初中数学《方程》优秀教案
“昵称不能为空”通过精心收集,向本站投稿了17篇初中数学《方程》优秀教案,下面就是小编给大家整理后的初中数学《方程》优秀教案,希望您能喜欢!
篇1:初中数学《方程的近似解》的教案
初中数学《方程的近似解》的教案
教学目的知识技能 观察估计方程解的大致范围,用试值的方法,得到方程的近似解.
数学思考建立初步的数感和符号感,发展抽象思维
解决问题综合运用所学到的知识和技能解决问题,发展应用意识
情感态度培养学生对数学的好奇心和求知欲
教学难点通过观察估计方程解的大致范围
知识重点用试值的方法得到方程的近似解
教学过程
问题一:
小明的爸爸投资购买某种债券,第一年初购买了1万元,第二年初有购买了2万元,到第二年底本利和为3.35万元.设这种债券的年利润率不变,你能估计出年利润率的近似值吗?
师生活动:共同审题,设未知数,建立方程
设年利润率为r,
一起探究
根据题目的实际意义,总投入3万元,而本利和为3.35万元,所以r>0.
年利润r可能超过0.1吗?可能比0.06小吗?
方程的左边可化为
当r=0.1时,方程的左边=1.13.1 =3.41>3.35
0< r <0.1
当r=0.06时,方程的左边=1.063. 06=3.3.2436 <3.35
0.06< r <0.1
课堂练习
一架长为10m的梯子斜靠在墙上,梯子的顶端A除到地面的距离为8m.如果梯子的顶端沿墙面下滑1m,那么梯子的`底端在地面上滑动的距离也是1m吗?请列出方程,并估计方程解的大致范围(误差不超过0.1m).
问题二:估计方程 x3-9=0 的解.
解:将方程化成 x3=9
由于23=8<9,33=27>9
通过试值,得到方程的解在2和3之间,并且接近2.
取x=2.1进行试值,2.13=9.261>9
2< x <2.1
再取x=2.08, x=2.09继续试值,
2.08< x <2.09
在实践探索交流中解决问题,逐步领悟解决问题的正确方法,克服畏难情绪。同时调动学生的思维积极性,提高动手能力和活用数学的意识.
通过观察,估计方程解的范围.
用试值的方法得到方程的近似解
通过估计方程的近似解,解决实际问题.
对高次方程进行估算,求其近似解.
小结与作业
课堂小结 学生讨论总结,本节课的所得和估算要点
本课作业 课本第48页习题1、2、3
课后随笔(课堂设计理念,实际教学效果及改进设想)
篇2:初中数学优秀教案精选
初中数学正弦和余弦教案设计
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
初中数学优秀有理数的乘法教案
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
(第一课时)
教学目标
1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据法则,熟练进行运算;
难点:有理数乘法法则的理解.
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
初中数学角平分线的性质教案范文
(一)创设情境 导入新课
不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?
如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?
设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流 探究新知
(活动一)探究角平分仪的原理。具体过程如下:
播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.
分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:
已知:∠AO B.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.
(3)作射线OC,射线OC即为所求.
设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:
1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:
1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
(活动三)探究角平分线的性质
思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?
这样设计的目的是加深对全等的认识。
篇3:初中数学优秀教案
2.7有理数的加减混合运算
一、 教材内容及设置依据
【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。
【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。
二、教材的地位和作用
本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,
特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了
类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。
三、对重点、难点的处理
【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型 2、实际应用型 3、方法多变型 4、知识拓展型等。
【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)
四、关于教学方法的选用
根据本节课的内容和学生的实际水平,本节课可采用的方法:
1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。
2 、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。
3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的.情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。
五、关于学法的指导
“授人以鱼,不如授人以渔”,在教o学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。
六、课时安排:1课时
教学程序:
一、复习铺垫:
首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。
1、45+(-23) 2、9-(-5)
3、-28-(-37)4、(-13 )+0
5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)
从四排学生中个推选一名学生代表板演6、7、8、题。
通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。
然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。
二、新知探索:
1、 出示引例1: 一架飞机作特技表演,起飞后的高度变化如下表: 高度变化 记作
上升4.5千米 +4.5千米
下降3.2千米 -3.2千米
上升1.1千米 +1.1千米
下降1.4千米 -1.4千米
此时飞机比起飞点高了多少米?
让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:
① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4
=1.3+1.1+(-1.4) =1.3+1.1-1.4
=2.4+(-1.4) =2.4-1.4
=1千米 =1千米
教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学
篇4:初中数学优秀教案
《平移》教学设计说明
湖南广益实验中学李智敏
一、教学内容
义务教育课程标准实验教科书教科书(人教版)七年级下册第五章相交线与平行线,
5.4平移
二、教学目标
知识与技能目标:
掌握平移的概念,发现并归纳平移的性质,学会利用平移绘制某些特殊的图案.
过程与方法目标:
经历操作、探究、归纳和总结平移性质的过程,感受数学知识的发生和发展,培养学生的抽象概括能力;体会从数学的角度理解问题,提高综合运用所学知识和技能解决问题的水平.
情感、态度与价值观目标:
通过丰富多彩的活动,让学生感受数学充满了探索性与创造性,激发学生的探究热情,并培养学生良好的团队合作意识和创新精神.
三、教学重点、难点
重点:学习习近平移的有关定义及平移的性质.
难点:1、对平移的两要素的理解;2、如何运用平移的性质解决问题.
四、学情分析
对于理解掌握平移的概念及性质,学生要对生活中的平移现象有一些感性的认识,同时必须具有线段相等及平行线的判定等知识储备.七年级的孩子正处于思维活跃,模仿能力强,对新知事物满怀探求欲望的阶段,同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.
五、教学过程设计:
一、创设情景 感知平移
活动一 观看:李老师的生活片段(视频)
片段一 开窗户
片段二 开抽屉
片段三 开车
片段四 乘坐电梯
看完后,我将引导学生仔细分析从中抽象出的平面图形的变换,提出问题:“在刚才的过程中,图形是怎么移动的呢?”
通过教师的引导,学生不难得出:“图形是沿着一条直线移动的”.
【设计意图】
1.以老师的生活片段作为引入,可以在最短时间内激发学生的兴趣,引起学生的高度注意力,进入情景,感受生活中的平移.
2. 渗透将实际问题转化为数学问题的思想.
二、动手操作 探究平移
活动二 观看下列美丽的图案,并回答问题.
(1)这些图形有什么共同特点?
(2)能否根据其中一部分绘制整个图案?
在老师用动画演示的启发下,经过同学们的热烈讨论,大家将达成共识:
“可以将其中的一部分沿一条直线移动,得出若干个形状、大小完全相同的图形,组合成图案”.
活动三 指导学生用平移的方法绘制图案
请大家试试看!在一张白纸上划一条直线,将手中的硬纸板图形沿着这条直线移动,并把每一次移动后的图形画下来!
我先在黑板上演示,然后学生动手作图,完成后用实物投影仪展示部分同学的作品,并告诉学生:“我们刚才做的就是将图形进行平移”.
【设计意图】
让学生感受到通过平移可以创造生活中的美,并进一步加深对平移的印象:
“一个图形的整体沿一条直线移动”.
三、合作交流 学习习近平移
1.平移的定义: 将一个图形沿某一直线方向移动一定的距离,图形的这种移动叫做平移变换,简称平移
.
接着我将引导学生关注定义中包含平移的两要素:方向和距离.
对应点的定义:
新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.
在教师的引导下,通过观察多媒体再一次演示平移,学生很容易得出平移的第一条性质:
(1)平移不改变图形的形状和大小,只改变图形的位置.
接着,我要求学生观察课本P28图中A、B、C点与它们的对应点的连线,并提问:“这些线段有怎样的数量关系和位置关系呢?”
在本节课之前,学生已经掌握了对线段大小的比较和平行线的判定的方法.在这里他们可以使用刻度尺、量角器、圆规等工具,通过度量线段、画截线和比较角的大小等方法,探究出平移的第二条性质:
(2)连接对应点的线段平行且相等.
【设计意图】
在了解平移定义的基础上,通过观察猜想、动手操作、合作交流,让学生自主探讨出平移的性质,既培养了学生的探索精神和协作意识,又有利于学生对新知识的理解和掌握.
四、师生互动 应用平移
1、请大家举出生活中平移的现象
【设计意图】
让学生在寻找身边的平移的过程中,进一步认识到“数学来源于生活”,激发他们学好数学,将来更好地让“数学服务于生活”.
2、 例题1.
(1)平移改变的是图形的( )
B
A.位置B.大小 C.形状 D.位置、大小和形状
(2)在平移变换中,连接对应点的线段( )
A .平行不相等 B. 相等不平C.平行且相等 D. 既不平行,又不相等
(3)经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是( )
A. 不同的点移动的距离不同 B. 既可能相同也可能不同
C. 不同的点移动的距离相同 D. 无法确定
【设计意图】
为了学生加深对平移性质的理解,突破了重、难点.
例题2.下列变换中可能属于平移的有哪些?
C A B
【设计意图】 D E
强调平移“是图形沿一条直线运动”,让学生意识到“不符合平移性质的不是平移”,突出了重点,突破了难点.
3、 练习:
(1)下图中,每个方格的边长为一个单位长度,左边的小船是右边的小船向平移 单位长度后得到的;
(2)请找出A、B、C的对应点A′、B′、C′;
(3)请找出与线段AA′相等且平行的两条线段,它们的长度是多少?
【设计意图】
练习题的设计,是为了巩固对平移两要素与性质的理解和掌握,实现重、难点的落实,
并为下一步“平移作图和用坐标表示平移”的学习作好铺垫.
五、小结拓展回味平移
1. 欣赏与回味(一)
用同样的基本图形绘制的图案,其效果为什么会有这么大的差异呢?”
【设计意图】
通过对图形欣赏和对比,让学生体会到:用同样一个基本图形,如果平移的方向不同或平移的距离不一样,将会产生出不同的视觉效果,从而加深对平移的两要素的理解.
欣赏与回味(二)
【设计意图】
通过观察多媒体绘制这幅图片的过程,让学生感受到用一个基本图形通过不同的平移可以构造出生活中的美,激发学生运用平移设计图案的兴趣.
2. 请大家谈谈这节课的收获!
――平移的定义―平移的两要素
――平移的性质
篇5:初中数学优秀教案
教学目标
(一)教学知识点
1.利用方程解决实际问题.
2.训练用配方法解题的技能.
(二)能力训练要求
1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.
2.能根据具体问题的实际意义检验结果的合理性.
3.进一步训练利用配方法解题的技能.
通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.
教学重点
利用方程解决实际问题
教学难点
对于开放性问题的解决,即如何设计方案
教学方法
分组讨论法
教具准备
投影片二张
第一张:练习(记作投影片2.2.3 A)
第二张:实际问题(记作投影片2.2.3 B)
教学过程
Ⅰ.巧设情景问题,引入新课
[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片2.2.3 A)
用配方法解下列一元二次方程:
(1)x2+6x+8=0;
(2)x2-8x+15=0;
(3)x2-3x-7=0;
(4)3x2-8x+4=0;
(5)6x2-11x-10=0;
(6)2x2+21x-11=0.
[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、
(4)、(6).
[师]各组做完了没有?
[生齐声]做完了.
[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.
[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即
x-3x=7,
x2-3x+32=7+32 应为(-23
2)2.
[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?
[生乙]方程(3)的解为x1=
[师]好,继续. 3?237,x2?3?237.
[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=52,x2=-32.
[生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即
方程(2)的解:x1=5,x2=3,
方程(4)的解:x1=2,x2=
方程(6)的解:xl=32, 12,x2=-11.
[师]利用配方法求解方程时,一定要注意:
①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.
②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.
另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.
这节课我们就来解决一个实际问题.
Ⅱ.讲授新课
[师]看大屏幕.(出示投影片2.2.3B)在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?
[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.
[生甲]我们组
的设计方案如右图
所示,其中花园四
周是小路,它们的
宽度都相等.
这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m或12 m.
[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.
[生乙]甲组的设计符合要求.
我们可以假设小路的宽度为x m,则根据题意,可得方程 (16-2x)(12-2x)= 1
2×16×12,
也就是x2-14x-24=0.
然后利用配方法来求解这个方程,即
x-14x=-24,
x2-14x+72=-24+72,
(x-7)=25,
x-7=±5,
即x-7=5,x-7=-5.
∴x1=12.x2=2.
因此,小路的宽度为2 m或12 m.
由以上所述知:甲组的设计方案符合要求.
[生丙]不对,因为荒地的宽度是12 m,所以小路的宽度绝对不能为12 m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m.
[师]大家来作判断,谁说的合乎实际?
[生齐声]丙同学说得有理.
[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.
[生丁]我们组
的设计方案如右图.
我们是以矩形
的四个顶点为圆心,以约5.5 m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.
因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得
πx2=22
1
2×12×16.
解得x=±96
?≈±5.5.
因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.
[生戊]由丁同
学组的启发,我又
设计了一个方案,
如右图.
以矩形的对角
线的交点为圆心,以5.5 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.
[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.
[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?
[生庚]我们组
设计的方案如右图.
顺次连结矩形
各边的中点,所
得到的四边形即
是作为花园的场
地.
因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m2(即1
2×6×8),所以四
个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半.因此这个设计方案也符合要求.
[生辛]我们组设计的方案如下图.
图中的阴影部分可作为建花园的场所.
因为阴影部分的面积为96 m,正好是矩形面积的一半,所以这个设计也符合要求.
[生丑]我们组
设计的方案如右图.
图中的阴影部
分可作为建花园的
场地.
经计算,它符合要求.
[生癸]我们组的设计方案如下图.
2
图中的阴影部分是作为建花园的场地.
[师]噢,同学们能帮癸组求出图中的x吗?
[生]能,根据题意,可得方程
2×1
2 (16-x)(12-x)
=1
2
2×16×12, 即x-28x+96=0,
x2-28x=-96,
x2-28x+142=-96+142,
(x-14)2=100,
x-14=±10.
∴x1=24,x2=4.
因为矩形的长为16 m,所以x1=24不符合题意.因此图中的x只能为4 m.
[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.
接下来,我们再来看一个设计方案.
Ⅲ.课堂练习
(一)课本P55随堂练习1
1.小颖的设计方案如图所示,你能帮助她求出图中的x吗
?
解:根据题意,得 (16-x)(12-x)=
212×16×12, 即x-28x+96=0.
解这个方程,得
x1=4,x2=24(舍去).
所以x=4.
(二)看课本P53~P54,然后小结.
Ⅳ.课时小结
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性. 另外,还应注意用配方法解题的技能.
Ⅴ.课后作业
(一)课本P55习题2.5 1、2
(二)1.预习内容:P56~P57
2.预习提纲
如何推导一元二次方程的求根公式.
Ⅵ.活动与探究
汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S甲(米)与车速x(千米/时)之间有下列关系:S甲=0.1x+0.01x2;乙种车的刹车距离S乙(米)与车速x(千米/时)的关系如下图所示.
篇6:初中数学优秀教案
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
二、重点、难点
1.教学重点:菱形的两个判定方法.
2.教学难点:判定方法的证明方法及运用.
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1:菱形的四条边都相等;
性质2:菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2四边都相等的四边形是菱形.
五、例习题分析
例1(教材P109的例3)略
例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.
求证:四边形AFCE是菱形.
证明:∵四边形ABCD是平行四边形,
∴AE∥FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四边形AFCE是平行四边形.
又EF⊥AC,
∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).
※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.
求证:四边形CEHF为菱形.
略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是
(A)两条对角线相等(B)两条对角线互相垂直
(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.
3.做一做:
设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.
篇7:初中数学优秀教案
一、教学目标:
1.知识目标:
①能准确理解绝对值的'几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1.引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以|0|=0.
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3.例题精讲
例1.求8,-8的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵|2|=2,|-2|=2
∴这个数是2或-2.
五、巩固练习
练习一:教材P641、2,P66习题2.4A组1、2.
练习二:
1.绝对值小于4的整数是____.
2.绝对值最小的数是____.
3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材P66习题2.4A组3、4、5.
篇8:初中数学优秀教案
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
篇9:初中数学优秀教案
相似三角形
教学建议
知识结构
本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
相似三角形的概念是本节的重点也是本节的难点.相似三角形是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究相似三角形比研究全等三角形更具有一般性.对应边和对应角子相似三角形中占有重要地位,学生在找对应边及对应角时常常出现错误.
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识
4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握相似三角形的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
二、教学设计
类比学习、探索发现.
三、重点、难点
1.教学重点:是相似三角形的概念及预备定理,教学中要让学生加深对相似三角形概念的本质的认识.
2.教学难点:是相似比的概念及找对应边.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.相似三角形
相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做相似三角形
符号“∽”,读作:“相似于”,记作:
∽
,如图所示.
∴
∽
反之亦然.即相似三角形对应角相等,对应边成比例(性质).
∵
∽
, ∴
另外,相似三角形具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
相似三角形对应边的比K,叫做相似比(或相似系数).
注:①两个相似三角形的相似比具有顺序性.
如果
与
的相似比是K,那么
与
的相似比是
.
②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
∽
,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了相似三角形的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截
两边所得,其中
,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现
的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有相似三角形.
【小结】
1.本节学习了相似三角形的概念.
2.正确理解相似比的概念,为以后学习相似三角形的性质打下基础.
3.重点学习了预备定理及注意的问题.
七、布置作业
教材P238中2,3.
八、板书设计
篇10:初中方程数学日记400字
初中方程数学日记400字1
[一号病例]判断:b÷4=6是方程。……(×)
诊断:含有未知数的等式,称为方程。这个错例认为未知数一定要用x来表示,实际上b、c、d、y……等等字母都能用来表示未知数,只是在习惯上,一般用x、y、z来表示。
处方: 判断:b÷4=6是方程。……(√)
[二号病例]判断:方程的解就是解方程。……(√)
诊断:使方程左右两边相等的未知数的值,叫做方程的解,它是一个未知数的值;而解方程是求方程的解的过程,是一个过程。
处方: 判断:方程的解就是解方程。……(×)
[三号病例]解方程:x+3。2=4。6
①x+3。2=4。6 ②x+3。2=4。6 ③x+3。2=4。6
解:x+3。2=4。6 解:x+3。2-3。2=4。6+3。2 解:x+3。2-3。2=4。6-3。6
x+3。2-3。2=4。6 x=7。8 x=1
x=4。6
诊断:根据等式的性质1:方程两边同时加上或减去同一个数,左右两边仍然相等。我们在运用的时候要特别注意对这个性质当中的几个关键词语的理解,即“两边同时”、“加上或减去”、“同一个数”。本题以上三种方法就是对这几个关键词的理解不到位,而造成错误。
处方:解方程 x+3。2=4。6
解:x+3。2-3。2=4。6-3。2
x=1。4
[四号病例]解方程x÷3=2。1
①x÷3=2。1 ②x÷3=2。1 ③x÷3=2。1
解:x÷3×3=2。1 解:x÷3×3=2。1÷3 解:x÷3×3=2。1×2
x=2。1 x=0。7 x=4。2
诊断:根据等式的性质2:方程两边同时乘上或除以同一个不等于0的数,左右两边仍然相等。我们在运用的时候要特别注意对这个性质当中的几个关键词语的理解,即“两边同时”、“乘上或除以”、“同一个数”、“不等于0”。本题也是对这几个关键词的理解不到位,而造成错误。
处方:解方程: x÷3=2。1
解:x÷3×3=2。1÷3
x=0。7
[五号病例]解方程 10(x+5)=170
解:10(x+5-5)=170-5
10x=165
10x÷10=165÷10
x=16。5
诊断:因为10(x+5)-5=10x+10×5-5=10x+45并不等于10(x+5-5)=10x,所以应先把(x+5)看成一个整体。
处方:10(x+5)=170
10(x+5)÷10=170÷10
x+5=17
x+5-5=17-5
x=12
[六号病例]一个足球上,白×皮共有20块,比黑×皮的2倍少4块。共有多少块黑×皮?
解:设共有x块黑×皮。
2x+4=20
2x+4-4=20-4
2x=16
2x÷2=16÷2
x=8 答:共有8块黑×皮。
诊断:根据题意可知:白×皮比黑×皮的2倍少4块,而不是比黑×皮的2倍多4块。应是黑×皮块数的2倍减去4块等于白×皮20块。因此我们在审题时要注意谁比谁的几倍多几,谁比谁的几倍少几。
处方: 解:设共有x块黑×皮。
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12 答:共有12块黑×皮。
初中方程数学日记400字2
今天,我学会了怎样用方程解应用题。
首先,我给大家讲讲解方程的要点:做方程先要解:设·····,再写方程,方程的等于号要对齐,最后几步算式开头的数字要和“解”对齐。
既然讲了要点,咱们做一道题吧!
例1.四一班有60名同学,其中男生是女生人数的3倍,这个班有多少男生,多少个女生?
解:设女生有x人。
x+3X=60
4x=60
x=15
15×3=45(人)
答:有15个女生,45个男生。
初中方程数学日记400字3
今天我们学了解方程,我认为我们学习的有这么几个重点:比如说解方程的格式应该是几个 = 应该上下对齐。如果有检验的话,下面的所以应该和检验两个字对齐;还有在检验的时候在第二步的计算十分重要,不能匆匆得把答案写上去。写上去的时候要仔细核对,答案是不是与方程右边相等。
难点有这么几个:那就是等量关系,一边如果乘,另一边也要乘。经过了今天地学习,我从中学到了许多东西,以后我可以把这些知识运用到生活中去。以后我帮妈妈计算一根花边一米是多少钱;一个花边多少重之类的问题。
以后我要更加努力地学习数学,让我可以解决更多生活问题。
初中方程数学日记400字4
这几天,我们学习了方程。通过学习,我知道了方程首先是个等式,同时是含有未知数的等式。利用等式的性质,我学会了解方程、检验方程,还会利用方程解决生活中的问题。
记得在寒假中,我在妈妈的指导下预习方程。当时觉得,用方程解决问题很麻烦,又要设Χ又要写解,同时思考问题时思路还与原来不一样,觉得很不理解。后来,在老师的讲解下,我终于明白了,通过设一个未知数,并且找出未知数和已知数之间的等量关系,就能列好方程了。
妈妈给我说,我们现在学的是简单的方程,以后还要学二元方程三元方程等等一些复杂的方程,那时就能解决更多的问题啦!
现在我觉得:学方程真好!
初中方程数学日记400字5
在解应用题的过程中,经常会碰到一些复杂的问题,必须要列方程才能解决。
通常,列方程能使复杂的问题变得简单。我们只要先从题目中找到等量关系,然后找准未知数,设定x,就能很轻松的列出方程。所以,列方程解应用题的关键就在于找准等量关系。应用题中的条件越多,就越显得复杂,但只要找到了等量关系,在难的问题也能迎刃而解。
第三篇:关于方程的数学日记
在生活中数学无处不在,现在就让我们一起探索数学的奥秘!
前几天,我们学习了解方程。这不!我一回家,妈妈就开始考我了!
妈妈打开数学书,问道:“一盒墨水x元,一支铅笔1.2元。一盒墨水和一支铅笔一共4元,一盒墨水多少钱?”
我不假思索的回答:“x+1.2=4解:x=4-1.2 X=2.8”
“很好,很好。”妈妈笑着说。
“我还没验算呢!”于是,我又开始验算!:“把x=2.8代入原方程 左边=x+1.2 =2.8+1.2 =4 右边=4 左边=右边 所以,x=2.8是原方程的解。”
“呦!我的女儿学聪明了!”妈妈笑着说。我也笑了笑。
“我在考考你吧!”妈妈神秘的笑了笑“一盒墨水x元,三盒墨水8.4元,那么一盒墨水多少元?”“一盒墨水x元,三盒墨水8.4元,那么一盒墨水多少元?这怎么做呀!”我问妈妈。妈妈说:“你这个小笨蛋,刚夸过你,你就不行了吧!你看,是这样写的:x×3=8.4!”
“哦,我想起来了!x×3=8.4 x=8.4÷3 x=2.8。还有验算:检验: 把x=2.8入原方程 左边=x×3 =2.8×3 =8.4 右边=8.4 左边=右边 所以,x=2.8是原方程的解。”
“100分,看你这们来劲,我再给你出一道:小明今年x岁,爸爸今年40岁,他们俩相差28岁,小明今年多少岁?”“很简单!28+x=40 x=40-28 x=13。”“验算一下,看算得对不对。”妈妈提示我。”“检验: 把x=13 代入方程 左边=28+x =28+13 =41咦!左边不=右边。算错了,算错了!x+28=40 x=40-28 x=12。“这次算对了!”妈妈对我竖起了大拇指!我再问你个难点的:今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64 m,警戒水位是多少米?用方程解答。”我抓耳挠腮,终于想出来了:“解:设警戒水位是xm 警戒水位+超出部分=今日水位 x+0.64=14.14 x=14.14-0.64 x=13.5 检验:把x=13.5带入原方程 左边=x+0.64 =13.5+0.64 =14.14 左边=右边 所以,x=13.5是原方程的解。”“行呀!新学的知识,没想到掌握的这么牢!我再给你出一个类似于这样的题:光明小学的一个水龙头漏水小明拿桶接了半小时,共接了1.8kg水,你知道一个滴水的水龙头每分钟 ?” 我回答道:“解:设一个滴水的水龙每分钟浪费xkg水 每分钟滴的水×30=半小时滴的水 1.8kg=1800g 30x=1800 x=1800÷30 x=60 检验:把x=60带入原方程呢 左边=30x =30×60 =1800 右边=1800 左边=右边 所以x=60是原方程的解!”“我的女儿长大了!”妈妈笑着说。
你们看,我们身边的数学多吧!
初中方程数学日记400字6
在生活中可以碰到许许多多的数学问题。有一天,我和老爸一起去买东西,共花了130元钱,而老爸想试试我的能力,就对我说:“儿子呀,假设10元表示A,20元表示B,50元表示C,100元表示D。根据这个信息,你讲讲可以列多少个方程呢?”。我想,A+B+D=130元、A+B+2C=130元、A+6B=130元、2A+3B+C=130元、3A+5B=130元、4A+2B+C=130元。我说:“有6种”。老爸说:“这么简单都不知道,有无数种呀”!我又想了一下说:“呀!我只想到加和乘,没想到减与除”。爸爸又说:“你也错了,加和乘也不止这么点,自己回去好好想想吧”!
这次老爸的这个问题让我懂得了遇到问题要考虑全面,仔细推敲,全面准确理解题意,否则便轻易忽略了另外的答案,犯以偏概全的错误。
初中方程数学日记400字
篇11:初中数学函数方程知识点
1、一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变 量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。
2、任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方 程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看, 就相当于已知直线y=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。
3、利用函数图像解方程:-2x+2=0,可以转化为求一次函数y=-2x+2与x轴交点的横坐标。而 y=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。 注意:解一元一次方程ax+b=0(a≠0)与求函数y=ax+b(a≠0)的图像与x轴交点的横坐标是同一个 问题。不同的是前者从数的角度来解决问题,后者从形的角度来解决问题。
4、每个二元一次方程组都对应两个一次函数,从数的角度来看,解方程组相当于考虑自变量为 何值时两个函数的值相等,以及这个函数是何值;从形的角度来看,解方程组相当于确定两条直 线交点的坐标,从而使方程组得出答案。
5、解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来 确定另一个未知数的值。还有一个描点法。一般取两个点,根据“两点确定一条直线”的道理, 也可叫“两点法”。通常情况下y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
初中数学如何审题
(1)这个题目有哪些个已知条件?我能不能把已知条件分开?
(2)求解的目标是什么?对求解有什么要求?
(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。
(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?
(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?
篇12:初中数学函数方程知识点
(1)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。
(2)一元一次方程
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。
(3)等式的性质
①等式两边同时加上(或减去)同一个整式,等式仍然成立。
若a=b
那么a+c=b+c
②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。
若a=b
那么有a·c=b·c或a÷c=b÷c(c≠0)
③等式具有传递性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
(3)解方程式的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。
①去分母:把系数化成整数。
②去括号。
③移项:把等式一边的某项变号后移到另一边。
④合并同类项。
⑤系数化为1。
篇13:小学五年级数学《方程》教案
设计说明
这部分内容是在学生学习了简易方程的基础上,复习解方程的过程及用方程解决实际问题。
1.关注学生的整体发展。
本节课结合复习题,引导学生对方程的知识进行整理和复习,深化了学生对列方程解应用题这类题型的理解,促进了学生原有认知结构的优化。不仅实现了知识的巩固,还培养了学生的应用意识和解决实际问题的能力。
2.注重知识间的内在联系。
加强知识间的内在联系,帮助学生构建合理的知识体系,进一步明确用方程解决问题的解题思路,掌握寻找题中等量关系的方法。培养学生用方程解决问题的能力,并能由基本题型拓展开,解决类似的问题,培养学生灵活运用知识的能力。
课前准备
教师准备 PPT课件
教学过程
⊙导入,全面回顾
1.同学们,我们已经学过了用方程解决问题这部分知识,这节课我们就对这一部分知识进行整理和复习。
2.课件出示学习要求。
(1)关于用方程解决问题,你学习了哪些内容?
(2)你认为哪些内容比较难,容易出错?
(3)你还有什么问题?
3.小组进行汇报,全班交流,互相评价。
4.回顾用方程解决问题的关键和步骤。
(1)说一说,用方程解决问题的关键是什么?
(用方程解决问题的关键是找到等量关系式)
(2)说一说,用方程解决问题的步骤是什么?
①理解题意,找到等量关系式。
②找出题中的未知量,设为x,根据等量关系式列出方程。
③解方程。
④检验。
⑤写答语。
设计意图:通过谈话质疑,引入复习内容,通过学习纲要,明确学习目标。
⊙复习,分项整理
1.复习“和倍”“和差”类型题的解法。
(1)课件出示相关练习题,组织学生独立解答后,交流解题过程。
小明和妈妈一起集邮,妈妈的邮票数是小明的6倍,妈妈比小明多100张邮票,妈妈和小明各有多少张邮票?
学生独立解答后汇报解题步骤。
①画线段图理解题意。
②找出题中的等量关系式。
妈妈的邮票数-小明的邮票数=100
小明的邮票数+100=妈妈的邮票数
妈妈的邮票数-100=小明的邮票数
③列式解答。
解:设小明有x张邮票,则妈妈有6x张邮票。
6x-x=100
5x=100
x=100÷5
x=20
6x=20×6=120
答:小明有20张邮票,妈妈有120张邮票。
(2)引导学生小结:在列方程的过程中,有两个未知数时,需要确定一个未知数为x,再根据两个未知数之间的关系,用含有x的式子表示另一个未知数,再根据题中的等量关系式列出方程。
3.复习“相遇问题”中的方程的解题方法。
课件出示复习题:甲、乙两车同时从A、B两地相向而行,已知甲车每时行驶75千米,乙车每时行驶85千米。已知A、B两地相距960千米,求甲、乙两车几时后相遇。
(1)引导学生找出题中的已知条件和所求问题。
(2)找出题中的等量关系式。
①甲车行驶的路程+乙车行驶的路程=A、B两地的总路程
②(甲车和乙车的速度和×相遇时间)=A、B两地的总路程
③A、B两地的总路程÷甲、乙两车的速度和=相遇时间
篇14:小学五年级数学《方程》教案
教学内容
列方程解应用题
教学目标
1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。
2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。
3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。
教学重点
列方程解答数量关系稍复杂的两、三步应用题。
教学难点
形如:ax+bx=c的数量关系
教学理念
培养学生自主探究、合作交流的学习方式。提高学生的检验能力。
教师活动过程
学生活动过程 备注
一、复习铺垫
1练习二十一T1
学生回答
2根据条件说出数量关系式:
果园里的桃树和梨树一共有168棵。
果园里的桃树比梨数多84棵。
桃树棵数是梨树的3倍。
学生回答数量关系式
3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!
学生自主编题,口头说题
4依据学生回答,教师出示题目。
A.根据条件(1)、(2)编题:果园里梨树和桃树一共有168棵,桃树比梨树多84棵。梨树和桃树各有多少棵?
B.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)
C.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)
教师巡视,了解情况。
二.探究新知
1.学生尝试例1
引导学生画出线段图
集中反馈:生说师画图
2.教师组织学生汇报
学生介绍算术解法时,教师引导学生画线段图理解数量间的'关系。
学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。
3.小组讨论。
解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?
用方程解,设哪个数量为X比较合适?用什么数量关系式来列式呢?
4.学生独立完成想一想。
这一题与例1有什么相同的地方?有什么不同的地方?
明确三点:1、一般设一倍数为X 。2、把几倍数用含有X的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。
5完成课本94页练一练
指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?
三、小结
本课学习了什么内容?你有哪些收获?
四、作业
篇15:小学五年级数学《方程》教案
教材简析
这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。
本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20xx年与20xx年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。
教学目标
1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。
2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。
3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。
教学过程
一、创设情境 激趣导入
谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)
我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。
【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。
二、合作探究 获取新知
1、找出白鳍豚这组资料的等量关系,用字母表示。
(1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?
白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20xx年多300只。
(2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20xx年多300只这句话写出等量关系式。
(3)先自己写一写,再与小组内的同学交流。
20xx年只数 + 300只=1980年只数
1980年只数 - 20xx年只数=300只
1980年只数-300只=20xx年只数
(4)教师板书20xx年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。
学生汇报:如用a表示20xx年的白鳍豚只数,上面的等式就可写成a+300=400。
(5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。
【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20xx年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。
2、借助天平理解等式的意义。
根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)
像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平来研究一下。(出示天平)
(1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)
(2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。
提问:你发现了什么?你能想办法让天平平衡吗?
右盘加上50克的砝码,天平平衡了。
(3)天平左盘放入10克砝码,右盘放入20克砝码。
提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)
提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?
10+10=20(板书)
(4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。
谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。
20+x=50(板书)
(5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。
要求:用等式表示出天平左右两边的关系。
50+50=100 4x=200(板书)
(6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。
【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。
3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。
(1)提问:继续看大熊猫的资料,你获得了哪些信息?
20xx年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。
(2)你能用含有字母x的等式表示出大熊猫20xx年人工养殖的只数与野生的只数的关系吗?
师生总结:
您现在正在阅读的青岛版小学数学五年级上册《方程的意义》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!青岛版小学数学五年级上册《方程的意义》教学设计人工养殖的只数10=野生的只数
10x=1600
如果用x表示人工养殖大熊猫的只数,那么x10=1600
(3)学生打开教科书57页,结合图示进一步理解以上等量关系。
【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。
4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。
(1)提问:继续看东北虎的资料,你获得了哪些信息?
预计到20xx年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20xx年的3倍还多100只。
(2)提问:根据以上信息你能提出什么问题?
引导学生提出:先用文字表示出东北虎20xx年的只数与20xx年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。
(3)先自己写一写,再与小组同学交流。
学生汇报:
20xx年的只数3+100=20xx年的只数
列式为: 3X+100=1000 (板书)
画图为:天平的左盘是3个X和一个100,右盘是1000。
提问:这里的X表示什么?(x表示20xx年的只数。)
【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。
5、揭示方程的意义。
(1)提问:刚才我们研究出这么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能给它们分分类吗?
引导学生分成两类:含有字母的是一类,不含字母的是一类。
我们把含有未知数的这类等式叫做方程。(板书)
(2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。
(3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?
方程必须含有未知数,还必须是等式。
【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。
三、巩固练习加强应用
1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。
2、出示自主练习2,看图列方程。
学生独立完成,说说自己是怎样想的。
3、出示自主练习3,填一填。
学生独立完成。
【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。
四、回顾反思 总结提升
谈谈这节课你有哪些收获?
总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。
总设计意图:
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20xx年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。
总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。
篇16:小学五年级数学《方程》教案
一、揭示课题
今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。
二、复习用字母表示数量关系,公式,运算定律
1、 出示表:用字母表示运算定律。
名称 用字母表示
加法交换律 a+b=b+a
加法结合律 (a+b)+c=a+(b+c)
乘法交换律 ab=ba
乘法结合律 (a×b)×c=a×(b×c)
乘法分配律 (a+b)×c=ac+bc
2、请学生说平面图形面积计算公式和长方形、正方形周长公式。
3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。
4、练习:期末复习第16题。
5、求含有字母式子的值。做期末复习第17题。
(1)原来每月烧的煤用30c表示;现在每月烧的煤用30×(x-15)表示。
(2)学生计算现在每月烧煤的千克数。
三、复习方程的意义和解方程
1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?
2、练习:做期末复习第18题。
学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。
3、做期末复习第19题。
请学生说一说解方程的方法。
4、做期末复习第20题。
学生列方程并解方程。
四、复习列方程解应用题
1、(1)列方程解应用题的特征是什么?解题时关键是找什么?
(2)请学生说一说列方程解应用题的一般步骤。
2、做期末复习第21―23题。
第21题:
学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。
第22题:
师画线段图表示题目的条件和问题,学生列方程解答。
第23题:
学生说数量关系式、列方程解答。
五、全课总结
这节课复习了什么内容。
六、布置作业
篇17:小学五年级数学《方程》教案
一、教学内容:
教材第94页例1、“练一练”,练习二十―第1―4题。
二、教学要求:
使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。
三、教学过程:
一、复习导入。
1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)
2、根据下列句子说出数量之间的相等关系。
杨树和柳树一共120棵
杨树比柳树多120棵
杨树比柳树少120棵
3、出示线段图:梨树:
桃树:
从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?
4、出示条件:母鸡的只数是公鸡的5倍。
根据这个条件,你可以知道什么?如果公鸡的只数用x表示,那么母鸡的只数可以怎样来表示?
5、在括号里填上含有字母的式子。(练习二十一第1题)
6、交流:板演,你是根据怎样的数量关系来解答的?
7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)
二、教学新课。
1、教学例1 果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?
(1)齐读。
(2)这道题已知什么条件,要求什么问题?边问边画出线段图。
桃树的棵数是梨树的3倍,把哪个数量看做一份?用线段图来表示我们先画梨树,桃树的棵数有这样的几份?还告诉我们什么条件?这道题的问题是什么?
(3)“梨树和桃树各有多少棵”是什么意思?
这道题要求的数量有两个,你认为用什么方法做比较简便?
(4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。
(5)交流。
(6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。
校对板演。还可以怎样求桃树的棵树?
(7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。
2、教学想一想。
现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)
一生板演,其余齐练。
集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?
3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)
4、小结。
从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。
三、巩固练习。
1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?
2、只列式不计算。
一个自然保护区天鹅的只数是丹顶鹤的2.2倍。
(1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?
(2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?
3、选择正确的解法。
明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?
(1)解:设鸡和鸭各有x只。 x+3x=56
(2)解:设鸡有x只,鸭有3x只。 x+3x=56
(3)解:设鸭有x只,鸡有3x只。 x+3x=56
商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?
(1)解:设梨有x千克,苹果有3.6x千克。 3.6x-x=26
(2)解:设梨有x千克,苹果有3.6x千克。 3.6x+x=26
四、课堂总结。
今天我们一起学习了什么?你感觉到今天学的应用题有什么特点?那你有哪些收获呢?还有什么疑问吗?
老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。
五、作业:
练习二十一/2―5
【初中数学《方程》优秀教案】相关文章:
2.简易方程教案
6.圆的方程的教案
9.初中数学的教案
10.初中数学圆教案






文档为doc格式