欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>初中数学圆教案

初中数学圆教案

2024-01-03 08:54:19 收藏本文 下载本文

“sae556”通过精心收集,向本站投稿了16篇初中数学圆教案,以下是小编整理后的初中数学圆教案,欢迎阅读分享,希望对大家有帮助。

初中数学圆教案

篇1:初中数学圆教案

数学圆教案(教学目的)

理解圆的定义,掌握点与圆的位置关系,培养学生用数形结合思想方法分析解决问题的能力

数学圆教案(教学关键)

理解两点:

①在圆上的点,都满足到定点(圆心)的距离等于定长(半径);

②满足到定点(圆心)的距离等于定长(半径)的点,在以定点为圆心,定长为半径的圆上。

数学圆教案(教学过程)

一、复习旧知:

1、角平分线及中垂线的定义(用集合的观点解释)

2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?

二、讲授新课:

1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。

分析归纳圆定义:

在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。

注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O

2、进一步观察,体会圆的形成,结合园的定义,分析得出:

① 圆上各点到定点(圆心)的距离等于定长(半径)

② 到定点的距离等于定长的点都在以定点为圆心,

定长为半径的圆上。由此得出圆的定义:

圆是到定点的距离等于定长的点的集合。

例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。

3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。

圆的内部是到圆心的距离小于半径的点的集合。同样有:圆的外部是到圆心的距离大于半径的点的集合。

4、初步掌握圆与一个集合之间的关系:

⑴已知图形,找点的集合

例如,如图,以O为圆心,半径为2cm的圆,

则是以点O为圆心,2cm长为半径的点的集合;

以O为圆心,半径为2cm的圆的内部是到

圆心O的距离小于2cm的所有点的集合;

以O为圆心,半径为2cm的圆的外部是到

圆心O的距离大于2cm的点的集合。

⑵已知点的集合,找图形

例如,和已知点O的距离为3cm的点的集合是以点O为圆心,3cm长为半径的圆。

5、点与圆的位置关系:

点在圆上,点在圆内,点在圆外。

点与圆的位置关系与点到圆心的距离的数量关系如下:

设圆心为O,半径为r,点P到点O的距离为d,则有

点P在圆内 OP>r

点P在圆上 OP=r

点P在圆外 OP

例1:求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上。

〈分析〉证明多点共圆,由圆的定义知道,即要证明点A、B、C、D到点O等距离。

三、巩固练习:

1、已知△ABC中,∠C = 90 ,AC = 2cm,BC = 4cm,CM为中线,以C为圆心, cm长为半径画圆,则A、B、C、M四点中在圆外的有

在圆上的有 ,在圆的内部有 。

2、课本P

3、我们学过的所有顶点共圆的图形还有那些?

33.5 O

四、课后小结:

1、圆的两种定义

2、圆的内部,圆的外部的定义

3、点与圆的位置关系

4、点与圆的位置关系和点到圆心的距离的数量关系

5、多点共圆的证法

五、布置作业:

课本P 1、(1,2)、2、3、4

数学圆教案(教学设计说明)

本节课主要是通过圆的概念的探讨,深入地了解圆的形成,从而使学生脱离在小学时的对圆的肤浅认识,掌握圆在初中的知识里更完整的定义。

在教学重点上关键让学生了解圆的两点,简单的说,到圆心距离等于半径的点在圆上,圆上的点到圆心的距离等于半径,在圆的概念的引入时,首先利用集合的语言去解释圆,例如像前面学过的角平分线及中垂线的集合定义,然后利用图形的画法理解圆的定义,这样设计的目的是为了培养学生数形结合的思想。

在教学的讲授中,先让学生自己动手去演示圆的形成,要了解画一个圆的两个必需条件:定点和定长;让学生自己去体会圆的概念,同时,还会体会到圆的内部和外部的意义,并能等同的用集合的定义解释内部和外部,从而又能引出一个点和圆的位置关系,那么,学生会在一系列的过程中更清楚的认识圆的定义,更完整的了解圆。例题的设计是为了使学生掌握多点共圆必须要以定义为依据,并能探索其他的所有顶点共圆的图形。

篇2:北师大版初中数学圆教案

活动内容:

师生互相交流总结点和圆的三种位置关系;怎样判断其位置关系,日常生活中利用圆的例子,与圆有关计算、证明的题目等。

活动目的:

鼓励学生结合本课的学习,谈自己的收获与感性(学生畅所欲言,教师给予鼓励),包括日常生活中利用圆的例子,点和圆的位置关系,如何判断,怎样利用圆的知识计算、证明。

篇3:北师大版初中数学圆教案

1、已知:如图,OA,OB为⊙0的半径,CD分别为OA、OB的中点,求征:AD=BC

2、已知⊙0的面积为25π。

A (1)若PO=5.5,则点P在 圆外 ;

(2)若PO=4,则点P在 圆内 ;

(3)若PO= 5 ,则点P在⊙0上。

篇4:初中数学圆复习教案怎么设计

一、概述

九年制义务教育九年级数学(北师大版)下册第章第节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与圆的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。

二、设计理念

鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。

三、教学目标:

(1)激发学生亲自探索直线和圆的位置关系

(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义

(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

(4)让学生们自主讨论通过学习“直线与圆的位置关系”有哪些收获,在现实生活中有哪些体现。

四、教学重点

直线与圆的三种位置关系——相交、相切、相离

从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。

五、教学难点:

探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

六、教学过程:

圆的整理和复习说课稿

一、分析教材、学情,确定教学目标。

《圆的整理和复习》是人教版第十一册第4单元P73~74的内容。这是一节单元复习课,教材第一题通过学生之间对话的形式,主要对圆的认识,圆的周长和面积的计算方法进行回顾梳理,以提升学生对本单元所学知识的掌握水平,培养学生总结、归纳的能力。第二题安排了一个与圆相关的实际问题,使学生感受到圆的知识在生活中的应用价值,增强学生的应用意识。

学生在这一单元的学习中,虽然掌握了不少关于圆的知识,但对于整理和复习的方法是比较薄弱的,之前也较少独立进行对某些相关知识的系统梳理工作,单元复习基本上是由教师代劳拟出知识结构和提纲,再由教师带领学生进行概念回顾和技能练习。因此在学法这一块学生的空白点比较大。学生才是数学学习的真正主人,为了提高学生的学习能力,使学生掌握必要的复习方法,为小学阶段的总复习打下坚实的基础,教师必须重新定位教学目标。

1、知识与技能目标:通过学生的自主学习,进一步认识圆的特征,理解和掌握圆的周长、面积计算公式及其推导过程。

2、过程与方法目标:通过合作交流、互相促进,完善知识体系,并初步形成整理和复习的方法。

3、情感态度与价值观目标:通过教学活动的开展,培养学生合作学习、善于总结的良好习惯。使学生进一步体会数学与实际生活的密切联系,培养学生 1的应用意识,感受用圆的知识解决问题的乐趣。

本节课的教学重点是:梳理有关圆的知识,使学生对圆形成一个整体的认知结构。教学难点是灵活运用圆的知识解决实际问题。

二、依据新课程理念,确定教学方法。

1、自主整理,合作交流。“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”复习课也不例外。同课异构研讨时我们发现,有的教师牵着学生、采用“打乒乓球”式的一问一答来归纳圆的基础知识,黑板上的板书倒是条理清楚、层次分明,但学生头脑中的知识结构却没能切实建立起来。这样做不仅耗时较多,而且学生不感兴趣,处于被动复习的状态,效果也不理想。因此,本节课我准备放手让学生自己整理圆的基础知识,课前通过看书、小组合作,拿出一份作品;在课上进行交流、欣赏、分析、评价,找出各组作品的优点和不足,再引导学生对本单元关键的知识点进行复习,以提高复习效率。

2、综合应用,拓展创新。复习不是炒剩饭,不能局限于传统的老面孔,要有变化、有创新。复习过程应注意选择利用“现实的、有意义的、富有挑战性的”生活素材,精心设计练习题,让学生在对现实问题的探究和运用知识解决实际问题的过程中,拓展思路,扩大视野,体会到数学与生活的联系,体验数学的应用价值。

三、说教学过程。

(一)猜谜游戏,揭示课题。

师口头出谜语,学生抢答:

①十五的月亮(圆)②5角(半圆)③笔直的道路(直径)

④路途的中点(半径)⑤爷爷当先锋(祖冲之)

2⑥两兄弟,手拉手,一个转,一个留。(圆规)

师:刚才猜的谜语都和什么有关?揭示课题:这节课我们就一起来对“圆”这个单元的知识进行整理和复习。

[设计意图]“兴趣是最好的老师”,开课伊始利用谜语使学生形象地回忆圆的有关概念,明确本课的学习任务,激活学生的思维。

(二)梳理知识,交流展示。考卷及答案

师:课前布置同学们看书整理,与小组同学共同商讨,对圆这个单元的知识进行整理,你们都完成了自己的作品吗?

请各小组的同学交流一下,选出你们小组最优秀的作品上台展示,并作必要的说明和解释。其余小组进行评价。对其他小组整理掉了的知识点进行适当补充,如画圆的方法,圆的对称性,环形的面积计算等。

小结:我们用不同方式对“圆”这个单元进行了整理,虽然方式不同,但都能抓住主要内容,并注意到知识之间的联系。通过交流,大家对圆这部分知识有了更深入的了解,同时我们的复习和整理水平也有了进一步的提高。

(三)重点强化,加深认识。

师:在复习过程中你们留意了这几个问题吗?(出示判断题)

1、圆的半径是直径的。

2、大圆的圆周率比小圆的圆周率大。

3、半圆的周长就是圆周长的一半。

4、推导圆的面积计算公式时运用了“转化”的方法。

结合学生的回答,教师点击课件树形图中相应的知识点,演示图片和动画,带领学生共同回忆半径与直径的关系、圆周长和面积公式的推导过程等。

[设计意图]在学生全面复习圆的有关概念的基础上,针对学生平时容易忽略 3和错误较多的典型问题进行重点复习,“牵一发而动全身”,使学生对知识之间的联系与区别理解更加深入,真正达到“查漏补缺”的目的。

(四)综合运用,解决问题。

一节复习课的时间非常有限,有关圆的练习题也浩如烟海,如何避免机械重复、简单粗放的训练,精选出学生感兴趣、乐于思考的问题进行巩固和提升呢?在同课异构活动中,我们根据学生的反馈情况对几位执教老师设计的练习进行了筛选、提炼和重组,力求发挥每一道题的价值,提高复习和练习的效果。

1、基本练习。

师:圆在生活中应用非常广泛,下面一组问题中你知道需要计算圆的什么量吗?出示组题,让学生说一说解题思路,只列式不计算。

(1)小方家到学校有2072米,一辆自行车外直径大约是66厘米。按车轮每分钟转100圈计算,小方骑这辆车从家到学校大约需要多少分钟?(得数保留整数)

(2)一只挂钟的分针长10厘米,经过1小时,分针尖端走过的路程是多少?30分钟呢?

(3)一只木桶需要换底,箍木桶的铁丝长62.8厘米,换底至少需要多大的木板?

(4)校园里有一个直径是16m的圆形水池,工人叔叔要沿着水池铺设一圈2m宽的石子小路,这条小路的

积是多少平方米?

2、发展练习。

(1)刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场。这个养鸡场的占地面积是多少平方米?

4(2)阴影部分的面积是20平方厘米,求这个圆的面积。

3、创造练习。(配合学生的回答,课件演示转化的过程动画)

(1)小华买4瓶底面半径为3厘米的啤酒,售货员阿姨用一根绳子将它们捆扎一圈,如下图:已知绳子的结头处要留7厘米,那么售货员阿姨至少要准备多长的绳子?

(2)你能很快算出下面图形的面积吗?(图中线段的长是4厘米)

[设计意图]复习课同新授课一样,也要讲究练习的层次性,循序渐进,使“不同的人在数学上获得不同的发展”。上面三个层次的练习,都是结合生活中的实例,促进学生灵活地分析问题、寻求最简便的方法解决问题。在这一过程中,学生不难体会到数学与生活的密切联系,也可以享受到运用平移、割补等方法使难题大大简化产生的“顿悟”体验。

总之,复习课的教学与其他课型

篇5:初中数学圆的复习教案有哪些

初中数学圆的复习教案一

一、教科书内容和课程学习目标

(一)本章知识结构框图

本章知识结构如下图所示:

(二)教科书内容

本章是在学习了直线图形的有关性质的基础上,来研究一种特殊的曲线图形──圆的有关性质。圆也是常见的几何图形之一,不仅日常生活中的许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以看到圆。圆的有关性质,也被广泛的应用。圆也是平面几何中最基本的图形之一,它不仅在几何中有重要地位,而且是进一步学习数学以及其他科学的重要的基础。圆的许多性质,比较集中地反映了事物内部量变与质变的关系、一般与特殊的关系、矛盾的对立统一关系等等。结合圆的有关知识,可以对学生进行辩证唯物主义世界观的教育。所以这一章的教学,在初中的学习中也占有重要地位。

本章是在小学学过的一些圆的知识的基础上,系统的研究圆的概念、性质、圆中有关的角、点与圆、直线与圆、圆与圆、圆与正多边形之间的位置、数量关系。本章共分为四个小节,第1小节是“圆”,主要是圆的有关概念和性质,圆的概念和性质是进一步研究圆与其他图形位置、数量关系的主要依据,是全章的基础。这一节包括“圆”“垂直于弦的直径”“弧、弦、圆心角”“圆周角”四个部分。“24.1.1 圆”的主要内容是圆的定义和圆中的一些相关概念。圆的定义是研究圆的有关性质的基础。在小学,学生接触过圆,对它有一定的认识。教科书首先结合生活中一些圆的实际例子,在学生小学学过的画圆的基础上,通过设置一个观察栏目,用“发生法”给出了圆的定义。进一步的教科书又分析了圆上每一个点与圆心的距离都等于定长,同时到定点的距离等于定长的点都在圆上,这样实际上从点和集合的角度进一步认识圆,这样再认识之后,学生对圆的认识就加深了。接下来,是与圆有关的一些概念,如半径、直径、弦、弧等,对于这些概念要让学生结合图形进行认识,并多进行比较,以搞清他们的异同。

在接下来的几部分,教科书探究并证明了垂径定理、弧、弦、圆心角的关系定理、圆周角定理。垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法。所以垂径定理及其推论、圆周角定理及其推论是本小节的重点,也是本章的重点内容。而垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对与分类证明的必要性不易理解,所以这两部分内容也是本节的难点。

“24.2 与圆有关的位置关系”包括三部分内容,点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系。在“点与圆的位置关系”中,教科书首先结合射击问题,给出了点与圆的三种不同位置关系,接下来讨论了过三点的圆,并结合“过同一直线上的三点不能作圆”介绍了反证法。在“直线与圆的位置关系”中,教科书首先讨论了直线与圆的三种位置关系,然后重点研究了直线与圆相切的情况,给出了直线与圆相切的判定定理、性质定理、切线长定理,在此基础上介绍了三角形的内切圆。在“圆与圆的位置关系”中,重点是讨论圆与圆的不同位置关系。本小节中,直线与圆的位置关系是中心内容,切线的判定定理、性质定理、切线长定理等则是研究直线与圆的有关问题时常用的定理,是本节的重点内容。反证法的思想在前面章节有所渗透,在这一小节正式提出,它是一种间接证法,学生接受还是有一定的困难,所以对于反证法的教学是本节的一个难点;另外切线的判定定理和性质定理的题设和结论容易混淆,证明性质定理又要用到反证法,因此这两个定理的教学也是本节的难点,这些也同时是本章的难点。

正多边形是一种特殊的多边形,它有一些类似于圆的性质。例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合。正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它也是中心对称图形,而且绕中心每旋转,都能和原来的图形重合,可见正多边形和圆有很多内在的联系。另外,正多边形也在生产和生活中有着广泛的应用,所以教科书接下来安排了“正多边形和圆”的内容。教科书回顾学生已经了解的正多边形概念的基础上,以正五边形为例,证明了利用等分圆周得到正五边形的方法,接下来介绍了正多边形的有关概念,如中心、半径、中心角、边心距等,并进一步介绍了画正多边形的方法。正多边形的有关计算是本节的重点内容,这些计算都是几何中的基础知识,正确掌握它们也要综合运用以前所学的知识,这些知识在生产和生活中也常要用到。本节的教学难点在学生对正n边形中“n”的接受和理解上。学生对三角形、四边形、圆等这些具体图形比较习惯,对于泛指的n边形不习惯。为了降低难度,教科书涉及的证明、计算等问题都是结合具体的多边形为例的,教学时要注意把这种针对具体图形的结论和方法推广,使学生实现由具体到抽象,特殊到一般的认识上的飞跃,提高学生的思维能力。

教科书接下来的24.4节的主要内容是一些与圆有关的计算,包括两部分“弧长和扇形的面积”“圆锥的侧面积和全面积”。“弧长和扇形的面积”是在小学学过的圆周长、面积公式的基础上推导出来的,应用这些公式,就可以计算一些与圆有关的简单组合图形的周长和面积。由于圆锥的侧面展开图是扇形,所以教科书接下来介绍了圆锥的侧面积和全面积的计算。这些计算不仅是几何中基本的计算,也是日常生活中经常要用到的,运用这些知识也可以解决一些简单的实际问题。圆锥的侧面积的计算还可以培养学生的空间观念,因此对这部分内容的教学也要重视。

(三)课程学习目标

1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征。

2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆。

4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积。

5.结合相关图形性质的探索和证明,进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力;通过这一章的教学,进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力,同时对学生进行辩证唯物主义世界观的教育。

二、本章编写特点

(一)突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合

圆是日常生活中常见的图形之一,也是平面几何中的基本图形,本章重点研究了与圆有关的一些性质。教科书在编写时,注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。

例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角、圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生能对发现的性质进行证明,使直观操作和逻辑推理有机的整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续。

(二)注意联系实际

圆是人们日常生活和生产中应用较广的一种几何图形,不仅日常生活中许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以见到圆。这部分内容与实际联系比较紧密。在教科书编写时,也充分注意到这一点。例如,在引入圆、正多边形等概念时,举出了大量的实际生活中的例子;在介绍点与圆、直线与圆、圆与圆的位置关系时,也是注意从它们在实际生活中的应用引入;利用垂径定理解决求赵州桥的主桥拱半径的问题;根据海洋馆中人们视野的关系引出研究圆周角与圆心角、圆周角之间的关系;利用正多边形的有关计算求亭子的地基;实际问题中有关弧长、扇形的面积、圆锥的侧面积和全面积的计算问题等等。教科书的例、习题中也有一些实际应用的例子等等。这些材料都是从实际中提炼出来的,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。教学时,还可以根据本地区的实际,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力。

(三)重视渗透数学思想方法

教学中不仅要教知识,更重要的是教方法,本章重涉及的数学思想方法也比较多。例如,圆周角定理证明中的通过分类讨论,把一般问题转化为特殊情况来证明;研究点与圆、直线与圆、圆与圆的位置关系时的分类的思想;研究正多边形的有关问题是通过把问题转化为解直角三角形来解决的;正多边形的画图是通过等分圆来完成的;等等。通过这些知识的教学,使学生学会化未知为已知、化复杂为简单、化一般为特殊或化特殊为一般的思考方法,提高学生分析问题和解决问题的能力。

另外,在本章,通过理论联系实际,对学生进行唯物论认识论的教育;通过圆的许多性质之间的内在联系,圆与其他图形之间量变与质变的关系,一般与特殊之间的关系等,对学生进行辩证唯物主义观点的教育;使学生增强民族的自豪感和振兴中华的使命感,对他们进行学习目的的教育,培养他们良好的个性品质。

三、几个值得关注的问题

(一)进一步培养推理论证能力

从培养学生的逻辑思维能力来说,“圆”这一阶段处于学生初步掌握了推理论证方法的基础上进一步巩固和提高的阶段,不仅要求学生能熟练地用综合法证明命题,熟悉探索法的推理过程,而且要求了解反证法。教学中要重视推理论证的教学,进一步提高学生的思维能力。教科书在这方面也还是很重视的。在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,有一些图形的性质是直接由已有的结论经过推理论证得出的。另外,为了巩固并提高学生的推理论证能力,本章的定理证明中,除了采用了规范的证明方法外,还有一些采用了探索式的证明方法。这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论。这些对激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处。教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展。

初中圆的知识点归纳

一、圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素。

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。)

8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;

直线与圆没有交点,直线与圆相离。

9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。

则AB=

10、圆的切线判定。

(1)d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

11、圆的切线的性质(补充)。

(1)经过切点的直径一定垂直于切线。

(2)经过切点并且垂直于这条切线的直线一定经过圆心。

12、切线长定理。

(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。

(2)切线长定理。

∵ PA、PB切⊙O于点 A、B

∴ PA=PB,∠1=∠2。

13、内切圆及有关计算。

(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。

求:AD、BE、CF的长。

分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求内切圆的半径r。

分析:先证得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

得r=

(4)S△ABC=

14、(补充)

(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圆的两条弦AB与CD相交于点P,则PA•PB=PC•PD。

(3)切割线定理。

如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB•PC。

(4)推论:如图,PAB、PCD是⊙O的割线,则PA•PB=PC•PD。

15、圆与圆的位置关系。

(1)外离:d>r1+r2, 交点有0个;

外切:d=r1+r2, 交点有1个;

相交:r1-r2

内切:d=r1-r2, 交点有1个;

内含:0≤d

(2)性质。

相交两圆的连心线垂直平分公共弦。

相切两圆的连心线必经过切点。

16、圆中有关量的计算。

(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。

L=

(2)扇形的面积用S表示。

S= S=

(3)圆锥的侧面展开图是扇形。

r为底面圆的半径,a为母线长。

 扇形的圆心角α=

 S侧= ar S全= ar+ r2

篇6:初中数学圆说课稿

一、教学分析

1、教学内容:

本节课的教学内容是人教版数学第十一册第四单元《圆》的第一节内容《圆的认识》,主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等。

2、教材简析:

圆是一种常见的平面图形,也是最简单的曲线图形。学生已经对圆有了初步的感性认识,教学时,可以让学生回答日常生活中圆形的物体,并通过观察使学生认识圆的形状。再指导学生独立完成画圆的操作过程,掌握圆的画法。经过讨论使学生认识圆的各部分名称,掌握圆的特征。

3、教学目标:

(1)使学生认识圆,知道圆的各部分名称。

(2)使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

(3)使学生通过观察、实验、猜想等数学活动过程认识圆,进一步发展空间观念和初步的探索能力。

4、教学重点:会使用圆规画圆,知道半径和直径的关系。

5、教学难点:用圆规画圆。

6、教学关键:指导学生正确使用圆规,多进行实际操作练习。

二、学生分析

在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低;本校处在城乡结合处,家庭辅导能力较低,学生接受能力较差;学生的学习水平差距较大,小组合作意识不强,鉴于以前学习长、正方形等是直线平面图形,而圆是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。

三、说教法学法

1、本节课我以学生亲自动手制作车轮为主线,在动手中引导学生认识圆的各部分名称,理解圆的特征,以及教学圆的画法时,有目的、有意识地安排了让学生画一画、指一指、比一比、量一量等动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论,用耳去辨析同学们的答案。

2、教学中理应发挥学生的主体作用,淡化教师的主观影响,让学生自己在实践中产生问题意识,自己探究、尝试,修正错误,总结规律,从而主动获取知识。

3、本节课我采用了多媒体教学手段,主要运用操作、探究、讨论、发现等教学方法。学生的学法与教法相对应,让学生主动探索、主动交流、主动提问。通过多媒体的直观演示将演示、观察、操作、思维与语言表达结合在一起,使学生对圆有一个形象的感知。同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习的意识与创新意识。

四、说教学过程

(一)、情景导入:

1.创设游乐场的一个情境

屏幕出示:五辆车,问:你最喜欢乘哪辆车?为什么喜欢乘这辆车? 学生讨论、交流 。(车轮有长方形的、正方形的、平行四边形的、三角形的、圆形的)

2.导入:现实生活中的车轮都是圆的,而且车轴都装在圆的中心,为什么要装在中心,不装在中心,行吗?这节课我们就一起来做车轮,好吗?

(设计意图:创设游乐场乘车这样一个生活情境,让学生在充分观察的基础上,选择自己最喜欢乘的车,并说明喜欢的理由,使数学的内容充满人文色彩。在体现了社会性和时代感的同时,一下子就激发了学生的好奇心及强烈的探究欲望生动活泼,大大提高了教学效率。)

(二)、动手实践,发现新知

1.做车轮(画圆)

师:要做车轮,首先要做什么?(画圆)

学生小组合作,任选工具画圆,再把圆剪下来。

师:你是怎样画这个圆的? 学生介绍不同的画圆方法。

师:你是怎样用圆规来画圆的?你认为用圆规画圆时要注意什么?

师介绍圆规的结构及画法。

2.安车轴(认识圆心)

师:车轴安装的地方我们把它看作一个点,那么车轴应装在哪里呢? 学生装车轴 。

圆规画圆时,针尖固定的一点。

不是圆规画圆的,怎样找车轴? 学生介绍方法(多次折)

师小结,屏幕显示:圆心O (圆中心的一点叫做圆心)

3、装钢丝(认识半经): 学生装钢丝

投影出学生所画的钢丝,问:你是怎样安装这些钢丝的?它们都是怎样的线段?

师小结:连接圆心和圆上任意一点的线段叫做半径。这样的线段你能画几条?你还有什么发现? (在同一个圆里,有无数条半径,所有半径的长度都相等)

屏幕显示:半经r。 学生判断

问:你现在明白车轴为什么装在圆的中心了吗?(回应了引入的问题)

4、认识直径:

1)用学生剪出来的圆进行对折,让学生观察折痕有什么特点?懂得:通过圆心并且两端都在圆上的线段叫做直径。

2)组织学生分小组讨论,你能否发现直径有什么特征吗?为什么?

3)汇报:同一圆里,直径有无数条,长度都相等。

屏幕显示:直经d 学生判断

5、认识半径与直径的关系

师:刚才我们通过设计车轮,知道了圆内各部分的名称,那么你们还可以发现什么规律吗?

学生小组讨论 (可以让学生在圆上画一画,量一量,比一比)

出示板书:在同一个圆里, d=2r或r=1/2d

现在假如要长途旅行,你要选择哪辆车?为什么?

(设计意图:通过做车轮、安车轴、装钢丝等一系列开放性活动,变被动地学数学为主动地做数学。在动手操作、自主探索、合作交流等方式中,学生掌握了数学的一些思想方法,理解了圆的基础知识,训练了一些基本技能。尤为重要的是培养了学生的创新精神与合作精神,体验了数学学习的快乐,让学生的个性得到了张扬。)

三、巩固练习

1、第88页第一题。(学生回答后让他们再说说一些物体的哪一部分是圆。)

2、填表。(让学生充分理解在同一个圆里半径与直径的关系)

r(米)0.241.42d(米)0.861.043、判断题:

(1)经过圆心的线段是直径。( )

(2)圆心到圆上任意一点的距离相等。( )

(3)直径的长度是半径的2倍。( )

4、操作题

(1)小明有一张没有标出圆心的圆形纸片,你能帮他找到圆的圆形心吗?同时请你说说你是怎样做的?

(2)画一个半径3厘米的圆。

5、扩展题:在边长为10厘米的正方形里画出一个最大的圆.想一想:可以用哪些办法来确定它的圆心?它的半径应是多少?

(设计意图:通过这样的延伸,做到首尾呼应,使学生初步感受数学知识来源于现实生活,又服务于现实生活,进一步体会数学与生活的联系,增强学习和应用数学的信心。)

6、小结体验:这节课我们学习了什么?说一说你有哪些收获?

篇7:初中数学圆说课稿

我说课的题目是上海教育出版社中职教材试用本数学第二册,第四章第一节《圆的标准方程》,说课内容分成教材分析、教法分析、学法分析、教学过程四个部分。

一、教材分析

1、教材的地位:解析几何是通过建立直角坐标系把几何问题用代数方法解决的学科。圆是同学们已经熟悉的几何图形,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。圆也是体现数形结合思想的重要素材。推导圆的标准方程需要在直线的学习基础上进行,基本模式和理论基础从直线引入。同时和今后的直线与圆等课程有重要联系。因此本节课具有承前启后的作用,是本章的关键内容。在本单元的地位和作用,结合职一年级学生的特点,我从以下三个角度制定教学目标:

2.教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

知识目标:经历圆的标准方程的推导过程,学会点与圆的位置关系的判定方法。

掌握圆的标准方程及其求法;能根据圆心、半径写出圆的标准方程。

能力目标:体会用解析法研究几何问题的方法,理解数形结合思想。

情感目标:运用圆的相关知识解决实际问题,提高观察问题、发现问题和解决问题的能力,以及学习数学的热情和民族自豪感。

3.教学重点、难点及关键

我将本课的教学重点、难点确定为:

①重点:掌握圆的标准方程及其推导方法,

②难点:圆的标准方程的应用。

二、教学方法分析

在教法上,主要采用研究性和启发式教学法。以启发、引导为主,采用提问启发的形式,逐步让学生进行研究性学习。结合圆的定义自己推导圆的标准方程。

让学生根据教学目标的要求和题目中的已知条件,主动地去分析问题、讨论问题、解决问题。例题安排由易至难,采用变式题形式,形变神不便,层层递进,深入分析。在应用问题的安排上,启发讨论的同时,体会我国古代劳动人民的智慧和才干,从而激发学生的民族自豪感。

三、学法分析

我所任教的班级是金融一年级,学生已具备了直线的相关知识。学生的基本运算过关,可是主动思考问题能力较薄弱。因此本堂课我主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、教学程序

1、创设情境,激发兴趣。

问题一:直线学习过程中已经借助平面直角坐标系体会用代数法研究几何问题,圆如何用代数法研究?

问题二:在我们现实生活中有许多蕴含圆方程的实例,比如赵州桥,它的圆方程是什么样的?通过本堂课的学习我们就能得到答案。

通过提出这两个问题,打开学生的原有认知结构,为知识的创新做好了准备;同时打下铺垫,在我们生活中,有许多实例蕴含着圆方程,设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了生活中的数学,又大胆而自然地提出猜想。

2、探索实践,推导方程。

让学生观察几何画板画圆的过程,抽象得出圆的定义。让学生总结出圆的定义并结合两点间的距离公式,逐步推导出圆的标准方程。

圆心是C(a,b),半径是r,求圆的标准方程:

注:当圆心在原点时,圆的标准方程为:

3、实践应用,巩固提高。

复习:点P与圆:的位置关系(由点与圆心C(a,b)的距离判定)

(1)点P在圆内,则|PC|<r

(2)点P在圆上,则|PC|=r

(3)点P在圆外,则|PC|>r

设计意图:从基本入手,熟悉圆的标准方程,以及点与圆位置关系等基本性质。

穿插课堂练习,反复巩固新知。

1.口答下列各圆的标准方程

(1)圆心在(8,-3),半径为6 _______________________

(2)圆心在(0, 2),半径为 ________________________

(3)圆心在原点,半径为4 ________________________

2.判断下列方程是否表示圆,如果是,写出圆心坐标和半径,并判断原点

(0,0)与圆的位置关系。

设计意图:第一题是直接给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

设计意图:3道变式例题,形变神不变。通过巩固练习,让学生自己体会出本堂课的重点求圆标准方程的关键条件。

例3如图为著称于世的赵州桥的示意图,圆拱跨径AB(桥孔宽)为37.0m,拱高OP=7.2m,如以AB为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,求赵州桥圆拱所在的圆的方程。

设计意图:与情境引入时相呼应,联系到生活实例,使学生进一步体会圆方程的应用。同时赵州桥是中国古代劳动人民智慧的结晶,提升学生的民族自豪感。

4、课堂小结,回味无穷。

(1)圆心为C(a,b),半径为r的圆的标准方程为:

(2)当圆心在原点时,圆的标准方程为:

(3)数形结合的思想方法

5、回家作业,课后巩固。

练习册P7.习题7.3(1)/1、2、3、4

6、课后思考,扩展延伸。

1.把圆的标准方程展开后是什么形式?

2.方程:

7、板书设计

篇8:初中数学圆知识点

1.圆的定义

(1)在一个平面内,线段OA绕它的一个端点O旋转一周, 另一个端点A随之旋转所形成的图形叫做圆。固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。

(2)圆可以看作是平面内到定点的距离等于定长的点的集 合,定点为圆心,定长为圆的半径。

说明:圆的位置由圆心确定,圆的大小由半径确定,半 径相等的两个圆为等圆。

2.圆的有关概念

(1)弦:连结圆上任意两点的线段。(如右图中 的CD)。

(2)直径:经过圆心的弦(如右图中的AB)。 直径等于半径的2倍。

(3)弧:圆上任意两点间的部分叫做圆弧。(如 右图中的CD、CAD)

其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。

(4)圆心角:如右图中∠COD就是圆心角。

3.圆心角、弧、弦、弦心距之间的关系。

(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。 (2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

4.过三点的圆。

(1)定理:不在同一条直线上的三点确定一个圆。

(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。

5.垂径定理。

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:

(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对 的另一条弧。

(2)圆的两条平行弦所夹的弧相等。

6.与圆相关的角

(1)与圆相关的角的定义

①圆心角:顶点在圆心的角叫做圆心角

②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。

③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。

(2)与圆相关的角的性质

A

B

①圆心角的度数等于它所对的弦的度数;

②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;

⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;

⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

二.与圆有关的位置关系

1.点与圆的位置关系

如果圆的半径为r,某一点到圆心的距离为d,那么: (1)点在圆外dr (2)点在圆上dr (3)点在圆内dr

2.直线和圆的位置关系

设r为圆的半径,d为圆心到直线的距离

(1)直线和圆相离dr,直线与圆没有交点; (2)直线和圆相切dr,直线与圆有唯一交点; (3)直线和圆相交dr,直线与圆有两个交点。

3.圆的切线

(1)定义:和圆有唯一公共点的直线叫做圆的切线,唯一公共点叫做切点。 (2)切线的判定定理

经过半径的外端且垂于这条半径的直线是圆的切线。 (3)切线的性质定理及推论

定理:圆的切线垂直于经过切点的半径。 推论:

①经过圆心且垂直于切线的直线必经过切点; ②经过切点且垂直于切线的直线必经过圆心。

4.两圆的位置关系

设R、r为两圆的半径,d为圆心距 (1)两圆外离dR+r; (2)两圆外切dR+r; (3)两圆相交R(4)两圆内切d(5)两圆内含d

r

(注意:如果为d=0,则两圆为同心圆。) R-r(R>r)。

5.两圆连心线的性质

(1)相交两圆的连心线,垂直平分公共弦,且平分两条外公切线所夹的角。(注:平分两外公切线所夹的`角,通过角平分线的判定“到角的两边距离相等的点,在这个角的平分线上”,很易证明。)

(2)相切两圆的连心线必经过切点。

(3)相离两圆的连心线平分内公切线的夹角和外公切线的夹角。 6.两圆公切线的性质

(1)如果两圆有两条外公切线,则两外公切线长相等。 (2)如果两圆有两条内公切线,则两内公切线长相等。

8.与圆有关的比例线段问题的一般思考方法 (1)直接应用相交弦、切割线定理及其推论;

(2)找相似三角形,当证明有关线段的比例式或等积式不能直接运用基本定理推导时,通常是由“三点定形法”证三角形相似,其一般思路为等积式→比例式→中间比→相似三角形。 9.与圆相关的常用辅助线 (1)有弦,可作弦心距;

(2)有直径,可作直径所对的圆周角; (3)有切点,可作过切点的半径; (4)两圆相交,可作公共弦; (5)两圆相切,可作公切线; (6)有半圆,可作整圆。

记忆口诀:有弦可作弦心距,中心圆心相连;两圆相切公切线,两圆相交公共弦;遇到切点作半径,圆与圆心连心;遇到直径相直角,直角相对点共圆。(注:“心连心”为连心线。) 10.圆外切三角形和四边形的性质

(1)如右图,△ABC是⊙O的外切三角形,D、E、F为切点,则AD=AF=AB+AC-BD

2同理:直角三角形内切圆半径R=a+b-c。(其中a、b为直角边,c为斜边)

(2)圆外切四边形两组对边和相等,即如右图,四边形ABCD是⊙O的外切四边形,则 AB+CD=AD+BC。

三.圆中的计算问题

1.圆的有关计算

(1)圆周长:c=2pR (2)弧长:l=npR; 1802

(3)圆面积:S=pR;1npR2

(4)扇形面积:S扇形=lR=;2360

(5)弓形面积:S弓形=S扇形±SD

2.圆柱

圆柱的侧面展开图是矩形,这个矩形的长等于圆柱的底面周长c,宽是圆柱的母线长l,如果圆柱的底面半径是r,则S圆柱侧=cl=2prl。

3.圆锥

圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面周长c,半径等于圆锥母线长l,若圆锥的底面半径为r,这个扇形的圆心角为a,则a=r1

360,S圆锥侧=cl=prl。 l2

篇9:数学直线和圆教案

数学直线和圆教案

一、教学目标

【知识与技能】

了解直线和圆的三种位置关系相交、相切、相离和割线、切线、切点、交点等有关概念。能够准确利用直线和圆的位置关系的判断方法判断直线和圆的位置关系。

【过程与方法】

通过实物和课件演示,让学生体验数形结合的数学思想。从而提高学生的画图、识图能力。由点和圆的位置关系归纳、类比出直线和圆的'位置关系,从而提高学生的知识迁移能力。

【情感态度价值观】

激发学生学习数学兴趣与好奇心。

二、教学重难点

【教学重点】

直线和圆的三种位置关系和两种判别方法。

【教学难点】

直线和圆的三种位置关系和两种判别方法。

三、教学过程

(一)引入新课

利用多媒体展示日出的图片,引导学生思考:把海平面看作一条直线,太阳看作一个圆,由此你能得出直线与圆的位置关系吗?由此你能归纳出直线和圆有几种位置关系吗?

(二)探索新知

组织学生在作业纸上画出数学模型

预设:

篇10:九年级数学《圆》教案

1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.

2.通过复习轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.

3.旋转的基本性质.

重点

旋转及对应点的有关概念及其应用.

难点

旋转的基本性质.

一、复习引入

(学生活动)请同学们完成下面各题.

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.

2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质.

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.

2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)

3.第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.

下面我们来运用这些概念来解决一些问题.

例1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A,B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.

(2)经过旋转,点A和点B分别移动到点E和点F的位置.

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2.∠AOA′,∠BOB′,∠COC′有什么关系?

3.△ABC与△A′B′C′的形状和大小有什么关系?

老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.

3.△ABC和△A′B′C′形状相同和大小相等,即全等.

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等.

例2 如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.

解:(1)连接CD;

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;

(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;

(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用.

四、作业布置

教材第62~63页习题4,5,6.

篇11:九年级数学《圆》教案

1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.

2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.

重点

中心对称的概念及性质.

难点

中心对称性质的推导及理解.

复习引入

问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:

1.以O为旋转中心,旋转180°后两个图形是否重合?

2.各对应点绕O旋转180°后,这三点是否在一条直线上?

老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

探索新知

(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:

(1)作△ABC一顶点为对称中心的对称图形;

(2)作关于一定点O为对称中心的对称图形.

第一步,画出△ABC.

第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.

从图(1)中可以得出△ABC与△A′B′C是全等三角形;

分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.

下面,我们就以图(2)为例来证明这两个结论.

证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;

(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.

同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.

因此,我们就得到

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形.

例题精讲

例1 如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.

分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.

解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.

(2)同样画出点B和点C的对称点E和F.

(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.

例2 (学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).

课堂小结(学生总结,老师点评)

本节课应掌握:

中心对称的两条基本性质:

1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;

2.关于中心对称的两个图形是全等图形及其它们的应用.

作业布置

教材第66页 练习

九年级数学教案3:中心对称图形

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.

重点

中心对称图形的有关概念及其它们的运用.

难点

区别关于中心对称的两个图形和中心对称图形.

一、复习引入

1.(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

关于中心对称的两个图形是全等图形.

2.(学生活动)作图题.

(1)作出线段AO关于O点的对称图形,如图所示.

(2)作出三角形AOB关于O点的对称图形,如图所示.

延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.

二、探索新知

从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.

上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.

∵AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

(学生活动)例1 从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.

老师点评:老师边提问学生边解答的特点.

(学生活动)例2 请说出中心对称图形具有什么特点?

老师点评:中心对称图形具有匀称美观、平稳的特点.

例3 求证:如图,任何具有对称中心的四边形是平行四边形.

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.

证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.

三、课堂小结(学生归纳,老师点评)

本节课应掌握:

1.中心对称图形的有关概念;

2.应用中心对称图形解决有关问题.

四、作业布置

教材第70页习题8,9,10.

篇12:初中数学圆知识点总结

一.1、弧长公式

n°的圆心角所对的弧长l的计算公式为L=nπr/180

2、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.

S=﹙n/360﹚πR2=1/2×lR

3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.

S=1/2×l×2πr=πrl

4.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

5.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:

①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

6.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

4、弦切角定理

弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.

弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.

二.圆周角和圆心角的关系:

1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.

2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.

推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;

推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;

篇13:初中数学知识点圆总结

初中数学知识点圆总结

知识点:

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆

l、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设出发,经过推理论证,得出矛盾;

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角

则两个钝角之和>180°

与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90°的.圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

六、圆的判定性质

1.不在同一直线上的三点确定一个圆。

2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的集合

5.圆的内部可以看作是圆心的距离小于半径的点的集合

6.圆的外部可以看作是圆心的距离大于半径的点的集合

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12.①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 dr

13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理 圆的切线垂直于经过切点的半径

15.推论1 经过圆心且垂直于切线的直线必经过切点

16.推论2 经过切点且垂直于切线的直线必经过圆心

17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等 外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离 dR+r ②两圆外切 d=R+r

③.两圆相交 R-rr)

④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)

篇14:初中数学圆教学反思

一、联系生活,体现生活数学。

数学来源于生活,并应用于生活。

我引导学生说出身边的物体哪些是圆形的,让学生初步了解圆形的。课末引导学生开展游戏活动选择汽车,不但调动了学生的积极性,加深了学生对圆的认识,而且拉近了数学与生活的距离,使学生深刻体会到身边有数学,伸出手就能触摸到数学,从而对数学产生亲切感,增强学生对学习数学的兴趣和提高学生应用数学的能力。

二、自主探索,培养创新精神。

在教学中,学生是学习的主体,教师要设计一些具有探索性和开放性的问题,给学生提供自主探索的机会,引导学生开展合作型的探究性活动,让学生在观察、实验、讨论、交流、合作学习中,理解新知识,使所有学生都能获得成功感,树立自信心。如教学圆心、直径、半径,不急于传授,通过引导学生动手操作折圆,发现圆中心的一点,比一比、量一量、画一画,发现圆的一些特征;通过观察、比较,自主看书,发现同圆中,所有半径都相等,所有直径也相等,半径是直径的一半,直径是半径的2倍,教师适时引导,使学生懂得归纳知识的一般方法,同时学会了观察、实验、操作、发现等学习方法,并伴随新知识的获得,体验到了成功的快乐,增强了克服困难的勇气和毅力。

篇15:初中数学《圆》教学反思

最近我们在学习《圆》这一单元,圆是一个美丽的图形,与之前学习的长方形正方形,以及五年级学习的平行四边形、梯形等有很大差异,因为圆是曲线图形,在研究其周长和面积的时候,牵涉到圆周率一个比较陌生的概念。所以本单元的学习还是有一定难度的,如何激发学生的学习兴趣,这是值得我思考和应对的问题,在教学过程中,我有几点做法,我认为是可以在以后教学工作中所借鉴的:

在初步认识圆的定义概念的那节课,因为圆的学习是借助于圆规进行的,学生可以比较轻松的利用圆规进行画圆的操作,也能较好的区分圆心、定义、概念等,在课本59页,单独一页是让学生利用圆规创造漂亮的图案。学生掌握的较好。但是圆规仅限于画比较小的圆,为了让学生掌握更灵活的画圆技巧,课后我安排学生自己准备工具,下午在操场画圆,操场对于学生本身就是很有吸引力的场所。下午的时候,学生小组为单位,积极思考,协作进行,因为小组之间很便于比较,学生积极性非常高,而在画圆的过长中,学生也不怕辛苦,拿着抹布粉笔,边画边修改,将近三十分钟才完成,然后学生发挥想想进行完善,我看到有些孩子的成就感比上一节体育课要高的多。我认为这才是有意义的数学教学。

在研究圆周长的时候,我利用了一整节课上了一节“历史课”,我在网上搜集了祖冲之、刘徽以及圆周率的知识,为学生们讲解了祖冲之的生平,生活中虽然起起伏伏,但是家庭环境对他的印象让他在几十年里都爱好学习爱好研究,不管身处何地都不忘钻研,学生们听的也很有感悟。刘徽比祖冲之要早上百年,所以我告诉学生,他们是没有见过面的朋友,但是祖冲之接下了刘徽的衣钵,继续致力于圆周率的探究,最终成为世界上第一个把圆周率的值精确到小数点后面第七位。我告诉学生,任何成功都是需要许多人做铺垫,默默奉献的。而刘徽在利用割圆术研究圆的时候,一直分到了圆的正内接六百多边形,学生们纷纷发出了“哇”的感慨。我趁机告诉孩子们,许多研究活动都是枯燥的,日复一日年复一年的,没有人能随随便便成功。我认为这样的一节课很有必要。

在学习圆面积的时候,我让学生提前预习,小组讨论需要用到什么工具,分工合作自己准备。在课上的时候,学生们积极性也比较高,把各自小组的圆进行了4等分,8等分,直到16等分,然后拼成平行四边形,我让学生把拼成的图形贴在纸上,站在黑板上,每组完成情况及效果一目了然,学生都非常投入,这样的活动花费了较长时间,但是我认为非常必要。

对于数学的教学,我一直认为说教没有课件展示直观,但是课件展示远没有学生亲自操作得来的经验更深刻,所以能让学生主动参与的,我们一定要给孩子们创造条件。

篇16:初中数学《圆》教学反思

在教授《圆的认识》一部分内容时,学生对圆规比较感兴趣,我便利用学生的兴趣鼓励他们做了很多个大小不同的圆的平面图形,并在课堂上通过折叠、比较等方法使学生明确了圆中各部分的名称。并引导学生自己总结出半径和直径的概念以及它们之间的关系。

《圆的周长》这一部分的知识内容引进了圆周率的内容,我在课堂上和学生一起测量手中圆形物体的周长,并对周长和直径的比值列表比较,使学生在比较观察过程中发现圆的周长和直径的比值总是3倍多一点。在此情况下我告诉学生,圆周长和直径的比值就叫做圆周率。并针对圆周率的取值对学生进行了爱国主义思想教育。

平面图形的计算公式对学生来说可能意味着一堆混乱不清的字母,尤其是在引入了《圆的面积》这部分知识后,在对圆进行剪切、拼接长方形的过程中,我不断的强调圆的周长相当于长方形的两个长,半径相当于长方形的宽。但是学生仍旧在对公式的计算上存在着误差。在计算过程中时常把半径的平方写成半径乘以二。鉴于这种情况,我课下经过对个别同学的提问才发现,所有学生都知道一个r的平方等于r × r,但是一遇到具体的计算,学生们往往忽略了平方,而用r × 2来计算。在计算元的周长和面积过程中所反映出来的不仅仅是学生对以往知识掌握不扎实的情况,更严重的是学生把知识学死了,不会用来解决实际遇到的数学问题。部分学生计算能力的薄弱也为解决实际问题带来很大的障碍,由于在计算圆周长和圆面积时,圆周率取近似值3.14,所以在解决实际问题的时候不断出现某数与三位数相乘,除数出现三位数的除法。遇到这样的情况时,部分同学就表现出计算能力的薄弱,往往一道题目的计算要经过反复的订正才能正确,大大影响到解决问题的效率。

改进措施:

1、针对学生实际情况,解决问题已经不仅仅是从他们理解的角度出发,还要通过外力手段强化他们的记忆,通过比较大量的练习来巩固所学知识。

2、加强对学生进行计算训练,提高学生计算技能。如口算训练,熟记2∏――9 ∏的结果等等训练。

3、在解决问题的过程中,学生缺乏回顾反思的学习习惯。因此,对于自己解题的思路是否正确,解题的结果是否符合事实都不在乎,只有等老师反问时才会恍然大悟。今后在教学过程中应加强对学生反思能力的培养。

[初中数学《圆》教学反思]

【初中数学圆教案】相关文章:

1.初中数学圆知识点

2.初中数学圆的基本性质

3.小学数学六年级教案圆的认识

4.数学圆知识点提纲

5.初中数学的教案

6.初中数学梯形教案

7.初中数学公开课教案

8.初中数学一年级教案

9.六年级数学上册圆的面积教案参考

10.圆的周长教案

下载word文档
《初中数学圆教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部