育智慧,教育机智,这需要历练与功夫,在今后的教学中,更要对教材深钻,准确的把握,因为这正是教学艺术的来源。
篇9:数学教案-长方体和正方体的表面积
教学目标
1.使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法.
2.培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念.
教学重点
表面积的意义.
教学难点
长方体表面积的计算方法.
教学过程()
一、复习准备.
1、说出长方形面积的计算公式.
2、看图回答.
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空.
这个长方体上、下两个面的长是( )宽是( ).
左、右两个面的长是( )宽是( ).
前、后两个面的长是( )宽是( ).
3、想一想.
长方体和正方体都有几个面?(6个面)
二、揭示课题.
今天这节课我们就来学习和研究有关这6个面的一些知识.
三、教学新课.
(一)长、正方体表面积的意义.
1.老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、
“左”、“右”、“前”、“后”标在6个面上.
2.沿着长方体和正方体的棱剪开并展平.(老师先示范,学生再做)
3.你知道长方体或者正方体6个面的总面积叫做它的什么吗?
教师明确:长方体或者正方体6个面的总面积,叫做它的表面积.
篇10:数学教案-长方体和正方体的表面积
长方体或者正方体6个面的总面积,叫做它的表面积.
例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?
答:至少要用148平方厘米的硬纸板.
探究活动
小小设计师
活动目的
1、理解正方体表面积的意义.
2、发展学生的空间观念.
活动形式
每4名学生为一组,分小组设计.
活动题目
纸箱厂要用硬纸板制作立方体.用下面的六个正方形连接在一起,组成的平面图形经折叠后正好能构成立方体,这样的图形我们就叫立方体的表面展开图.请你设计不同的立方体表面展开图.
参考答案
在立方体展开图的设计中,为了使图形既不重复又不遗漏,就需要进行适当的分类.我们称立方体展开图中最长的一条为主干,这一条如果由四个正方形组成,就称主干为四方连,同样主干有三方连,二方连等.这样,我们把展开图分成以下几类.
(1)主干为四方连.
(2)主干为三方连.
(3)主干为二方连.
【思考】立方体展开图中是否有主干为五方连的?
篇11:数学教案-长方体和正方体的表面积
(二)长方体表面积的计算方法.
例1.做一个长6厘米,宽5厘米,高4厘米的`长方体的纸盒,至少要用多少平方厘米的硬纸板?
1.这题的问题,实际上就是要我们求什么?
2.长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?
3.学生分组讨论.
解法(一)
6×5×2+6×4×2+5×4×2
= 60+48+40
= 148(平方厘米)
解法(二)
(6×5+6×4+5×4)×2
=(30+24+20)×2
= 74×2
= 148(平方厘米)
4.比较上面两种解答方法有什么不同?它们之间有什么联系?
解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和.解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二).
四、巩固练习.
1.一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?(用两种方法计算)
2.一个长方体铁盒,长18厘米,宽15厘米,高12厘米.做这个铁盒至少要用多少平方厘米的铁皮?
五、课堂小结.
通过解答例1和做一做,你发现长方体表面积的计算方法吗?
结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2
=(长×宽+长×高+宽×高)×2
六、课后作业.
1.一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?
2.一个长方体的形状大小如下图.
(1)它上、下两个面的面积分别是多少平方分米?
(2)它前、后两个面的面积分别是多少平方分米?
(3)它左、右两个面的面积分别是多少平方分米?
七、板书设计
篇12:长方体正方体表面积优秀教案设计
教学内容
人教版五年级下册P33~35页的内容
教学目的
1、通过动手操作,建立表面积的概念
2、经历探索长方体和正方体表面积计算方法的过程
3、掌握长方体和正方体表面积计算方法,能正确地计算长方体和正方体的表面积
4、了解长方体和正方体表面积计算在实际生活中的应用,体会数学的价值。
5、结合长方体和正方体表面积计算培养学生的探索精神、空间观念和解决问题的能力
教学重点
长方体和正方体表面积的意义和长方体和正方体表面积计算方法
教学难点
根据长方体的长、宽、高,确定长方体每个面的长、宽是多少
教学过程
一、自主探究 解决问题
(一)、动手操作,探索长方体正方体表面积的概念
分组操作
(1)每个学生拿一个长方体纸盒,沿着上面与前面相交的棱、左面与上面、前面、后面相交的棱以及右面与上面、前面、后面相交的棱将纸盒剪开,再展开,看一看,展开后的形状。
(2)在展开后的图形中,用“上”、“下”、“前”、“后”、“左”、“右”标明六个面。
(3)你有什么发现
{生的发现如果不在点上,师可提示思考:a这六个面与原来的长方体的六个面有什么关系?
b这个平铺的面的总面积与原来长方体的什么有关系?}
(4)在生独立操作思考之后,可以将自己的发现,说给小组内的同学听。注意:听的同学要边听边思考你的同学说的哪些与你不一样。
(预设:一部分学生能很清楚地表达。但是,还有一部分学生应该是比较茫然的。)
[如果生有不同的剪法,老师的做法:展示同学中的具有代表性的展开图。在展示的过程中,让学生体会“展开的图形不同,但是都是六个面。并且都是相对的面相等。]
(5)再次将这个平铺的图形,折起来还原成长方体。在折的过程中,注意观察那些面是长方体的上下面、左右面、前后面。
(6)为了区别,我们可以给相对的面涂上相同的颜色(画成相同的阴影)。再展开,观察自己所图的颜色,想象中折成一个长方体。
(7)通过这个过程,师生共同小结长方体6个面的总面积叫做它的表面积
【注:(4)(5)(6)环节可视学情增删】
(8)出示正方体。提问:你能用刚才的方法,将这个正方体剪开,展开,然后找到它的面积与这个正方体的六个面的关系吗?每个面的边长是原正方体的什么?
(9)教师归纳板书:长方体或正方体6个面的总面积,叫做它的表面积。
过渡:同学们,通过自己的探究,以合作交流的方式,学会了这么多知识,那么怎样计算出长方体、正方体的表面积呢?老师还想让你们去发现,你们有信心接受挑战吗?
(二)、探索长方体、正方体的面积计算方法
(1)观察这个长方体的长、宽、高,(注意,手中的长方体不能随意转动)认准,然后展开,在展开图上用不同颜色标出长、宽、高。
①思考讨论:长方体每个面的长和宽与原长方体的长、宽、高有什么联系?
②填一填
a 上、下每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚;
b 前、后每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚;
c 左、右每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚。
(2)观察思考:怎样求长方体的表面积?
(3)你能想办法试着求出你手上的长方体的表面积吗?[用汉字表示出每个面的面积和总面积]
【注:这个过程,也可以让学生测量三条棱,再计算出表面积(根据时间和学生的状况而定)】
(4)出示例题 探究长方体表面积计算方法
做一个长0.5m,宽0.3m,高0.4m的长方体募捐箱,至少要用多少平方米硬纸板?
上、下每个面,长_____,宽_____,面积是________________
前、后每个面,长_____,宽_____,面积是________________
左、右每个面,长_____,宽_____,面积是________________
这个募捐箱的表面积是:_____________________
①学生分析题意,试着解答.教师巡视,相机辅导。
②找两个有代表性的学生上黑板
③学生汇报:让有不同解法学生说出解法及解题思路。
④分组讨论:比较两种解法有什么不同?有什么联系?哪种解法简便?
不同:第一种方法是先分别算出上、下面的面积和,前后面的面积和,以及左、右面的面积和,然后加起来。第二种方法是先算上面、前面、左面三个面的面积和,再乘以2。
联系:根据乘法分配律可以把第一个算式改变成第二个算式。第二个算式更简便些。
⑤计算长方体表面积时,最关键的是找出什么
(计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。)
⑥思考:如果按我们算好的硬纸板的面积去领正合适的纸板,能做出我们需要的募捐箱吗?为什么?
(5)、总结出长方体表面积的计算方法。
(6)、小练习:
1.募捐箱做好后,想找一些漂亮的红纸装饰一下箱子的外面,观察一下哪些面需要装饰漂亮又省纸?那需要多少红纸?(小组讨论解决)
2.我会填(练习六的第一题的前2个图)。
a、两个长方体中朝着我们的面(前面)的面积分别是_____和______。
b、两个长方体的右侧面的面积分别是______和_______。
c、两个长方体向上的面的面积分别是______和_______。
(7)、迁移类推。出示例2。探究正方体的表面积计算方法。
过渡:经过刚才的练习你能熟练掌握长方体的表面积计算方法吗?再给你一次机会你有信心还做对吗?有信心是件好事情!请快速计算出长方体的表面积是多少。(课件出示长方体)
长16cm,宽12cm高14它的表面积是多少?
(课件演示长方体长渐变短12cm,宽12cm,高渐变矮12cm)它的表面积是多少?
师:这是什么图形?长方体的长宽高一样长时变成了正方体,正方体的表面积等于什么?
给你正方体的棱长你会计算正方体的表面积吗?听好一个正方体它的棱长是1.2cm分米,它的表面积是多少?
【如果没有多媒体条件的学校,老师的做法:不做任何提示,直接出示例2生独立完成。老师巡视,发现个别问题及时个别纠正。普遍问题抽生上黑板板演,集体纠正。在纠正的过程中完善关于正方体的表面积的计算。】
在这个基础上,让学生在独自做完的前提下,说说自己是怎么样想的。其实就是一个思考的过程)。这一部分,让学生自己做,给同学说。与同学的相比找到自己的不足,然后向同伴学习。】
二、巩固应用,强化提高
1.师:长方体和正方体在生活中随处可见,掌握了它们表面积的计算方法可以解决生活中的许多问题。看!工人师傅就遇到这样一个问题,出示例1,你能帮助他解决吗?
(生读题,理解题意,明确要求)
2、老师周末在家收拾屋子遇到了这样的问题,老师发现家里的衣柜布罩太旧了得换块新的,如图衣柜长0.75m,宽0.5m,高1.6m,老师至少要买多少平方米的布?你能帮助解决吗?
(先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。)
3.计算正方体的表面积。35页做一做
4.机动
三、全课小结,课外延伸
今天我们研究了什么问题?你有什么收获?
篇13:长方体正方体表面积优秀教案设计
学习目标:
1、能说出什么是长方体和正方体的表面积,会说出它们的表面积公式,会计算长方体和正方体的表面积。2、能用长方体和正方体的表面积知识解决生活中的实际问题。
学习重难点:能用长方体和正方体的表面积知识解决生活中的实际问题。
学习流程:
一、问题引入
出示长方体问:长方体的长、宽、高各是多少?再分别指出它前面长和宽,并口算它的面积。
二、自学讨论
1.自学长方体和正方体的表面积的概念。
(1)拿一个长方体或正方体纸盒,沿着棱剪开,再展开,看一看,展开后的形状。并用“上”、“下”、“前”、“后”、“左”、“右”标明六个面。
(2)你有什么发现?结合你手中的长方体说说什么叫它的表面积?
2.自学长方体的表面积的计算方法。
(1)演示长方体展开图。
①思考讨论:长方体每个面的长和宽与长方体的长、宽.高有什么联系?
②填一填
上、下每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚;
前、后每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚;
左、右每个面,长=长方体的﹙﹚,宽=长方体的﹙﹚
(2)观察讨论:怎样求长方体的表面积?并列出算式。
(3)自学例1做一个长微波炉的包装箱,至少要用多少平方米硬纸板?
①求至少要用多少平方米硬纸板救是求长方体的什么?
②比较各种解法有什么不同?有什么联系?哪种解法简便?
④计算长方体表面积时,最关键的是找出什么?
思考:如果按我们算好的硬纸板的面积去领正合适的纸板,能做出我们需要的包装箱吗?为什么?
(4)总结出长方体表面积的计算方法。
3.自学学习正方体表面积的计算。
三、展示互动
1. 34页做一做。 2.35页做一做。
四、反馈提升
1.一个长方体的饼干盒,长10cm,宽6cm,高12cm。如果围着它贴一圈商标(上下面不贴),这张商标纸的面积至少要多少平方厘米?
2.看谁最聪明!
如果把一个长方体切分成两个长方体时,这两个长方体的表面积的和比原长方体的表面积是增加了还是减少了?为什么?
五、评价。
篇14:长方体正方体表面积优秀教案设计
学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。”(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。
教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。
引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历-和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。
篇15:《长方体和正方体的表面积》教案设计
一、教学构思
长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:
1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:
一、引导学生学习正方体表面积的计算方法
1.回忆
上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?
2.联想:
(拿起一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积 是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?
3.归纳引入新课:
正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)
4.教学例2
提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?
(课堂实录:有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)
(点评:良好的开端是成功的一半,一堂课是否有好的开头是上好一堂课的关键。针对小学生的心理特点,上课一开始,我首先利用长方体和正方体的模型进行导入,先请学生思考用什么方法计算正方体的表面积,接着根据以前所学的知识进行推导,从而引出新的计算方法,使得学生愉快主动地进入学习情境,强化了有意注意,激发学生的求知欲望,对新的知识进行探索。通过教学的导入,明确了教学的目标,确定了研究方向,这时再引导学生学习就事半功倍了。)
师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。
二、鱼缸的制作问题
说明:我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算。如例3。
1.帮助学生回忆鱼缸的形状(长方体,但是没有上面)
2.如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)
3.教学例3
(出示长方体模型,把它看成鱼缸的模型)
(1)鱼缸缺少哪个面的玻璃?(上面)
(2)要求需要多少平方分米玻璃,要算几个面的面积和?哪几对面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高 底面=长*宽)
(3) 指名学生板演,集体订正。
(点评:在教学中采用学生生活中较熟悉的物体“鱼缸”启发学生如何计算制作一个鱼缸所需材料的面积,也就是计算长方体某几个面的面积之和。这个事例在生活中较普遍,再加上利用一些模具进行教学,使得学生在学习中能够更好地联系实际情况进行学习。以上这一系列的活动表现了完整的`探究过程,都体现让学生经历整个教学的探究过程。)
(4)改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?
学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。
学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。
学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同
说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。
(点评:数学是很严谨的,所以在学生叙述的时候要规范学生的语言。我在教学的时候还注重评价,运用语言和体态及时给予适当的鼓励和指导,促进学生的学习和发展。第三位同学回答地最完善,所以我表扬了他在叙述数学问题时所具有的严谨性,同时要求全班同学在这方面要向他学习。)
4、练习
书P42页练习二的第一、二 题。
(点评:要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)
篇16:六年级数学长方体和正方体的表面积教案
苏教版六年级数学长方体和正方体的表面积教案
教学目的:
使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。
教学过程:
一、复习导入
谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?
师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的表面积)
师:要求出长方体或正方体的表面积,你觉得要知道什么?
二、新课教学
1、教学长方体的表面积
教师出示长方体透视图。
长方体有几个面?每个面是什么形状?面与面有什么特点?
说说各个面的长与宽。
提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?
出示例1
学生读题,找出条件和问题。
提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)
那我们可以怎么想呢?
引导学生列出算式:8×5×2+8×4×2+5×4×2
提问:8×5×2、8×4×2、5×4×2分别求的什么?
学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。
提问:这道题还可以怎么列式呢?
同桌同学讨论,解答。教师巡视。
指名汇报算式:(8×5+8×4+5×4)×2。
提问:问什么先算3个面的面积和再乘以2?
学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。
提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)
提问:哪一种方法更简便?(第二种)
教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。
完成练一练第1题。
你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。
2、立方体表面积计算
独立完成试一试,说说立方体表面积计算方法是怎样的?
三、课堂练习
完成练一练
四、全课总结
长方体或者正方体的`6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
五、布置作业
作业本
六、课外延伸:
1、用两个同样大的正方体小木块拼成一个长方体,这个长方体的表面积比原来两个小正方体表面积的和大还是小?为什么?
2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是( )平方厘米。
篇17:《长方体和正方体的表面积》数学教案设计
教学目标
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重难点
掌握长方体和正方体表面积的计算方法。
教学工具
长方体、正方体纸盒,剪刀,投影仪
教学过程
【复习导入】
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
【新课讲授】
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
课后小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
课后习题
1、填空。
(1)一个正方体棱长5厘米,它的棱长和是( ),表面积是( ),体积是( )。
(2)一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是( ),占地面积是( ),表面积是( ),体积是( )。
(3)一个长方体方钢,横截面积是12平方厘米,长2分米,体积是( )立方厘米。
(4)一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水( )升。
(5)一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重( )千克。
(6)正方体的棱长扩大3倍,棱长和扩大( )倍,表面积扩大( )倍,体积扩大( )倍。
(7)用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体( )块。
(8)一个长方体的长、宽、高分别是a米、b米、h米。如果高增加2米,体积比原来增加( )立方米。
2、判断。(正确的在括号内打“√”,错的在括号内打“×”)
(1)正方体是由6个完全相同的正方形组成的图形。( )
(2)棱长6厘米的正方体,它的表面积和体积相等。( )
(3)a?表示 a×3 。( )
(4)一个长方体(不含正方体),最多有两个面面积相等。( )
(5)一个长方体(不含正方体),最少有两个面面积相等。
板书
长方体和正方体的表面积(1)
长方体的表面积=(长×宽+长×高+宽×高) ×2
正方体的表面积=边长×边长×6
篇18:《长方体和正方体的表面积》数学教案设计
教学目标
1.1 知识与技能:
(1)理解长方体和正方体表面积的意义,掌握长方体和正方体表面积的计算方法。
(2)在理解和推导长方体和正方体表面积的计算方法的过程中,培养抽象概括能力、推理能力和思维的灵活性,同时发展空间观念。
1.2过程与方法:
学会解决实际生活中有关长方体和正方体表面积计算的问题。
1.3 情感态度与价值观:
培养学生的分析能力,发展学生的空间观念。
教学重难点
2.1 教学重点:
建立表面积的概念以及理解并掌握长方体表面积的计算方法。
2.2 教学难点:
根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学工具
课件、题卡
教学过程
一、复习引入
(一)填空。
1、长方体一般是由6个 长方形 (特殊情况有两个相对的面是 正方形 )围成的立体图形。
2、在一个长方体中,相对的面 完全相同 ,相对的棱 长度相等 。
3、正方体是由6个 完全相同的正方形 围成的立体图形。
(二)
(1)计算各长方体中正面的面积。4×2=8(平方厘米)
(2)计算各长方体中右侧面的面积。3×2=6(平方厘米)
(3)计算各长方体中上面的面积。4×3=12(平方厘米)
二、新知探究
1.初步认识长方体的表面积。
师:我们先来探究什么是长方体、正方体的表面积。(教师利用课件出示长方体牙膏盒)请同学们仔细观察:沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,你发现了什么?
生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体的外表展开后是由6个长方形组成的。
2.初步认识正方体的表面积。
师:同学们观察的很仔细!(再出示正方体药盒课件)按同样的方法剪开,再展开,你又发现了什么?
生1:我发现正方体展开后也变成了平面图形。
生2:我发现正方体的外表展开后是由6个正方形组成的。
3.认识长方体、正方体表面积的含义。
师:说得对!请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。师:从学生手中选一个长方体和一个正方体展开图贴在黑板上。问:通过观察课件和动手操作实物模型,谁知道什么叫做长方体或正方体的表面积?
生1:长方体或正方体的表面积就是指长方体或正方体外表的面积,也就是上下、前后、左右六个面的面积和。
生2:简单地说就是长方体或正方体六个面的总面积,叫做它的表面积。
我们知道了什么是长方体和正方体的表面积,怎样计算表面积呢?
4、探索活动:
“演示课件长方体的表面积”
上、下每个面,长_ 0.7米__,宽 _0.5米__,面积是 _0.35平方米___;
前、后每个面,长__0.7米 __,宽__0.4米__,面积是__0.28平方米___;
左、右每个面,长__0.5米 _,宽__0.4米 _,面积是___0.2平方米____。
教师温馨提示:
上下两个面大小------,它是由长方体的------和------作为长和宽的;
前后两个面大小相等,它是由长方体的----和----作为长和宽的;
左右两个面大小相等,它是由长方体的----和----作为长和宽的.
长方体的表面积如何计算?
教师温馨提示:
分别求出相对面的面积,再相加。
小组交流:集体研讨:
学生归纳,老师板书:
长方体表面积:长×宽×2 + 长×高×2 + 高×宽×2
或:(长×宽+ 长×高+ 高×宽)×2
5. 出示例1
做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?
学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。
生1:先算3个不同面的面积和再乘2。
(0.7×0.5+0.7×0.4+0.5×0.4)×2
生2:先分别求出两个相对面的面积和,再相加
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2
所以长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
6、一个正方体墨水盒,棱长6.5厘米。制作这个墨水盒至少需要多少平方厘米的硬纸板?
想:求至少用多少平方厘米的硬纸板,就是要求什么?自己试一试!
(6.5×6.5+6.5×6.5+6.5×6.5)×2
=(42.25+42.25+42.25)×2
=42.25×3×2
=253.5(平方厘米)
因为正方体的特性所以:
6.5×6.5×6
=42.25×6
=253.5(平方厘米)
答:制作这个墨水盒至少需要253.5平方厘米的硬纸板。
正方体表面积=棱长×棱长×6,用字母表示:S=6a2
三、巩固提升
1、计算下列图形的表面积。(单位:厘米)
(15×12+15×8+12×8)×2=792(平方厘米)
(18×9)×4+(9×9)×2=810(平方厘米)
25×25×6=3750(平方厘米)
10×10×6=600(平方厘米)
2、一个正方体礼品盒,棱长1.2dm。如果实际用纸是表面积的1.5倍,包装这个礼品盒至少用多少平方分米的包装纸?
1.2×1.2×6=8.64(平方分米) 8.64×1.5=12.96(平方分米)
答:包装这个礼品盒至少用12.96平方分米的包装纸。
3、一个玻璃鱼缸的形状是正方体,棱长3dm。制作这个鱼缸时至少需要玻璃多少平方分米? (鱼缸的上面没有盖。)
3×3×5=45(平方分米)
答:制作这个鱼缸时至少需要玻璃45平方分米。
4、亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(如下图,没有底面)。至少需要用布多少平方米?
0.75×0.5+0.5×1.6×2+0.75×1.6×2
=0.375+1.6+2.4
=4.375(平方米)
答:至少需要用布4.375平方米。
课后小结
本节课学习了什么?
长方体或正方体六个面的总面积,叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
正方体表面积=棱长×棱长×6,用字母表示:S=6a2
板书
长方体和正方体的表面积
长方体或正方体六个面的总面积,叫做它的表面积。
例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?
(0.7×0.5+0.7×0.4+0.5×0.4)×2
=0.35×2+0.28×2+0.2×2
=0.7+0.56+0.4
=1.66(m2)
答:至少要用1.66m硬纸板。例2:一个正方体墨水盒,棱长6.5厘米。制作这个墨水盒至少需要多少平方厘米的硬纸板?
6.5×6.5×6
=42.25×6
=253.5(平方厘米)
答:制作这个墨水盒至少需要253.5平方厘米的硬纸板。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示S=2(a×b+a×h+b×h)
正方体表面积=棱长×棱长×6,用字母表示:S=6a2
篇19:长方体和正方体的表面积
教学目标
(一)理解长方体和正方体表面积的意义。
(二)理解并掌握长方体和正方体表面积的计算方法。
(三)培养和发展学生的空间观念。
教学重点和难点
(一)长方体、正方体表面积的意义和计算方法。
(二)确定长方体每一个面的长和宽。
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程设计
(一)复习准备
1.口答填空。
(1)长方体有( )个面,一般都是( ),相对的面的( )相等;
(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;
(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。
【《长方体和正方体的表面积》教案】相关文章:
9.长方体的表面积






文档为doc格式