(2)一个数乘分数 教学计划(人教新课标六年级上册)
“szcaitco”通过精心收集,向本站投稿了12篇(2)一个数乘分数 教学计划(人教新课标六年级上册),下面是小编为大家整理后的(2)一个数乘分数 教学计划(人教新课标六年级上册),供大家参考借鉴,希望可以帮助到有需要的朋友。
篇1:(2)一个数乘分数 教学计划(人教新课标六年级上册)
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教学过程:
一、导入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新课
1、教学例3
(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
2、相关练习:练习二第5题。xkb1.com
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。
(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式: (km)
(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。
5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。
三、练习
1、练习三第6题
(1)求2枝长多少分米,就是求2个 是多少?算式: ×2
(2)求 枝或 枝长多少分米,就是求 的 是多少,或 的 是多少。
2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)
四、作业
练习二第3、7、8、10题。
教学追记:
分数乘整数、分数乘整数这两堂课,我都注重从生活引入,并通过直观的线段图、折纸等方式让学生理解算理。课中,我能改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。
(3)分数混合运算和简便运算
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教学过程:
一、复习
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新授
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
(1) + × (2) × - (3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、练习
P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。
篇2:第二课时:一个数乘分数 教案教学设计(人教新课标六年级上册)
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教具准备: 多媒体课件
教学过程:
一、复习引入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新知探究
1、课件出示教学目标
理解一个数乘分数的意义。
掌握分数乘以分数的计算法则。
学会分数乘分数的简便计算。
2、教学例3
(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教具准备:多媒体课件
教学过程:
一、旧知铺垫
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新知探究
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)
(1) + × (2) × -
(3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?
(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、课堂检测
练习三的第一题,第三题。
(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用
了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。
(2)小组内评比,解决疑难问题。
(3)教师讲解疑难。
四、课堂自我评价
每个学生对自己这节课的表现进行自我评价,并提出问题。
设计意图
体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。
教学后记
篇3:(1)分数乘法一步应用题 教学计划(人教新课标六年级上册)
(4)练习课
教学目标:
1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。
2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。
教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。
教学难点:熟练掌握运算定律,准确、合理地进行简便计算。
教学过程:
一 、复习
1、复习分数混合运算的运算顺序。
2、复习乘法的简便运算定律
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
二、巩固练习
1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。
2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如: - × = ×(1- ); ×(5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。
3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 ×9,另一个同学做了11朵,列式 ×11,他们一共做了 ×9+ ×11(朵),学生还可能这样列式: ×(9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。
4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。
5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。
6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。
三、布置作业
完成相关的练习册。
教学追记:
本节课本只是一节计算课,但我不想应用传统的讲授法来告诉学生,整数乘法的运算同样适用分数,然后按部就班的教学例题,强制性地要求学生按照老师的教法来解题。我认为这样的教学剥夺了学生学习的主动性和自主性。因而这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。在这个过程中,学生完全是学习的主人,而教师只是辅助性的导,包括后面例题的教学都充分体现了这一理念。本堂课学生的学习兴趣和学习自信都充分地得到了激发。
2、解决问题
(1)分数乘法一步应用题
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教学过程:
一、复习
1、先说下列各算式表示的意义,再口算出得数。
12× ×
2、列式计算。
(1)20的 是多少? (2)6的 是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新授
1、教学例1
(1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。
(2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是 表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是
求2500的 是多少)
(3)在分析题意的基础上,学生独立列式、计算。
2500× =1000(平方米)
2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、练习
1、练习四第2题:让学生先找出分率句中隐藏的单位“1”--全世界的丹顶鹤数只。
2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。
四、总结
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
教学追记:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我能紧扣分数乘分数的意义进行复习,并事先复习如“20的 是多
少?”的文字题,为解决与此相似的应用题做好准备。由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
篇4:一个数乘分数 教案教学设计(人教新课标六年级下册)
(至上学期)
六年 级 数学学科 教 师:高春枝
学习
内容
学习
目
标 1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
重难
点及
突破
措施 教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
课前
准备
导学案设计 个性化设计
预
习
学
案 1.计算下列各题并说出计算方法。
× × ×
2.自学例3、例4,思考一个数乘分数的意义和方法。
自
主
乐
学
合
作
交
流 1.学习例3
小组合作完成
(1)弄清条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,列式:____
(2)动手操作,把一张纸看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示的意义是什么。
(3)根据直观的操作结果,得出 × =__,根据刚才操作的过程和结果推导出计算方法: × =__。
(4)思考: 小时粉刷多少呢?用前面的方法涂色、推导、计算,自主解决问题。
2.练习:练习二第5题
3.根据刚才的学习,小组讨论总结一个数乘分数的意义和方法是什么。
4.学习例4
小组合作完成
(1)分析题意,根据“速度×时间=路程”的数量关系列出算式:____。
(2)先独立计算,再交流计算的方法,明确分数乘分数计算时要注意什么。在小组内展示自己的计算过程,进一步明确约分的书写格式。
(3)独立解答“5分钟飞行多少千米?”,弄清分数乘整数的另一种格式。
5、巩固练习:
(1)P11“做一做”(注意要先观察能否约分,再着手计算)。
(2)练习三第6、9题
检
测
反
馈 一、填空:
1、20× 表示的意义是( )。
×14表示的意义是( )。
× 表示的意义是( )。
2、一个数和分数相乘,可以表示( )。
二、计算:
15× ×56 × × × ×
的 是多少? 吨的 是多少吨? 时的 是多少时?
三、解决问题:
1、一张纸的面积是 平方米,它的 有多少平方米?
2、一台磨面机,每小时磨面粉 吨, 小时磨面粉多少吨? 小时磨面粉多少吨?
课
外
拓
展 作业:练习三第3、7、8、10题
教
学
反
思
审核人:
篇5:一个数除以分数 教案教学设计(人教新课标六年级上册)
红河镇小学导学案
(2010至2011上学期)
六年 级 数学学科 教 师:高春枝
学习
内容 一个数除以分数
学习
目
标 1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
重难
点及
突破
措施 教学重点:总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:利用法则正确、迅速地进行计算,并能解决一些实际问题。
课前
准备
导学案设计 个性化设计
预
习
学
案 1、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)
2、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
自
主
乐
学
合
作
交
流 1、默读例3,理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷ 如何计算?结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)
(3)小组讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据以上交流,把线段图补充完整,并板书出过程。
先求 小时走了多少千米,也就是求2个 ,算式:2×
再求3个 小时走了多少千米,算式:2× ×3
(1) 综合整个计算过程:2÷ =2× ×3=2×
2、小结出计算法则:从上面这个推算过程,我们发现--整数除以,分数等于用整数乘这个分数的倒数。
3、计算 ÷ ,探索分数除以分数的计算方法
(1)根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
(2)用自己的方法来验证结果是否正确。
4、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、练习
1、P31“做一做”的第1、2题。
2、练习八第5、6题。
检
测
反
馈 一、填空:
1、 ÷ 表示: ( )
2、根据 ×6= 写出两道除法算式: 、
3、( )千克的 是 千克; 米是 米的( );
( )吨的6倍是 吨。
二、判断题:
1、1除以一个不是0的数,得到的是这个数的倒数。 …………………( )
2、甲数除以乙数,等于甲数乘乙数的倒数。……………………………( )
3、A不等于0, ÷A与 ÷5结果相同。 ……………………………( )
4、数A(不等于0)除以假分数,商一定小于A。 ……………………( )
三、选择:
1、28除以 的商( )28乘 的积。
A . 大于 B. 小于 C. 等于 D. 无法比较
2、9÷ 可以表示为
A. 9÷4×3 B. 9×3÷4 C. 9÷3×4 D. 9÷3÷4
3、小红的邮票除以 与小明的邮票相等,那么小红的邮票( )小明的邮票。
A. 多于 B. 少于 C. 等于 D. 无法比较
4、12÷ 与12× 相比( )
A. 意义相同 B. 结果相同 C. 结果和意义相同
四、计算:
6÷ 9÷ 32÷ ÷ ÷ ÷ ÷ ÷
课
外
拓
展
作业:练习八第7、8题
教
学
反
思
审核人:
篇6:课题:《一个数除以分数》 教案教学设计(人教新课标六年级上册)
编制人:蔡 娜 时间: . 08 .25
NO.3-2
班级 姓名 小组 小组评价
学习目标:
1、理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行分数除法的计算。
2、通过独立思考、小组合作、展示质疑,在数学活动中培养分析、推理能力。。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:一个数除以分数的计算方法。
难点:一个数除以分数的算理。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行分数除法的计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本P30-P31页xkb1.com
我知道了:一个数除以一个不等于0的数,等于( )这个数的( )。
2、连一连(把互为倒数的两个数连起来)。
二、合作探究:
例1、小明 小时走了2千米,小红 小时走了 千米,谁走得快些?
要求:画图理解算式的意义,明确算理。
小结:一个数除以分数,可以转化为一个数乘这个分数的( ),即被除数不变,除号变( ),除数变成它的( )。
例2、通过分数除以整数(0除外)和一个数除以分数的学习,你发现了什么规律?
1)、分数除以整数的计算方法用字母表示: ÷ n =
2)、整数除以分数的计算方法用字母表示:a ÷ =
3)、分数除以分数的计算方法用字母表示: ÷ =
观察上面三个字母公式,可以发现分数除法都可以转化为( )计算。即甲数除以乙数(0除外),等于甲数( )乙数的( )。
例3、计算下面算式,你能从中发现什么规律?
小结:一个数(0除外)除以小于1的数,商( )被除数。除以1,商( )被除数,除以大于1的数,商( )被除数。
三、学以致用:
1、想一想,填一填
1)、一个数除以一个不等于0的数,等于( )这个数的( )。
2)、填上适当的数。
3)、
4)、 是多少,应把( )看作单位“1”。
5)、
2、我能辩对错。(对的打“ ” ,错的打“ ” )
1)、两个真分数相除,商大于被除数。 ( )
2)、一个数除以假分数,商一定小于被除数。 ( )
( )
( )
3、计算
4、比较大小
五、解决问题:
1)、一台拖拉机5小时耕地 公顷,每小时耕地多少公顷?
2)、一个长方形的面积是 平方米,这个长方形的宽是 米,它的长是多少?
3)、一个制药厂每天可以制造 千克的药品,由于业务需要,现在需制造
千克药品,制造这批药品需要多少天?新课标第一网
篇7:第二单元分数乘法 教学计划(人教新课标六年级上册)
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
1、使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
1、分数乘法
(1)分数乘整数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程:
一、复习
1.出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
+ + = + + =
2.引出课题。
+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、新授
1、利用 + + 教学分数乘法。
(1) 这道加法算式中,加数各是多少?(都是 )
(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)
(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。
2、出示例1,画出线段图,学生独立列式解答。
(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )
3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、练习:练习完成“做一做”第2题。新课标第一网
5、教学例2
(1)出示 ×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习
1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
三、作业
练习二第1、2、4题。
篇8:(3)一个数乘分数巩固练习教案教学设计(人教新课标六年级下册)
教学目标:
1、通过观察、分析、比较等使学生理解分数乘分数的算理及计算法则也适用于分数和整数相乘,进一步掌握分数乘法的计算法则;并会运用计算法则比较熟练地进行计算。
2、通过练习,培养学生迁移、比较、类推和概括的能力,提高计算水平。
3、激发学生的学习兴趣,培养学生良好的学习习惯,渗透辨证唯物主义的启蒙思想。
教学重点:统一计算法则
教学难点:提高计算的正确率
教学过程
一、基础练习
1.计算下面各题,并说一说计算方法。
2.把下面的整数改写成分数。
2=( ) 5=( )
14=( ) 25=( )
二、练习指导
1.统一计算法则。
(1)到目前为止,你学会了哪些分数乘法的知识?分数乘整数以及分数乘以分数的计算法则分别是什么?分数乘分数的法则适用于分数和整数相乘吗?为什么?
(2)请你试算一算:
(学生小组合作学习,教师巡视。)
学生边展示计算过程,边阐述理由。
(3)教师引导学生归纳:因为整数可以看成分母是1的分数,所以分数乘分数的法则也适用于分数和整数相乘。因此分数乘法的计算法则可以统一为一条,即用分子相乘的积作分子,分母相乘作分母。
2.书写形式。
(1)具体计算时,在碰到整数和分数相乘,可以把整数看成分母是1的分数,直接和分数的分子相乘,不必把整数化成分母是1的分数。
(2)计算时,也可以不把相乘的两个数改写成分子、分母分别相乘的形式,直接把整数或分数的分子与另一个数的分母进行约分。
三、实践应用
1.练习二的第6题。
2.练习二的第8题。
第(1)题明确:整数4可以看作分母是1的分数,而不能用分子和分子或分母和分母约分。
第(2)题明确:约分后,分子相乘的积作分子,分母相乘的积作分母,不能相加。
3.练习二的第10题。
四、小结作业
这节课你知道了什么?
1:练习二的第5、7、9、11题。
课后作业:必做作业本P5/1、2、3、4、5、
回家作业:必做课时特训P9-P10/1、2、3、5、6、
选做课时特训P9-P11/4、思维拓展
(4)分数混合运算和简便运算
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教学过程:
一、复习
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新授
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
(1) + × (2) × - (3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、练习
P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。
四、作业
课后作业:必做作业本P6/1、2、3、4、
回家作业:必做课时特训P11-P13/1、2、3、4、
选做课时特训P13/思维拓展
篇9:第二课时一个数除以分数 教案教学设计(人教新课标六年级上册)
【教学过程】:
一、复习巩固上节知识
1、怎样计算分数除以整数?
2、口算下面各题
1/6÷3 4/7÷2 3/5÷2 6/7÷2
二、探究新知
教学例三
1、出示例三 小明2/3小时走了2千米,小红5/12小时走了5/6千米,谁走的快些?
2、指导列式
(1) 谁走得快是比两人的什么?(速度)
(2) 怎样求二人的速度?(自己列出算式,并与你所在的小组的同学交流你的算式及列式依据)
(3) 汇报并板书:小明平均每小时走2÷2/3
小红平均每小时走5/6÷5/12
(4) 你能直接求出这两个算式商的大小吗?(不能)
(5) 你会求出这两个算式的商吗?为什么?(不能,因为除数是分数)
我们这一节就来探究一个数除以分数的计算的方法(板书:一个数除以分数)
3、探究计算法则:
探究计算2÷2/3
(1) 指导学生画线段示意图:
①你能用线段图表示这道题的信息吗?试试看(由于用2/3小时行2千米,求1小时行多少千米,学生在画图时有一定困难,画图前可让学生讨论以下问题
a、2/3小时表示什么?(1小时的2/3)
b、2/3小时行驶的路程和1小时所行路程有什么关系?(2/3小时行的路程=1小时所行路程的2/3即:1小时所行路程的2/3是2千米)
此时学生就可根据乘法应用题画图的方法画出线段图了。
②把你的画图与同组同学交流一下,看是否相同。如果不同,比比谁的画图能更好的反映信息。
③打开教材第30页,看看你们的图与教材的图是否相同。
(2) 探究怎样计算2÷2/3
独立阅读教材第30页,体会教材中的推导过程,并在小组内说一说
(3)师生互动
师生共同探究计算过程,分析算理
① 1小时走多少千米就是求3个1/3小时走多少千米,必须先求1个1/3小时走多少千米
② 由2/3小时行2千米,即2个1/3小时行2千米,可求1个1/3小时走多少千米,也就求2千米的1/2是多少 ? 2×1/2
③ 3个1/3就行2×1/2×3千米
④ 由此推出2÷2/3=2×1/2×3
⑤ 由于1/2中的分母2和第三个因数恰好是原来除法算式中的数,为了便于分析,可用乘法结合律让它先算,即
2÷2/3=2×1/2×3=2×(1/2×3)=2×3/2
⑥ 分析2÷2/3和2×3/2的特征,你们有什么发现?(引导学生得出除以一个不等于0的数,等于乘以这个数的倒数。)
4、你们能用这个规律计算5/6÷5/12吗?试一试,并把你的计算与同组人交流。
三、课堂练习:
1、教材第31页“做一做”
2、练习八第4题
四、板书设计:
一个数除以分数
2÷2/3=2×1/2×3=2×3/2=3(千米)
简写:2÷2/3=2×3/2=3(千米)
5/6÷5/12=5/6×12/5=2(千米)
第三课时 分数四则混合运算
【教学过程】:
一、复习:
1、一个数除以一个不等于0的数应怎样计算?
2、计算:
24÷5/6 2/3÷3/4 5/7÷25/14
二、探究新知:
1、教学例4(1):混合运算应用题
小红用长8米的彩带做了一些花,每朵花用2/3米的彩带。他把其中的4朵送给了同学,小红还剩几朵花?
(1) 讨论问题
① 你从题中获得了哪些信息?
② 要求小红还剩几朵花,先应求什么?
③ 怎样列式?
(2) 讨论要求:
① 先在小组内讨论问题
② 独立列算式,并在小组内交流
(3) 汇报讨论结果并板书
8÷2/3-4
=8×3/2-4
=12-4
=8(朵)
答:小红还剩8朵花。
2、教学例四(2)四则混合运算题
(2)计算1/5÷(2/3+1/5)×15
①先按运算顺序计算出题目的得数
③ 在上面的算式里。如果要先计算(2/3+1/50×15,就要用到中括号“[]”。在用到中括号后,就成了新算式,试一试,写出这个新算式。学生写出后教师板书:
1/5÷[(2/3+1/5)×15]
(1) 先议一议运算顺序,再独立计算,并在小组内交流。
(2) 议一议:一个算式里,如果既有小括号,又有中括号,应怎样计算?
(3) 在学生充分讨论归纳后,教师板书:
先算小括号里面的,再算中括号里面的。
三、课堂练习:
四、教科书第34页“做一做”
五、板书设计:
篇10:第二课时:一个数乘分数/练习课 教案教学设计(人教新课标六年级下册)
分数乘以整数
意义:求几个相同加数 和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11 ×3
= 2×3/11
= 6/11
教学后记
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教具准备: 多媒体课件
教学过程:
一、复习引入
1、计算下列各题并说出计算方法。
× × ×
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新知探究
1、课件出示教学目标
理解一个数乘分数的意义。
掌握分数乘以分数的计算法则。
学会分数乘分数的简便计算。
2、教学例3
(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。
(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教具准备:多媒体课件
教学过程:
一、旧知铺垫
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新知探究
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)
(1) + × (2) × -
(3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?
(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、课堂检测
练习三的第一题,第三题。
(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用
了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。
(2)小组内评比,解决疑难问题。
(3)教师讲解疑难。
四、课堂自我评价
每个学生对自己这节课的表现进行自我评价,并提出问题。
设计意图
体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。
教学后记
第五课时 : 练习课
篇11:第二课时一个数除以分数/第三课时分数四则混合运算 教案教学设计(人教新课标六年级上册)
【教学过程】:
一、复习巩固上节知识
1、怎样计算分数除以整数?
2、口算下面各题
1/6÷3 4/7÷2 3/5÷2 6/7÷2
二、探究新知
教学例三
1、出示例三 小明2/3小时走了2千米,小红5/12小时走了5/6千米,谁走的快些?
2、指导列式
(1) 谁走得快是比两人的什么?(速度)
(2) 怎样求二人的速度?(自己列出算式,并与你所在的小组的同学交流你的算式及列式依据)
(3) 汇报并板书:小明平均每小时走2÷2/3
小红平均每小时走5/6÷5/12
(4) 你能直接求出这两个算式商的大小吗?(不能)
(5) 你会求出这两个算式的商吗?为什么?(不能,因为除数是分数)
我们这一节就来探究一个数除以分数的计算的方法(板书:一个数除以分数)
3、探究计算法则:
探究计算2÷2/3
(1) 指导学生画线段示意图:
①你能用线段图表示这道题的信息吗?试试看(由于用2/3小时行2千米,求1小时行多少千米,学生在画图时有一定困难,画图前可让学生讨论以下问题
a、2/3小时表示什么?(1小时的2/3)
b、2/3小时行驶的路程和1小时所行路程有什么关系?(2/3小时行的路程=1小时所行路程的2/3即:1小时所行路程的2/3是2千米)
此时学生就可根据乘法应用题画图的方法画出线段图了。
②把你的画图与同组同学交流一下,看是否相同。如果不同,比比谁的画图能更好的反映信息。
③打开教材第30页,看看你们的图与教材的图是否相同。
(2) 探究怎样计算2÷2/3
独立阅读教材第30页,体会教材中的推导过程,并在小组内说一说
(3)师生互动
师生共同探究计算过程,分析算理
① 1小时走多少千米就是求3个1/3小时走多少千米,必须先求1个1/3小时走多少千米
② 由2/3小时行2千米,即2个1/3小时行2千米,可求1个1/3小时走多少千米,也就求2千米的1/2是多少 ? 2×1/2
③ 3个1/3就行2×1/2×3千米
④ 由此推出2÷2/3=2×1/2×3
⑤ 由于1/2中的分母2和第三个因数恰好是原来除法算式中的数,为了便于分析,可用乘法结合律让它先算,即
2÷2/3=2×1/2×3=2×(1/2×3)=2×3/2
⑥ 分析2÷2/3和2×3/2的特征,你们有什么发现?(引导学生得出除以一个不等于0的数,等于乘以这个数的倒数。)
4、你们能用这个规律计算5/6÷5/12吗?试一试,并把你的计算与同组人交流。
三、课堂练习:
1、教材第31页“做一做”
2、练习八第4题
四、板书设计:
一个数除以分数
2÷2/3=2×1/2×3=2×3/2=3(千米)
简写:2÷2/3=2×3/2=3(千米)
5/6÷5/12=5/6×12/5=2(千米)
【教学过程】:
一、复习:
1、一个数除以一个不等于0的数应怎样计算?
2、计算:
24÷5/6 2/3÷3/4 5/7÷25/14
二、探究新知:
1、教学例4(1):混合运算应用题
小红用长8米的彩带做了一些花,每朵花用2/3米的彩带。他把其中的4朵送给了同学,小红还剩几朵花?
(1) 讨论问题
① 你从题中获得了哪些信息?
② 要求小红还剩几朵花,先应求什么?
③ 怎样列式?
(2) 讨论要求:
① 先在小组内讨论问题
② 独立列算式,并在小组内交流
(3) 汇报讨论结果并板书
8÷2/3-4
=8×3/2-4
=12-4
=8(朵)
答:小红还剩8朵花。
2、教学例四(2)四则混合运算题
(2)计算1/5÷(2/3+1/5)×15
①先按运算顺序计算出题目的得数
③ 在上面的算式里。如果要先计算(2/3+1/50×15,就要用到中括号“[]”。在用到中括号后,就成了新算式,试一试,写出这个新算式。学生写出后教师板书:
1/5÷[(2/3+1/5)×15]
(1) 先议一议运算顺序,再独立计算,并在小组内交流。
(2) 议一议:一个算式里,如果既有小括号,又有中括号,应怎样计算?
(3) 在学生充分讨论归纳后,教师板书:
先算小括号里面的,再算中括号里面的。
三、课堂练习:
四、教科书第34页“做一做”
五、板书设计:
篇12:《分数乘分数》导学案 (人教新课标六年级上册)
2-2 <<分数乘分数>>
学生___________班级_______家长签字____________日期________
【学习目标】1、理解分数乘分数的意义,掌握分数乘以分数的计算法则。
2、发展观察推理能力。 3、善于交流合作,对学习有兴趣。
【学习重难点】1、重点是理解一个数乘分数的意义,掌握分数乘分数的计算方法。
2、难点是推导算理,总结法则。
【学习过程】
一、复习导入: 1、计算并说出方法 × = × = × =
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、这节课我们来学习分数乘以分数的意义和计算方法。
二、探索新知:
(一)、观察P10例题3主题图,自主探究以下问题:
1、工作效率、工作时间、工作总量之间的关系是什么?____________________________
根据此关系列式解决“ 小时粉刷这面墙的几分之几?”________________________
2、动手操作,把一张纸张看作一面墙,先涂出1小时粉刷的面积,即这面墙的 ,再涂出 小时粉刷的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”
3、根据涂色结果得出 × = ,由此推导出计算方法: × = =
4、自主完成P10“想一想”和P13练习二第5题。看谁做得即对又快。组长检查核对。
5、归纳总结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用___________________________________
(二)、自学书本P11例题4
1、根据“速度×时间=路程”的数量关系列出算式:___________________________
2、独立计算,交流方法,明确分数乘分数也可以先约分再乘。明确约分的书写格式。
3、想一想分数乘分数怎样约分?分数乘整数怎样约分?
三、知识应用: 独立完成P11“做一做”,组长检查核对,提出质疑。
四、层级训练: 1、巩固训练:完成练习二第3、6、9题。
2、拓展提高:练习二第7、8、10题。
五、总结梳理:
回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)
自我展示台:(写出你的发现或见解)
【(2)一个数乘分数 教学计划(人教新课标六年级上册)】相关文章:
1.一个数乘分数






文档为doc格式