欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>数学教案-列代数式

数学教案-列代数式

2023-05-18 07:56:05 收藏本文 下载本文

“hitchhiker”通过精心收集,向本站投稿了20篇数学教案-列代数式,以下是小编为大家整理后的数学教案-列代数式,希望对您有所帮助。

数学教案-列代数式

篇1:数学教案-列代数式

教学目标

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来。

2.初步培养学生观察、分析和抽象思维的能力。

3. 通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。

教学建议

1.教学重点、难点

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

2.本节知识结构:

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

3.重点、难点分析:

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比 的2倍大2的数。

分析  本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.

4.列代数式应注意的问题:

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

5.教法建议:

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

教学设计示例

列代数式

教学目标

1.  使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2.  初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程 设计

一、从学生原有的认知结构提出问题

1?用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;( -7)

(4)乙数比x大16%?((1+16%)x)

(应用引导的方法启发学生解答本题)

2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

二、讲授新课

例1  用代数式表示乙数:

(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

解:设甲数为x,则乙数的代数式为

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x?

例2  用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的 与乙数的 的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积?

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

解:设甲数为a,乙数为b,则

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的`和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

例3  用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数?

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;   (2)5m+2?

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

例4  设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的 ;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?

分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

解:(1)3(a+5); (2) (a-1); (3) (5a+7);  (4) a2+ a?

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

例5  设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;   (2)( m)m个?

三、课堂练习

1?设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的 的和;  (2)甲数的 与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?

2?用代数式表示:

(1)比a与b的和小3的数;    (2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?

3?用代数式表示:

(1)与a-1的和是25的数;   (2)与2b+1的积是9的数;

(3)与2x2的差是x的数;    (4)除以(y+3)的商是y的数?

〔(1)25-(a-1); (2) ;   (3)2x2+2; (4)y(y+3)?〕

四、师生共同小结

首先,请学生回答:

1?怎样列代数式?2?列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?

五、作业

1?用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2?已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)

篇2:《列代数式》教案

教学目标

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来。

2.初步培养学生观察、分析和抽象思维的能力。

3.通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。

教学建议

1.教学重点、难点

篇3:《列代数式》教案

教学目标

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2.初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

篇4:《列代数式》教案

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题

二、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

解:设甲数为x,则乙数的代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;(2)(m)m个

三、课堂练习

1设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2用代数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数

3用代数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)〕

四、师生共同小结

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握

五、作业

1用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)

篇5:《列代数式》教案

难点:弄清楚语句中各数量的意义及相互关系。

2.本节知识结构:

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

3.重点、难点分析:

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比的2倍大2的数。

分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.

4.列代数式应注意的问题:

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的`加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

5.教法建议:

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

教学设计示例

篇6:代数式的数学教案

代数式的数学教案

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法,数学教案-代数式。

教学建议

1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2, 都是代数式.

(3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号.如 , ,等都是代数式,而 , , , 等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.如: 应写作

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语,初中数学教案《数学教案-代数式》。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例

代数式

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

教学重点和难点

重点:用字母表示数的意义

难点:学会用字母表示数及正确地说出代数式所表示的.数量关系

课堂教学过程设计

一、从学生原有的认知结构提出问题

1痹谛⊙我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

(1)加法交换律 a+b=b+a;

(2)乘法交换律 a·b=b·a;

(3)加法结合律 (a+b)+c=a+(b+c);

(4)乘法结合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

1、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

b表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

2、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

二、讲授新课

1贝数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

2本倮说明

例1 填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

(此例题用投影给出,学生口答完成)

解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

例2 说出下列代数式的意义:

(1) 2a+3 (2)2(a+3); (3) (4)a- (5)a2+b2 (6)(a+b) 2

解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(3) 的意义是c除以ab的商; (4)a- 的意义是a减去 的差;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点比绲(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

例3 用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

解:(1) ; (2)(m-5n)2 (3)2x+y; (4)3tν3

三、课堂练习

1碧羁眨(投影)

(1)n箱苹果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

2彼党鱿铝写数式的意义:(投影)

(1)2a-3c; (2) ; (3)ab+1; (4)a2-b2

3庇么数式表示:(投影)

(1)x与y的和;(2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和

四、师生共同小结

首先,提出如下问题:

1北窘诳窝习了哪些内容?2庇米帜副硎臼的意义是什么?

3笔裁唇写数式?

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

五、作业

1币桓鋈角形的三条边的长分别的a,b,c,求这个三角形的周长

2闭徘勘韧趸大3岁,当张强a岁时,王华的年龄是多少?

3狈苫的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4盿千克大米的售价是6元,1千克大米售多少元?

5痹驳陌刖妒荝厘米,它的面积是多少?

6庇么数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的 的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长

篇7:<<列代数式>>教学目标

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的`词语用代数式表示出来。

>教学目标“ loading=”lazy“ src=”p.9136.com/0p/l/c4bfb1ea4_2.jpg“>

2.初步培养学生观察、分析和抽象思维的能力。

3. 通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。

篇8:新湘教版列代数式教案设计

一、教学目标

1.经历探索规律并用代数式表示规律的过程.

2.能用字母和代数式表示以前学过的运算律和计算公式.

3.体会字母表示数的意义,形成初步的符号感.

二、教法设计

观察、启发、讨论分析

三、教学重点及难点

教学重点:能用字母和代数式表示基本数量关系

教学难点:体会字母表示数的意义

四、课时安排

1课时

五、师生互动活动设计

情景教学,合作学习.

六、教学思路

(一)、创设情景,呈现内容

1.搭1个正方形需要4根火柴棒。

(1)接上图的方式,搭2个正方形需要______根火柴棒,搭3个正方形需要_________根火柴棒。

(2)搭10个这样的正方形需要多少根火柴棒?

(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?

(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流。

上面数据转换的过程实际就是代数式求值的过程,请大家归纳求代数式的值的步骤。

(二)、合作交流,探索发现

1.根据你的计算方法,搭200个这样的正方形需要多少根火柴棒?

利用小明的计算方法,我们用200代替4+3(x-1)中的x,可以得到

你的结果与小明的结果一样吗?

2.请用字母表示以前学过的公式和法则。

(三)、合作解例

例1.用火柴棒按下面的方式搭图形:

(2)写n个图形需要多少根火柴棒?

例2:填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

学生活动:找一个学生口述,教师板书过程.

(四)、寓教于乐

观察等式

1+2+1=4

1+2+3+2+1=9

1+2+3+4+3+2+1=16

1+2+3+4+5+4+3+2+1=25

(1)写出和上面等式具有同样结构,等号左边最大数是10的式子。

(2)写出一个等式,要求它能代表所有类似的等式,清楚地反映出这类等式的特点。

分析:我们通过观察等式发现,这些式子右边都是一个自然数的平方,左边是一连串自然数相加,其中,最在的自然数的平方恰好是右边的数。即左边最大的数与右边二次幂的底数相同,要表示所有这类式子都具有的这种相等关系,只有使用字母。

解:(1)1+2+3+…+10+9+8+7+…+1=102。

(2) 列代数式教案 - 上善 - 若水

注意:题中所给的每一个式子都只是一个特殊的情况,多个这样的式子也能反映出普遍规律,但是比较麻烦。

要想用一个式子表示类似许多式子的规律性,只有用字母。

(五)、巩固练习

自编2道用字母表示数的题目,并解释它的背景。

学生活动:自己思考并解答,全班相互交流.

(六)、小结

这节课,你有什么收获吗?你对自己的学习还满意吗?你在学习的过程中有什么困难的地方吗?课后和同学交流一下.

自我评价

1.先进鲜明的教学理念.

2.和谐融洽的教学气氛.在整个教学过程的设计中师生是朋友,是合作者;教师的引导好象是在讲故事;讲解则是学生探索结果的概括;学生之间也充满合作.

3.紧张活泼的教学节奏.本课设计中安排了不同层次的提问与练习,而且采取了灵活多变的呈现方式,从而使教学过程呈现出紧张活泼的特点

[新湘教版列代数式教案设计]

篇9:提供列代数式测试题练习及答案参考

提供列代数式测试题练习及答案参考

◆随堂检测

1、“a的3倍与b的的和”用代数式表示为

2、被3除商为n余1的数是

3、某电影院第一排有x个座位,后面每一排都比前一排多2个座位,则第n排有个座位。

4、某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P千米的路程(P>7)所需费用是

A、5+1.5PB、5+1.5C、5-1.5PD、5+1.5(P-7)

5、用代数式表示

(1)比a的倒数与b的倒数的和大1的数

(2)与的和的20%

(3)比x与y的积的倒数的4倍小3的数

(4)a,b两数的平方和除以a,b两数的和的平方

◆典例分析

例:用代数式表示:

(1)如果两数之和为20,其中一个数用字母表示,那么这两个数的积为 。

(2)设为整数,则三个连续的偶数: 。

(3)比的平方大的数 。

(4)某产品的生产成品由元下降后是 元

(5)梯形的上底是,下底是上底的倍,高比上底小,则这个梯形的面积为 。

解:(1);(2),,;(3);(4);(5)。

评析:(1)根据两数之和为20,先表示出另一个数为,然后将两个数相乘,但要注意不能忘记在上加上括号;

(2)首先是一个偶数的表示方法:,其次是相邻的两个偶数相差为2;

(3)一是注意先读先写,二是“大”的意思用符号表示为“+”;

(4)本例应注意避免将“由元下降”错误表示为“”。正确理解是在元的基础上下降了5%x元,即;

(5)先由题意分别表示下底=,高=,然后利用梯形面积公式列出式子:。

●拓展提高

1、百货大楼进了一批花布,出售时要在进价的基础上加上一定的利润,其数量x与售价y之间的关系如下表:

数量x(米)1234…

售价y(元)8+0.316+0.624+0.932+1.2…

下列用数量x表示与售价y的公式中,正确的是()

A、B、C、D、

2、一台电视机成本a元,销售价比成本价增加,因库存积压,所以就按销售价的出售,那么每台实际售价为()

A、B、

C、D、

3、比和的差的一半大的数应表示为 。

4、班会活动中,买苹果kg,单价元,买桔子kg,单价元,则共需 元,若再增加kg苹果,则要增加 元。

5、一同学在斜坡上骑自行车,上坡速度为km/h,下坡速度为km/h,则上下坡的'平均速度为 。

6、有一棵果树结了个果子,第一个猴子摘走,扔掉一个,第二个猴子又摘走剩下的,扔掉一个,第三个猴子又摘走剩下的又扔掉一个。用代数式表示三个猴子摘走和剩下的果子数。

7、如图,为一级梯阶的纵截面,一只老鼠沿长方形的两边A→B→D的路线逃路,一只猫同时沿梯阶(折线)A→C→D的路线去捉,结果在距C点0.6米的D处,猫捉住了老鼠,已知老鼠的速度是猫的速度的,求梯阶A→C的长度,请将下表的每一句话“译”成数学语言(写出代数式)。

设梯阶(折线)A→C的长度为x

AB+BC的长为

A→C→D的长为

A→B→D的长为

设猫捉老鼠所用的时间为t

猫的速度

老鼠的速度

●体验中考

1、(江苏镇江中考题)用代数式表示“的3倍与的差的平方”,正确的是()

A、B、C、D、

2、(新疆维吾尔自治区中考题)某商品的进价为元,售价为120元,则该商品的利润率可表示为__________。

3、(20天津市中考题改编)某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折。设一次购书数量为(x>10)本,付款金额为元,请用一次购书数量的代数式来表示=__________。

4、(20湖南益阳中考题改编)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为__________。

参考答案:

◆随堂检测

1、2、3、4、D

5、(1);(2);(3);(4)。

◆课下作业

●拓展提高

1、B2、B3、4、,5、

6、第一个猴子摘走个,还剩个,第二个猴子摘走个,还剩个,第三个猴子摘走个,还剩个。

7、自上而下依次填入:x米,(x+0.6)米,(x-0.6)米,米/秒,

米/秒,由于老鼠的速度是猫的速度的,将有关代数式连起来得:=。

●体验中考

1、A

2、

3、

4、(50n+10)厘米

篇10:代数式

代数式

一、教学目标:

1. 使学生认识用字母表示数的意义;

2. 使学生理解代数式的概念,理解一些代数式的实际背景或几何意义,对符号语言有进一步的理解;

3. 能说出一个代数式表示的数量关系,能列出代数式

二、教学重点和难点

重点:理解代数式的概念。

难点:把数式数量关系用代数式简明地表示出来。

三、教学过程

(一)复习、引入

提问:

1. 怎样用字母表示加法交换律?

2. 怎样用字母表示乘法交换律?

3. 怎样用字母表示加法结合律、乘法结合律、分配律?

答:1. 用字母表示加法交换律:

a+b=b+a

2. 用字母表示乘法交换律:

a×b=b×a

3. 用字母表示加法结合律:

(a+b)+c=a+(b+c)

用字母表示乘法结合律:

(a×b)×c=a×(b×c)

用字母表示乘法对加法分配律:

a×(b+c)=a×b+a×c

以上是用字母表示数的例子,还有什么数可以用字母表示呢?

(二)新课

篇11:代数式

(1)a于b的差与c的平方的和.

(2)百位数字是a,十位数字是b,个位数字是c的三位数.

(3)用含同一个字母的`代数式表示三个连续的整数,并写出它们的和.

解:(1)(a-b)+ .

(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).

(3)设m是整数,三个连续整数可表示为m-1,m,m+1,它们的和为(m-1)+m+(m+1),即3m.

注意:(1)在代数式中,字母与数或字母与字母相乘,通常把乘号写作“·”或省略号不写,如2×a写作2·a或2a(但不能写作a2),a×b写作a·b或ab.

(2)代数式中出现除法运算时,一般以分数的形式表示,如s÷t写作 (t≠0)

(三)巩固练习:

1.指出下列各代数式的意义:

(1) +2; (2)a(b+1)-1.

2.用代数式表示:

(1)a,b两数的差与c的积.

(2)x,y两数的和的平方减去它们差的平方.

(3)一个数等于a的3倍与b的和.

(四)小结

本节主要学习了代数式的概念,以及代数式的读法和写法,并初步学习用代数式表示简单的数量和数量关系。

学习代数式要特别注意以下几点:

(1) 代数式中含有加、减、承、除、开方、乘方等运算符号,不含有等号或不等号,单独的一个数(或字母)也是代数式。

(2) 代数式与公式不同,公式是等式,但不是代数式,代数式是不含“=”号的。

(3) 代数式的书写要严格遵照其书写规定:

① 代数式中的“×”,简写为“·”或省略不写,数字与字母相乘时,数字要写在字母的前面,如果是带分数,要化成假分数,数字与数字相乘仍用“×”。

② 在代数式中遇到除法运算时,一般按分数的形式表示。

(4) 代数式的读法没有统一的规定,一般以能够简明的体现出代数式的运算顺序,不致于引起误会为主

(五)作业

书P145 1.(2),(4) 2.(1),(5)

篇12:代数式

下面看几个用字母表示数的例子:

1. 如果甲数为x,乙数为y,那么甲、乙两数的差是多少?

答:甲、乙两数的差是x-y。

2. 如果长方形的长各宽分别为a和b,那么它的周长和面积各是多少?

答:长方形的周长是2(a+b);

长方形的面积是a·b。

3. 如果梯形的上底为a,下底为b,高为h,那么它的面积是多少?

答:梯形的面积是

现在我们来分析上面四个公式有哪些共同的特征。

(1)这些式子中,都含有数字或表示数字的字母;(2)它们都是用运算符号连接起来的。

实际上,用运算符号把数或表示数的字母连接而成的式子,就是代数式。

单独的一个数或一个字母,也是代数式,如5,a,m等都是代数式。

说明:

(1)这里的运算是指加、减、乘、除、乘方、开方(可以提出“开方”这个词,以后要学)。

(2)强调代数式仅指用“运算”符号连接数或字母而得到的算式,代数式中不含有等号或不等号。如S=ab是等式,也可表示长方形面积公式。它不是代数式,而ab是代数式。

练习:举出五个含有加、减、乘、除、乘方运算的代数式(每一个代数式至少含有两种运算)。

(3)代数式里的每个字母都表示数,因此数的一些运算规律也适用于代数式。

如:2x+2y=2(x+y)

例1 指出下列代数式的意义:

(1)2a+5; (2)2(a+5); (3) ;

(4)(5) (6)

分析:说出代数式的意义就是要求写出代数式的读法,一个代数式可以有几种读数,写出一种即可。

解:(1)2a+5表示的是a的2倍与5的和.

(2)2(a+5)表示的是a与5的和的2倍.

(3) 表示的是a的平方与b的平方的和.

(4) 表示的是a,b两数和的平方.

(5) 表示的是x的倒数.

(6) 表示的是x与它的倒数的和

注意:解这类问题的关键是:(1)认真分析代数式中含有哪些运算,它们运算顺序是什么,从而正确,简明地体现出代数式的运算顺序,(2)不会引起误解;(3)为了简明地叙述代数式的意义,也可以找出最后的运算,把它用语言表达出来,其它的运算用代数式表示。如(7) 的意义可叙述为a+b与a-b的商,(8)3(x2-y2)可叙述为3与x2-y2的积。

篇13:代数式

一、教学目标 :

1. 使学生认识用字母表示数的意义;

2. 使学生理解的概念,理解一些的实际背景或几何意义,对符号语言有进一步的理解;

3. 能说出一个表示的数量关系,能列出

二、教学重点和难点

重点:理解的概念。

难点:把数式数量关系用简明地表示出来。

三、教学过程

(一)复习、引入

提问:

1. 怎样用字母表示加法交换律?

2. 怎样用字母表示乘法交换律?

3. 怎样用字母表示加法结合律、乘法结合律、分配律?

答:1. 用字母表示加法交换律:

a+b=b+a

2. 用字母表示乘法交换律:

a×b=b×a

3. 用字母表示加法结合律:

(a+b)+c=a+(b+c)

用字母表示乘法结合律:

(a×b)×c=a×(b×c)

用字母表示乘法对加法分配律:

a×(b+c)=a×b+a×c

以上是用字母表示数的例子,还有什么数可以用字母表示呢?

(二)新课

Ⅰ.的概念:

下面看几个用字母表示数的例子:

1. 如果甲数为x,乙数为y,那么甲、乙两数的差是多少?

答:甲、乙两数的差是x-y。

2. 如果长方形的长各宽分别为a和b,那么它的周长和面积各是多少?

答:长方形的周长是2(a+b);

长方形的面积是a·b。

3. 如果梯形的上底为a,下底为b,高为h,那么它的面积是多少?

答:梯形的面积是

现在我们来分析上面四个公式有哪些共同的特征。

(1)这些式子中,都含有数字或表示数字的字母;(2)它们都是用运算符号连接起来的。

实际上,用运算符号把数或表示数的字母连接而成的式子,就是。

单独的一个数或一个字母,也是,如5,a,m等都是。

说明:

(1)这里的运算是指加、减、乘、除、乘方、开方(可以提出“开方”这个词,以后要学)。

(2)强调仅指用“运算”符号连接数或字母而得到的算式,中不含有等号或不等号。如S=ab是等式,也可表示长方形面积公式。它不是,而ab是。

练习:举出五个含有加、减、乘、除、乘方运算的(每一个至少含有两种运算)。

(3)里的每个字母都表示数,因此数的一些运算规律也适用于。

如:2x+2y=2(x+y)

例1 指出下列的意义:

(1)2a+5; (2)2(a+5); (3) ;

(4) (5) (6)

分析:说出的意义就是要求写出的读法,一个可以有几种读数,写出一种即可。

解:(1)2a+5表示的是a的2倍与5的和.

(2)2(a+5)表示的是a与5的和的2倍.

(3) 表示的是a的平方与b的平方的和.

(4) 表示的是a,b两数和的平方.

(5) 表示的是x的倒数.

(6) 表示的是x与它的倒数的和

注意:解这类问题的关键是:(1)认真分析中含有哪些运算,它们运算顺序是什么,从而正确,简明地体现出的运算顺序,(2)不会引起误解;(3)为了简明地叙述的意义,也可以找出最后的运算,把它用语言表达出来,其它的运算用表示。如(7) 的意义可叙述为a+b与a-b的商,(8)3(x2-y2)可叙述为3与x2-y2的积。

Ⅱ.列:

我们用可以表示数量和数量之间的关系.如表示“a,b两数之积与 的和”,“a,8两数之和与b,c两数之差的积”,可以分别按下列步骤列:

例2 用表示:

(1) a于b的差与c的平方的和.

(2) 百位数字是a,十位数字是b,个位数字是c的三位数.

(3) 用含同一个字母的表示三个连续的整数,并写出它们的和.

解:(1)(a-b)+ .

(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).

(3)设m是整数,三个连续整数可表示为m-1,m,m+1,它们的和为(m-1)+m+(m+1),即3m.

注意:(1)在中,字母与数或字母与字母相乘,通常把乘号写作“·”或省略号不写,如2×a写作2·a或2a(但不能写作a2),a×b写作a·b或ab.

(2)中出现除法运算时,一般以分数的形式表示,如s÷t写作 (t≠0)

(三)巩固练习:

1.指出下列各的意义:

(1) +2; (2)a(b+1)-1.

2.用表示:

(1)a,b两数的差与c的积.

(2)x,y两数的和的平方减去它们差的平方.

(3)一个数等于a的3倍与b的和.

(四)小结

本节主要学习了的概念,以及的读法和写法,并初步学习用表示简单的数量和数量关系。

学习要特别注意以下几点:

(1) 中含有加、减、承、除、开方、乘方等运算符号,不含有等号或不等号,单独的一个数(或字母)也是。

(2) 与公式不同,公式是等式,但不是,是不含“=”号的。

(3) 的书写要严格遵照其书写规定:

① 中的“×”,简写为“·”或省略不写,数字与字母相乘时,数字要写在字母的前面,如果是带分数,要化成假分数,数字与数字相乘仍用“×”。

② 在中遇到除法运算时,一般按分数的形式表示。

(4) 的读法没有统一的规定,一般以能够简明的体现出的运算顺序,不致于引起误会为主

(五)作业

书P145 1.(2),(4) 2.(1),(5)

篇14:列代数式数学课后的教学反思

列代数式数学课后的教学反思

《列代数式》是数学课程标准中“数与代数”领域的一部分,教材没有单独编排,只是在习题中渗透。这是一个课时,主要让学生通过探索发现最简单图形的变化规律、及某些数变化规律。

一、注重过程和体验,让学生自己去“感悟”。

这部分内容活动性和探究性比较强,注重过程体验,同时在过程体验中,培养学生观察、猜测、实验、推理等能力。《 数学新课程标解读》中关于“推理能力”的培养有这样一段阐述:“能力的形成并不是学生‘懂’了,也不是学生‘会’了,而是学生自己‘悟’出道理、规律和思考方法??”所以我想有必要给学生足够的时间去思考问题。回答时暴露其思维过程。

我是这样导入的:

片段1:

1、尝试当一回词作家;下面是一首歌词,你能把这首歌词补充完整吗?

1 只青蛙1 张嘴,2 只眼睛 4 条腿,1 声扑通跳下水;

2 只青蛙2 张嘴,4 只眼睛8 条腿, 2 声扑通跳下水;

3 只青蛙3 张嘴,6 只眼睛12 条腿,3 声扑通跳下水;??

n 只青蛙 张嘴, 只眼睛, 条腿, 声扑通跳下水。 答案:n、2n、4n、n

设计意图:这首儿歌反映了青蛙的只数和青蛙的嘴数、腿数之间的关系,用字母表示后它们之间的关系更简明了,通过儿歌,促进了这次探究活动,加深了规律性的认识,既复习了上节用字母表示数的内容,又有利于引起这节课的`引入。

师顺势利导:现实生活中有许多数量关系,都可以用数学式子来表示,下面请大家来做一做。

2、填空:

(1)某种瓜子的单价为16元/千克,则n千克需要 _____元;

(2)小刚上学步行速度为5千米/小时,若小刚到学校的路程为s千米,则他上学需____小时。

(3)钢笔每枝a元,铅笔每枝b元,买2支钢笔和3支铅笔共需_______元。 答案:16n 、、(2a+3b)。

设计意图:借助于一些学生熟悉的用字母表示数的实例,让学生体会,用字母表示数的意义,同时为引入代数式的概念作准备。

二、加强动手操作,让学生自己去“做数学”。

数学教学应不断提供学生动手操作的机会,这样才能有利于理解和让学生感兴趣,

三、蕴涵情感和数学简洁美,让学生自己去“感受”。

在日常生活中,很多有规律的事物总能给人一种简洁美的享受,如座位安排中有一定的规律,用火柴棒搭正方形中也有一定的规律,这些都为从数学的角度去探索事物的规律提供了素材。

这一节课当中,学生始终处在一种积极的学习状态中:看得专心、听得仔细、想得认真、做得投入、说得流畅、合作得愉快。真正体现了以积极的情感投入,极大的调动思维活动,学生成为学习的真正主体。一节课下来,学生都沉浸在数学的简洁美当中,感悟着各种有规律的数学简洁美。

本节课采用导学案的方式,主要讲解代数式的基本知识,并在具体情景中讲解列代数式的方法和简单的求值.通过这些内容,让学生逐渐熟悉代数式的表示方法,并培养符号逻辑思维能力.以具体的事例引入代数式的概念,既形象又浅显易懂.通过两个探究题,使学生感受到数学与日常生活的密切联系.通过学生自己大胆的尝试,让学生在学习中得到乐趣,指导学生在变化中探索规律,培养团结合作精神.通过学生对知识和技能的总结,理清本节的知识结构,使知识系统化,提升分析问题、解决问题的能力,提升与人交往的能力.

无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,让每一个学生在课堂上都有所感悟,都有着各自的数学体验。

篇15:《代数式》教案设计

《代数式》教案设计

一、教学目标

1.了解用字母表示数的意义,了解用字母表示数是代数的一个特点,是数学的一大进步。

2.了解代数式的概念,能说出一个代数式所表示的数量关系。

3.通过用字母表示数,学生学会抽象概括的思维方法。

4.通过实例,学生从中领悟到数学来源于实践,又反过来作用于实践的辩证原理。

5.通过用字母表示数,反映出数学中从特殊到一般的辩证关系,从而使学生受到初步的辩证观点的教育。

二、教学重点难点用字母表示数的思想

三.教学工具小黑板 三角尺

四.教学方法探究法 互动法

五、教学步骤

(一)创设情境,复习导入

1.设疑引入

师:中学数学课是从代数开始的,在代数课上都学习些什么呢?初中代数和小学数学有什么关系呢?请同学们看小黑板

师:图中有几种交通工具?

学生活动:观察图形,从中找出答案.(两种:飞机、火车)

【教法说明】图片展示联系实际易激发初一学生兴趣,使学生养成自己发现问题、解决问题的创造性思维习惯.

师:这列火车和飞机行驶的路程与时间如下表:

时间(时)

学生活动:先独立思考,再与同伴交流,互相讨论后一一回答问题.

教师活动:巡视查看,叫学生回答并正确评价,然后师生共同归纳:

(1) 加法交换律 ; 乘法交换律

(2) 交换两个加(或因)数,它们的和(或积)不变

(3) a + b = b + a ; ab = ba

【教法说明】由学生熟知的例子引出字母表示数学生易接受.由特殊到一般,也体现用字母表示数简明、普遍的优越性.注意①三个问题不要连续给出,要让学生个个击破,让学生有成功感,③向学生指明用字母表示数体现了数学中的简洁美,对称美,数学美.

(三)尝试反馈,巩固练习

师:你还学过哪些用字母表示数的运算律?能写出来吗?

学生活动:一个学生板演,其他学生写在练习本上(加法结合律、乘法结合律、分配律)

师:巡视检查,共同与学生评价板演.

【教法说明】通过亲自动手尝试,进一步理解用字母表示数的.实际意义.

小结:(1)这些运算律中的字母可表示任何一个数;(2)用字母表示数能简明地揭示一般规律.

(四)变式训练,培养能力

师:除运算律能用字母表示外,还有许多同学们熟悉的实例,请看:(出示投影2)

1.如果用s表示路程(单位:km),t表示时间(单位:h),v表示速度阵位:km/h),那么有v=__________.

2.一个正方形的边长为a cm(厘米),这个正方形的周长是多少?面积是多少?用L表示周长(单位:cm),则L=_________,用S表示面积(单位:cm2),则S=_____________。

学生活动:在练习本上写出结果,两名学生板演,

教师活动:(1)常用的长度单位在小学大多用汉字表示,初中开始用字母表示:米(m),厘米(cm),毫米(mm),千米(km),相应的面积、体积单位则是平方米(m2),立方米(m3)等.(2)单位不能遗漏 。(3)尽可能化成最简形式

【教法说明】通过练习使学生亲自体会用字母表示数的广泛性,为今后正确使用奠定基础.

(五)归纳小结

师:从以上各例可以看出,用字母表示数,可以把数或数量关系简明地表示出来,且具有一般性,因此,在公式与方程中都用字母表示数,这给运算带来了很大方便.今天的探索就到这里,刚才同学们表现都很出色,希望再接再励!

(六)课堂练习,巩固提高

1.一个三角形的底边为a m,这边上的高为h m,则这个三角形的面积是多少?用S表示面积(单位:m2),则S=_______;它和什么图形的面积公式相似?

2.用字母表示(一个或几个)

(1)有这样一个游戏:把你的出生年份乘以10000倍,再把你的出生月份乘以100倍,最后把你的出生日份乘以3,全部相加后,所得的和中就能够计算出你的出生日期。不信试一试;

(2)2 x 2 = 2 + 2; 3 +—— = 3 x ——; 4 x —— = 4 + —— ; 5 x—— =5 +——,。。。

(3) 3x3—1x1=8, 5x5—3x3=16,9x9—7x7=32, 15x15—13x13=56,。。。

3.—— + —— =——,—— + —— =——,—— + —— = ——,—— + —— = ——,。。。

五、布置作业

.《毕业综合练习册》 P14 例1 P16 第5题

六、板书设计

篇16:代数式练习题

一、知识回顾

1. 填空:

(1)x的 表示成_____________; (2)比a多 的数是_____________;(3)b的绝对值表示为_____________; (4)x的相反数表示成_____________;(5)小明今年m岁,则他去年_____________岁;(6)买10千克大米,花了a元,则这种大米的单价为_______元/千克。

2.用代数式表示:

(1)x的3倍再加上2的和;

(2)a的 与 的差;

(3)x的相反数与x的算术平方根的`和;

(4)a与b两数的平方和。

3.说出下列代数式的实际意义:

(1)苹果每千克的价格是x元,则2x可以理解为_________________________________;(2) 可以解释为____________________________________________________________。

4.当x分别取下列值时,求代数式1-3x的值:

(1)x=1; (2)x= 。

回顾

(1)什么是代数式?什么是代数式的值?

(2)字母与数一起参与运算时,书写过程中应注意哪些问题?

5.下列代数式中,哪些是整式?哪些是单项式?哪些是多项式?

解: 整式有:

单项式有:

多项式有:

6.说出上题中单项式的系数和次数;多项式的项、每一项的系数和次数用常数项。

回顾

(1)什么是单项式、多项式、整式?

(2)什么是单项式的系数和次数?多项式的次数如何确定?

7.下列各组代数式是不是同类项?

(1) 与 ;(2) 与 ;(3)-2与4.3;(4) 与 ;(5) 与8.合并同类项:

(1) + =_______________; (2) =________________;(3) =____________; (4) =_____________;9.去括号:

(1) =_____________; (2) =___________;(3) =_____________; (4) =__________;

回顾

(1)什么叫做同类项?

(2)合并同类项的法则是什么?

(3)去括号法则是什么?

二、典例精析

例1、小明家统计了家里用水量 与应缴水费 (元)之间的关系,如下表用水量

水费 /元

1 1.20+0.50

2 2.40+0.50

3 3.60+0.50

4 4.80+0.50

5 6.00+0.50

(1)写出用水量 与水费 (元)之间的关系;(2)计算用水量是35 时的水费。

篇17:代数式1

代数式1

代数式

一、填空题

1.x的平方与y的5倍的差,可以写成代数式_______.

2.从含盐30%的盐水a千克中蒸发掉水份b千克,盐水的浓度为_______.

3.两数和的'一半与这两数差的1/5的积,可以写成代数式_______.

4.”四个连续整数的积与1之和"这句话用代数式可表示为_______.

5.四个单项式15a*a,xy,23aabb,0.11m*m的系数之和等于_______.

6.若n是整数,则代数式2n的意义为,2n+1的意义为,3n+2的意义为_______.

7.a,b,c都是阿拉伯数字,且c≠0,则代数式c×102+b×10+a表示为一个自然数_______.

8.若a,b,c都是整数,则abc=0说明_______.

9.若a,b,c都是整数,则(a-b)(b-c)(c-a)=0说明_______. 10.某工厂去年的生产总值比前年增长10%,则前年的生产总值比去年少_______.

二、解答题

1.已知两个整数a与b,证明:这两个数之和与这两个数之差的和一定是第一个数的2倍.

2.证明:三个连续自然数之和可被3整除.

3.证明:如果两个整数之和是奇数,则它们的差也是奇数.

4.一个两位数与其反序数之和是一个完全平方数,求这个两位数.

篇18:《代数式》教案设计

教学

目标1.让学生领会代数式值的概念;

2.了解求代数式值的解题过程及格式

3.初步领悟代数式的值随字母的取值变化而变化的情况

教学

重点培养学生的探索精神和探索能力。教学

难点通过学习使学生了解求代数式的值在日常生活中的应用;

教学

方法启发式教学

教学

用具

教学过程集体备课稿个案补充

新课引入

7月13日,莫斯科时间17:08国际奥委会主席萨马兰奇宣布北京获得第29届夏季奥运会的主办权。此时此刻举国欢腾,激情飞扬(多媒体展示当时的欢庆场面)。多媒体展示钟表:北京时间莫斯科时间

提出问题:你能根据图示得出北京时间和莫斯科时间的时差为多少?

如果用表示莫斯科时间,那么同一时刻的北京时间是多少?

学生回答:+5

进一步提出:国际奥委会主席萨马兰奇宣布北京获得20第29届夏季奥运会的主办权的北京时间是多少?

学生回答:+5=17+5=22时,即北京时间为22:08。

一、新课过程

代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值;例如22是代数式+5在=17时的值。

做一做:右图表示同一时刻的东京时间与北京时间:东京时间北京时间

⑴、你能根据右图知道北京与东京的时差吗?

⑵、设东京时间为,怎样用关于东京时间的代数式表示同一时刻的北京时间。

⑶、世界杯足球赛于6月30日在日本横滨举行,开幕式开始的东京时间为20:00问开幕式开始的北京时间是几时?

二、课内练习

1、当分别取下列值时,求代数式的值:⑴⑵

2、当时,求下列代数式的值:⑴⑵

3、当时,。

三、典例分析

例1当n分别取下列值时,求代数式n(n-1)/2的值:

(1)n=-1(2)n=4(3)n=0.6

解(1)当n=-1时,n(n-1)/2=(-1)X(-1-1)/2=1

(2)当n=4时,n(n-1)/2=4X(4-1)/2=6

(3)当n=0.6时,n(n-1)/2=0.6X(0.6-1)/2=-0.12

注意:负数代入求值时要括号,分数的乘方也要添上括号。

四、课堂练习1

1、当x分别取下列值时,求代数式20(1+x%)的值:

(1)x=40(2)x=25

2、当x=-2,y=-1/3时,求下列代数式的值:

(1)3y-x(2)|3y+x|

3、当x分别取下列值时,求代数式4-3x的值:

(1)x=1(2)x4/3(3)x=-5/6

4、当a=3,b=-2/3时,求下列代数式的值:

(1)2ab(2)a2+2ab+b2

五、典例分析

例2

小结、布置作业

篇19:数学教案-总复习:列方程解应用题

执教:陈光登

教学目的

1.            通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.

2.            通过复习,使学生能够准确的.找出题目中的等量关系及发现生活中的等量关系。

3.            培养学生的分析以及综合能力.能够从不同角度解决同一个问题.

4.            通过调查数据和利用数据,使学生在现实情境中体会到数学与现实生活的密切联系。

教学重点

通过复习,使学生能够准确的找出等量关系.

教学准备

调查表的各项内容,学生需提前一天认真调查,填写。

教学过程 :

一、           创设情境:我也是洋里中心校毕业的,我很愿意与同学们交朋友,交朋友应相互了解,比如,我知道班长林端13岁,体育委员江莹莹14岁,你们猜猜,陈老师今年有多少岁?

二、           沟通整理,复习。

1、理一理,复习列方程解应用题的一般步骤及关键。

(1)让我用应用题的方式告诉你们:班长林端13岁,体育委员江莹莹14岁,他们岁数之和是陈老师的

篇20:数学教案-列一元二次方程解应用题

一、           教学目标

1、能分析应用题中的数量关系,并找出等量关系.

2、能用列一元二次方程的方法解应用题.

3、培养学生化实际问题为数学问题的能力及分析问题、解决问题的能力.

二、           教学重难点

教学重点:能分析应用题中的'数量间的关系,列出一元二次方程解应用题.

教学难点 :例2涉及比例、平均增长率与多年的增长量之间的关系.

三、           教学过程

(一)引入新课

设问:已知一个数是另一个数的2倍少3,它们的积是135,求这两个数.

(由学生自己设未知数,列出方程).

问:所列方程是几元几次方程?由此引出课题.

(二)新课教学

1、对于上述问题,设其中一个数为x,则另一个数是2x-3,根据题意列出方程:

【数学教案-列代数式】相关文章:

1.数学教案-列方程解应用题

2.初中数学教案之代数式的值

3.提供列代数式测试题练习及答案参考

4.代数式练习题

5.课题代数式说课稿

6.列侬 语录

7.中考数学:代数式的学习方法

8.数学教案-数学教案

9.初中一年级数学代数式教学设计

10.列数字的句子

下载word文档
《数学教案-列代数式.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部