一次函数与方程不等式练习题及教案设计
“roy010669”通过精心收集,向本站投稿了15篇一次函数与方程不等式练习题及教案设计,下面是小编帮大家整理后的一次函数与方程不等式练习题及教案设计,希望对大家带来帮助,欢迎大家分享。
篇1:一次函数与方程不等式练习题及教案设计
根据图象回答:
当x=6时,1=50+12×6=122(元), 2=18×6=108(元).
(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);
(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
(3)问快艇出发多长时间赶上轮船?
解 (1)设表示轮船行驶过程的函数解析式为=x(≠0),
由图象知:当x=8时,=160.
代入上式,得8=160,
可解得=20.
所以轮船行驶过程的`函数解析式为=20x.
设表示快艇行驶过程的函数解析式为=ax+b(a≠0),
由图象知:当x=2时,=0;当x=6时,=160.
代入上式,得
可解得
所以快艇行驶过程的函数解析式为=40x-80.
(2)由图象可知,轮船在8小时内行驶了160千米,快艇在4小时内行驶了160千米,所以轮船的速度是(千米/时),快艇的速度是(千米/时).
(3)设轮船出发x小时快艇赶上轮船,
20x=40x-80
得x=4,x-2=2.
答 快艇出发了2小时赶上轮船.
交流反思
1.实际问题中数量之间的相互关系,用函数的思想去进行描述、研究其内在联系和变化规律;
2.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.
检测反馈
1.利用图象解下列方程组:
(1) (2)
2.已知直线=2x+1和=3x+b的交点在第三象限,写出常数b可能的两个数值.
3.学校准备去白云山春游.甲、乙两家旅行社原价都是每人60元,且都表示对学生优惠.甲旅行社表示: 全部8折收费;乙旅行社表示: 若人数不超过30人则按9折收费,超过30人按7折收费.
(1)设学生人数为x,甲、乙两旅行社实际收取总费用为1、2(元),试分别列出1、2与x的函数关系式(2应分别就人数是否超过30两种情况列出);
(2)讨论应选择哪家旅行社较优惠;
(3)试在同一直角坐标系内画出(1)题两个函数的图象,并根据图象解释题(2)题讨论的结果.
4.药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度(微克/毫升)与服药后时间x(时)之间的函数关系如下图.请你根据图象:
(1)说出服药后多少时间血液中药物浓度最高?
(2)分别求出血液中药物浓度上升和下降阶段与x的函数关系式.
篇2:八年级数学下册《19.2.3一次函数与方程、不等式》教学反思
人教版八年级数学下册《19.2.3一次函数与方程、不等式》教学反思
本节课由一次函数讨论了三个已书法家对象:一元一次方程、一元一冷饮不等式和二元一次方程组,这些不是新知识,但对其认识还有待于进一步深入,本节用函数的观点对它们进行分析,这种再认识不是简单的回顾复习,而是居高临下的进行动态分析。因此,教学中,一定要把握内容的要求尺度。通过 本节课的教学,应加强知识间横向和纵向的联系。发挥函数对相关内容的统作用,能用一冷饮函数的观点把以前学习的方程与不等式进行整合。
本节课的教学发现:有一小部分的学生还是不懂得看函数不理解函数值大于0、小于0进所对应的自变量的值应如何看,如何写出满足条件的答案。因此,建议在教学过程中增加看图的练习题:知道函数值的范围求自变量的`取值范围,知道自变量的取舍范围求函数值 的范围等类型的题目。
另外,运用所学知识解决实际问题是学生学习的目的,是重点,但也是学生的难点。尽管学生难接受,介是在教学的过程 中不要回避,要慢慢引导,加强训练,争取让学生能理解题目,掌握解题方法与技巧,从而提高技能。
篇3:一元一次不等式与一次函数教学设计
教学目标:
(知识与技能,过程与方法,情感态度价值观)
(一)教学知识点
1.一元一次不等式与一次函数的关系.
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
(二)能力训练要求
1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
2.训练大家能利用数学知识去解决实际问题的能力.
(三)情感与价值观要求
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
教学重点
篇4:一元一次不等式与一次函数教学设计
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
(1) x取何值时,2x-5=0?
(2) x取哪些值时, 2x-5>0?
(3) x取哪些值时, 2x-5<0?
(4) x取哪些值时, 2x-5>3?
问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y<1 ?
你是怎样求解的?与同伴交流
让每个学生都投入到探究中来养成自主学习习惯
小组合作互学
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。
篇5:一元一次不等式与一次函数教学设计
问题3.兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20 m?谁先跑过100 m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
精讲点拨
移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的`费用分别为y1元和y2元,那么 (1)写出y1、y2与x之间的函数关系式; (2)在同一直角坐标系中画出两函数的图象;(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同; (4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
提高学生应用数学知识解决实际问题的能力
达标检测
展示检测内容
积极完成导学案上的检测内容,相互点评。
反馈学生学习效果
知识与收获
引导学生归纳探究内容
学生回顾总结学习收获,交流学习心得。
学会归纳与总结
布置作业
教材P51.习题2.6知识技能1;问题解决2,3.
板书设计
篇6:一元一次不等式与一次函数教学设计
教学难点
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
教学过程
创设情境,导入课题,展示教学目标
1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?
2.展示学习目标:
(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣
学生自主研学
指出探究方向,巡回指导学生,答疑解惑
篇7:一元一次不等式与一次函数教学设计
一、学习与探究:
1.一元一次不等式与一次函数之间的关系;
2.做一做(根据函数图象求不等式);
3.试一试(当x取何值时,y>0);
4.议一议
二、精讲点拨:
三、知识与收获:
四、课后作业:
篇8:《实际问题与方程》数学教案设计
教学目标
知识与技能:
使学生初步理解和掌握列方程解决一些简单的实际问题的步骤,掌握bx -a等这一类型的简易方程的解法,提高解简易方程的能力。
过程与方法:
让学生借助直观图自主探究,分析数量之间的等量关系,并正确地列出方程解决实际问题,培养学生的主体意识、创新意识以及分析、观察和表达能力。
情感、态度与价值观:
使学生感受数学与现实生活的密切联系,体会数学在生活中的应用价值和学习数学的乐趣。
教学重难点
教学重点:
正确设未知数,找出题目中的等量关系,会列方程,并会解方程。
教学难点:
根据题意分析数量间的相等关系。
教学工具
课件、多媒体.
教学过程
教学过程设计
1 谈话引入
1、解下列方程:
x +0.06=4.21 x+0.08=1.53 2x -4=20
2x +2.8×2=10.4 x +2.4x=5.1 0.25x +0.2x=4.5
2、分析数量关系并写出来:
(1)我们班男生比女生多8人。
(2)小明跳远超过原记录0.08米。
(3)小明身高比去年高了200px。
(4)足球上白色皮比黑色皮的2倍少4块。
(5)地球上海洋面积为陆地面积的2.4倍。
学习方程的目的是为了利用方程解决生活中的问题,这节课我们就来一起学习如何用方程解决问题。
板书课题:实际问题与方程
2 探究新知
一、学习例1:
1、教师多媒体出示教材第73页例1的情境图。
小明破纪录了,成绩为4.21米,超过原纪录0.06米,学校原纪录是多少米?
2、教师讲解如何列方程解答。
①题目中的等量关系是什么?
(学校原记录+0.06米=4.21,写出所有的等量关系)
②如何列方程?
(x+0.06=4.21)
③解方程。 (x=4.15)
④检验,写出答语。
(如何检验?把结果代入原方程,看看左右两边是否相等。)
3、学生小组讨论列方程的步骤、关键,汇报交流
引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析、找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答语。
4、完成教材第73页“做一做”的第(1)小题,第(2)小题。。
同桌左边同学完成1题,右边同学完成2题。
小小提醒:①单位要统一;②解方程要检验。
(1. 200px=0.08m 设小明去年身高x m. x+0.08=1.53 x=1.45 )
(2. 半小时=30分 设平均每分钟浪费x kg水 30x=1.8 x=0.06 )
5、全班讲评,订正。
二、学习例2、例3、例4
1、教师多媒体出示教材第74页例2的情境图。
仿照例1,按照刚才的解题步骤完成:(1名同学黑板上板演,其他同学做一做)
等量关系:黑色皮的块数×2-4=白色皮的块数
设共有x块黑色皮。
2x-4=20 x=12
2、评定
解方程时,先把
看做一个整体
3、试一试,独立完成72页第5题。
等量关系:每筒网球的个数×筒数+3=网球总数
方程:5x+3=1428 想一想:这里为什么要加3?
x=285
4、教师多媒体出示教材第77页例3的情境图。
仿照例1和例2,自学例3
小小提醒:根据不同的等量关系,可以列出不同的方程:
苹果的总价+梨的总价=总价钱
两种水果的单价之和×2=总价钱
①设苹果每千克x元。 2x+2.8×2=10.4
②设苹果每千克x元。 (2.8+x)×2=10.4
5、评定
两种等量关系,列两种不同的方程,都可以。
解决同一个问题,我们列出了不同的方程。如果让你选择一个方程,你会选择哪个?说说你的想法。
解这个方程时,应把
看做一个整体?
6、教师多媒体出示教材第78页例4的情境图。
提醒:题目中2个未知数,怎样设呢?
列出不同方程:x+2.4x=5.1 x÷2.4+x=5.1
比较两种设法优劣
解答本题 x=1.5
7、独立完成77页和78页做一做,列出方程,选择其中的1个做一做。
77页做一做,可以有两种列方程法:
2x+2×4=11 (x+4)×2=11
78页做一做,可以有两种列方程法:
设桃树x棵,或者杏树x课
8、全班评定
解方程时,应把 看做一个整体?
选择简便的方法
三、学习例5:
1、教师多媒体出示教材第79页例5的情境图。
同学们小组内讨论:
①题目中的数量有哪些?含义分别是什么?
理解意思(两地 同时 相向 相遇)
②画出线段图
(为什么画线段图呢? 可以清楚地分析数量之间的相等关系)
③找出相等关系,列出方程
这里要用到速度、时间和路程的数量关系来列方程
路程=速度×时间
本题等量关系是:小林骑的路程+小云骑的路程=总路程
0.25x+0.2x=4.5 x=10
④解方程,检验,写出答语。
2、各小组展示,评定
3、做一做,组内完成82页第13题。
设乙队每天开凿x米。 (12.6+x)×25=675 x=14.4
4、全班评定。
3 巩固练习,实践应用
1、第76页练习十六,第8题、第10题。
学生独立完成,老师巡视,完成后小组内讨论,最后老师公布答案 。
2、第82页练习十七,第14题。
学生独立完成,老师巡视,完成后小组内讨论,最后由老师讲解、确定答案。
课后小结
1、这节课学习了什么?方程解应用题的步骤是什么?用方程解决问题应注意哪些问题?小组汇报,教师总结板书:
列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析、找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答语。
2、列方程解决问题的关键点是:
①弄清题意,找出未知数,用x表示。
②分析、找出数量之间的相等关系,列方程。
③检验可以在练习本上完成,不必写出步骤
3、本节课易错点是:
①没有设未知数为x,或者明确那个未知数为x。
②列方程错误或解方程错误,没有检验,未能检查错误。
板书
实际问题与方程(1)
解:设学校原跳远纪录是x m。 解题的一般步骤是:
x +0.06=4.21 ①弄清题意,找出未知数,用x表示。
x +0.06-0.06=4.21-0.06 ②分析、找出数量之间的相等关系,列方程。
x =4.15 ③解方程。 检验:…… ④检验,写出答案。
答:学校原跳远纪录是4.15m。
篇9:《实际问题与方程》数学教案设计
教学目标
1、知识与技能:让学生掌握形如ax±bx=c的方程,掌握设未知数的方法,并会正确地解答。
2、过程与方法:让学生通过乘法分配律来解答形如ax±bx=c的方程。
3、情感、态度与价值观:通过观察、分析、比较的方法,提高学生逻辑思维能力。
教学重难点
教学重点: 教会学生用方程解决实际问题。
教学难点: 分析、找出数量间的相等关系,正确列出方程 。
教学过程
一、复习。
1、解方程。 4X+5=54 3×2.1+2X=13.4 0.3X÷2=9 4(X+8)=20
2、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?
(1)分析:本题有两种什么树?它们的数量关系是什么?
(2)独立解答。
二、新授。
教学例4。地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米?
问题:从图中你得到了哪些数学信息?
活动要求:读读例题→思考问题→小组讨论→分享展示
1、分析题目的已知条件和问题。今天的题目有2个未知数。为了解答方便,通常设一倍数为X。
2、列方程并解答。
数量关系:陆地面积+海洋面积=地球表面积
方法一:解:设陆地面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。
x+2.4x=5.1
方法二:解:设陆地的面积为x亿平方千米。那么海洋面积为(5.1-x) 亿平方千米。
x+(5.1-x)=5.1
方法三:解:设海洋面积为x亿平方千米,那么陆地面积为2.4 ÷x亿平方千米。
(x÷2.4)+ x=5.1
海洋面积÷陆地面积=2.4
方法四: 解:设陆地面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。
(5.1-x)÷x=2.4 2.4x=5.1-x
方法五:解:设陆地的面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。
2.4x÷x=2.4
解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2.4X亿平方千米。。 X+2.4X=5.1 (1+2.4)X=5.1
(这是用了什么运算定律?)乘法分配律 让学生自己把方程解完,得X=1.5。
提问:另一个求知数怎样求?根据是什么? 5.1-1.5=3.6
(利用和的关系) 2.4X=1.5×2.4=3.6
(利用倍数的关系) 引导学生进行检验。
提问:除了代入方程检验之外,还可以怎样验算?
验算陆地面积与海洋面积的和是否等于地球的表面积5.1亿平方千米。 1.5+3.6=5.1 验算海洋面积与陆地面积的倍数关系是否等于2.4。 3.6÷5.1=2.4
答:......
3、练习:将题目中的“地球的表面积为5.1亿平方千米”改为“海洋面积比陆地面积多2.1亿平方千米” 学生独立列方程解答。
数量关系:陆地面积+海洋面积=地球表面积
解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2.4X亿平方千米。。
2.4X -X=2.1
(2.4-1)X=2.1
4、比较两道题有哪些相同?哪些不同?
5、小结:今天学习的应用题,是已知两种数量的倍数关系,以及它们的和或差,求这两种数量各是多少?列方程时,通常根据倍数关系,设一倍数为X,另一个数用含有字母的式子表示,再根据这两种数量的和或差,找出数量之间的等量关系,就可列出方程,并解答方程,求出得数。
三、学生独立完成例5 妈妈今年的年龄是我的3倍,妈妈说,我比你大24岁。
问题:能读懂他的想法吗?从题目中他找到了怎样的等量关系?
独立完成, 然后订正,课件出示。
四、完成课本78-79页的做一做
五、小结:
这节课学习了什么?还有什么问题?
六、作业:
P80练习十七中的第5--10题。
板书设计:
稍复杂的方程(三) 数量关系:陆地面积+海洋面积=地球表面积
解:设陆地面积为X亿平方千米,那么海洋面积可以表示为2.4X亿平方千米。。 X+2.4X=5.1 (1+2.4)X=5.1 3.4X=5.1 3.4X÷3.4=5.1÷3.4 X=1.5
篇10:高一数学函数与方程练习题
高一数学函数与方程练习题
1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内
A.可能有3个实数根 B.可能有2个实数根
C.有唯一的实数根 D.没有实数根
解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数,
f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根.
答案:C
2.(长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表:
x123456
f(x)136.1315.552-3.9210.88-52.488-232.064
则函数f(x)存在零点的区间有()
A.区间[1,2]和[2,3]
B.区间[2,3]和[3,4]
C.区间[2,3]、[3,4]和[4,5]
D.区间[3,4]、[4,5]和[5,6]
解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,
f(x)在区间[2,3],[3,4],[4,5]上都存在零点.
答案:C
3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是
()
A.(3.5,+) B.(1,+)
C.(4,+) D.(4.5,+)
解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,
在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为(n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则1n+1m1.
答案:B
4.(2014昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x)的零点所在的区间是()
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B.
答案:B
5.已知函数f(x)=2x-1,x0,-x2-2x,x0,若函数g(x)=f(x)-m有3个零点,则实数m的`取值范围是________.
解析:画出f(x)=2x-1,x0,-x2-2x,x0,的图象,如图.由函数g(x)=f(x)-m有3个零点,结合图象得:0
答案:(0,1)
6.定义在R上的奇函数f(x)满足:当x0时,f(x)=2 014x+log2 014x则在R上,函数f(x)零点的个数为________.
解析:函数f(x)为R上的奇函数,因此f(0)=0,当x0时,f(x)=2 014x+log2 014x在区间0,12 014内存在一个零点,又f(x)为增函数,因此在(0,+)内有且仅有一个零点.根据对称性可知函数在(-,0)内有且仅有一解,从而函数在R上的零点的个数为3.
答案:3
7.已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是________.
解析:令x+2x=0,即2x=-x,设y=2x,y=-x;
令x+ln x=0,即ln x=-x,
设y=ln x,y=-x.
在同一坐标系内画出y=2x,y=ln x,y=-x,如图:x10
则(x)2-x-1=0,
x=1+52,即x3=3+521,所以x1
答案:x1
8.若函数f(x)=ax2-x-1有且仅有一个零点,求实数a的取值范围.
解:(1)当a=0时,函数f(x)=-x-1为一次函数,则-1是函数的零点,即函数仅有一个零点.
(2)当a0时,函数f(x)=ax2-x-1为二次函数,并且仅有一个零点,则一元二次方程ax2-x-1=0有两个相等实根.则=1+4a=0,解得a=-14.综上,当a=0或a=-14时,函数仅有一个零点.
9.关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围.
解:设f(x)=x2+(m-1)x+1,x[0,2],
①若f(x)=0在区间[0,2]上有一解,
∵f(0)=10,则应用f(2)0,
又∵f(2)=22+(m-1)2+1,
m-32.
②若f(x)=0在区间[0,2]上有两解,
则0,0-m-122,f20,
m-12-40,-3
m3或m-1,-3
-32-1.
由①②可知m的取值范围(-,-1].
数学高一年级上册函数与方程专项训练题就为大家介绍到这里,希望对你有所帮助。
篇11:《实际问题与方程》五年级数学练习题
《实际问题与方程》五年级数学练习题精选
一、口算。
19-15=4.5÷15=70÷1.4=10.1×2=
二、把正确答案序号填在括号里。
1、比x的5倍少3.6的.数是12.4,列方程是()。
A、x÷5-3.6=12.4B、5x+3.6=12.4C、5x-3.6=12.4
2、x=4是方程()的解。
A、6x-7=41B、2x-3.6=14.4C、25-3x=13
三、解方程。
3x-6=547x+1.5=195x+4=323.6-x=186x-26=343x+5.4=15.6
四、列方程解应用题。
1、一张桌子售价97元,比一把椅子售价的3倍多1元,一把椅子多少元?
2、共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少个?
篇12:方程与代数的课后练习题
方程与代数的课后练习题
1.关于x的方程(a-1)x=1(a≠1)的解是__________.
2.关于y的方程ay2=1(a>0)的解是__________.
3.x=2是方程ax-3=20+a的解,则a=__________.
4.方程5x2=6x3的解是__________.
5.方程16x4-81=0的解是__________.
6.方程x4-13x2+36=0的解是__________.
7.若代数式(x-3)(x2+x-6)的`值等于零,则x=__________.
8.分式方程xx2-1-1=2x+13x-3中,各分母的最简公分母是__________.
9.用换元法解方程(x+1x)2-3(x+1x)-4=0,设________=y,则原方程可化为__________________.
10.若方程ax-bx-1=1有根x=2,则a-2b=__________.
11.当m=______时,方程mx(x+1)-1x=1有增根.
篇13:直线与圆的方程练习题
直线与圆的方程练习题
1.(重庆高考)直线 与圆 的位置关系为( )
A.相切 B.相交但直线不过圆心
C.直线过圆心 D.相离
2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值依次为
A.2、4、4; B.-2、4、4;
C.2、-4、4; D.2、-4、-4
3(重庆高考)圆心在 轴上,半径为1,且过点(1,2)的.圆的方程为( )
A. B.
C. D.
4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()
A. B.4
C. D.2
篇14:《一次函数与二元一次方程(组)》说课稿及教案设计
一、教材分析
1、教材的地位和作用
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明
对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的.主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。
三、教学过程
(一)感知身边数学
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
(二)享受探究乐趣
1、探究一次函数与二元一次方程的关系
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。
2、探究一次函数与二元一次方程组的关系
[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦
1、抢答题
2、旅游问题
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地
1、数学日记
2、布置作业
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。
四、教学设计反思
1、贯穿一个原则以学生为主体的原则
2、突出一个思想数形结合的思想
3、体现一个价值数学建模的价值
4、渗透一个意识应用数学的意识
篇15:《一次函数与二元一次方程(组)》说课稿及教案设计
教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
教学过程
(一)引入新课
多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
(二)进行新课
1、探究一次函数与二元一次方程的关系
填空:二元一次方程 可以转化为 ________。
思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
2、探究一次函数图像与二元一次方程组的关系
(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。
(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?
进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
3、列一元二次不等式
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。
解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
4、习题
(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。
(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。
5、旅游问题
古城荆州历史悠久,文化灿烂。
今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?
【一次函数与方程不等式练习题及教案设计】相关文章:
1.不等式练习题
2.不等式组练习题
3.简易方程练习题






文档为doc格式