10.4 用方程组解决问题
“我好疲惫哦”通过精心收集,向本站投稿了7篇10.4 用方程组解决问题,以下是小编帮大家整理后的10.4 用方程组解决问题,仅供参考,大家一起来看看吧。
篇1:10.4 用方程组解决问题(2)
教学目标: 1. 会根据具体问题中的数量关系列出方程组并求解,能检验所得的问题的结果是否符合实际意义. 2. 提高学生分析问题和解决问题的能力. 重点:用表格来分析问题中的数量关系. 难点:探索解决问题二思路和方法. 教学过程: 一、创设情境: 问题3:某厂生产甲、乙两种型号的产品,生产一个甲种产品,需要时间8s,铜8g,生产一个乙种产品需时间6s,铜16g,如果生产甲、乙两种产品共用时1h,用铜6.4kg,甲、乙两种产品各生产多少个? 二、探索活动: 问题1:怎样设未知数? 问题2:表格应如何设计? 问题3:如何用表格来分析问题3中的数量关系? 学生活动:互相交流,口答问题1: 动手操作列出表格: 甲种产品x个乙种产品y个总计用时/s用铜/g两生板演,写出解题步骤. 议一议:用表格分析实际问题的一般步骤是什么? 三、例题教学: 问题4为了加强公民节水意识,合理利用水资源,某市采用价格调动控手段达到节约用水的目的,规定:每户居民每月用水不超过6m3时,按基本价格收费;超过6m3时,不超过的部分仍按基本价格收费,超过的部分要加价收费,该市某户居民今年4、5月份的用水量和水费如下表所示,试求用水收费的两种价格.
月份
用水量/ m3
水费/元
4
8
21
5
9
27
解:设基本价格为x元/ m3,超过6 m3部分按y 元/ m3收费. 根据题意,得: 6x+2y=21 6x+3y=27解这个方程组,得 x=1.5
y=6
答:基本价格是1.5元/ m3,超过6 m3部分的价格是6元/ m3.
做一做:1、在上面的问题中,如果某户居民1月份用水4 m3,那么需交水费 元,如果该户居民6月份用水11 m3,那么需交水费 元.
2、在上面的问题中,如果某户居民某月交水费45元,那么用水量应为 m3.
四、思维拓展:
某次知识竞赛共有25题,评分标准如下:答对1题得4分,答错1题倒扣2分,不答题不得分也不扣分,不明答题得分是60分,且答对的题数是答错题数的3倍,问小明答对、答错、不答的各有多少题?
先由同学互相交流,然后由学生写出解题步骤两生板演
(参考答案:小明答对18题,答错6题.不答1题)
练习:p1171、2
五、小结:用表格分析实际问题的一般步骤是什么?
六、布置作业:
篇2:10.4 用方程解决问题(3)
教学目标: 1. 学会用示意图分析数量关系解决问题,体会示意图与表格在分析应用题中的特点;会根据问题中的数量关系列出方程组求解,会检验结试论是否符合题意. 2. 经历和体验列二元一次方程组解决实际问题的过程,进一步体会方程组是刻划现实世界的有效数学模型,及数学的应用价值;提高学生的分析问题和解决问题的能力. 教学重点: 1. 用示意图结合表格分析问题中的数量关系的方法. 2. 熟悉常见问题情境的含意. 教学难点: 让学生理解具体问题的情境,找出数量关系列出方程组. 教学准备: 用实物讲解问题(5),用多媒体课件讲解问题(6) 教学过程: 1. 情境创设: 1.1. 呈现问题(5) 1.2. 问题:从图中你可获得什么信息? 1.3. 展示实物让学生进一步理解示意图. 【学生活动:先观察图形再与同学交流,再观察实物分析解决问题】 2. 解决问题: 2.1. 设可制作甲种纸盒子x个,乙种纸盒y个,你会如何分配这两种材料呢? 2.2. 解(略) 2.3. 检验:求出的解符合题意吗? 【学生活动:在老师指导下,尝试列表、分析解决问题】 3. 情境之二: 3.1. 投影问题(6)及图片,让学生先想象问题的具体情境,理解示意图. 【学生活动:尝试分析问题,想象情境,试画出示意图】 3.2. 动画演示情境,帮助学生丰富经验,理解题意. 【学生活动:观察动画,丰富自己的知识经验】 3.3. 用示意图结合表格分析.
v
s
t
情形(1)
情形(2)
【学生活动:在老师指导下,尝试列表、分析解决问题】 3.4. 列方程组求解(略) 3.5. 检验合理性(略) 4. 拓展与延伸: 两列火车分别在两平行的铁轨上行驶,其中快车长168m慢车长184m,如果相向而行,从相遇到离开需4s;如果同向而行,从快车追上慢车到离开需要16s;求两车的速度. 4.1先让学生自行审题,画出示意图,想象情境. 【学生活动:尝试分析问题,想象情境,试画出示意图】 4.2动画演示情境,帮助学生理解题意. 【学生活动:观察动画,丰富自己的知识经验】 4.3列表列方程解决问题. 【学生活动:在老师指导下,尝试列表、分析解决问题】 5.巩固练习:课本p119页1、2 【学生活动:练习,板演】 6.小结:用示意图和表格分析问题各有什么特点? 【学生活动:分小组议一议,在教师组织下达成共识】 7.作业:课本p120-121:5、7 板书设计:(略)
篇3:《用百分数解决问题》说课稿
一、说教材
《用百分数解决问题》选自人教版《义务教育课程标准实验教科书数学(六年级上册)》。它是在求一个数比另一个数多(少)几分之几的分数应用题的基础上进行教学的,是求一个数是另一个数的百分之几的应用题的发展。通过解答一个数比另一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高解答百分数应用题的能力。
二、说教学目标及教学重难点
在反复挖掘教材的基础上,依据新课标的理念和学生已有的知识基础,我确定本节课的教学目标为:
知识目标:在解答求一个数是另一个数的百分之几的应用题的基础上,通过迁移类推使学生掌握求一个数比另一个数多(少)百分之几的应用题。
能力目标:提高学生自己分析问题解答问题的能力,发展学生的逻辑思维能力。
情感目标:激发学生的学习兴趣,做学习的主人。使学生在认真观察和积极思考中发展学生思维能力,体会到学习成功的乐趣。
依据本节课的教学目标,我确定的教学重点:理解和掌握求一个数比另一个数多(少)百分之几的应用题的解题思路和方法。
教学难点:分析应用题的数量关系,理解一个数比另一个数多(少)百分之几的含义。
三、说教法与学法
为了实现教学目标,突出重点,突破难点,在学生已有的认知水平和现有的知识储备的基础上,本节课我主要采用自主探究、合作交流和尝试教学法,突出学生的主体地位。用以前学过的一个数是另一个数的百分之几的分数应用题引入新课。通过提出问题、画出线段图、分析数量关系、找出解决问题的方法,让学生亲身体验知识形成的过程,获得基本的数学知识和技能,从而激发学生的学习兴趣,增加学生学好、用好数学的信心。
四、说教学流程
(一)、创设情境,引入新课
教师导语:“同学们,随着人类的进步、社会的发展,生态环境日益恶化”。(出示课件一)让学生通过画面感受环境恶化对人类生存造成的影响。“现在,人们为了改善日益恶化的生态环境,做了很多的努力,植树造林就是其中之一(出示课件二),植树造林对治理沙化耕地,控制水土流失,防风固沙,增加土壤蓄水能力都有积极的作用”。“瞧!在另一个植树造林示范乡试验站,一位记者正在采访植树工人(出示课件三),教师提问:请同学们根据植树工人的介绍提出用百分数解决的问题”。
学生可能会提:
1、原计划造林是实际造林的百分之几?
2、实际造林是原计划造林的百分之几?
3、实际造林比原计划造林增加了百分之几?
4、原计划造林比实际造林少百分之几?
让学生先解决前两个问题,个别汇报后集体评订。通过这两个问题的解决,提醒学生注意单位“1”的量。
(设计意图:通过有关植树造林的情境图,了解植树造林的作用和意义,引起学生对植树造林的关心。通过前两个问题的解决,为旧知识向新知识迁移做好必要的准备。)
(二)、自主参与,新课探索。
1、让学生自主解决“实际造林比原计划造林增加了百分之几”的问题:
(1)、分析数量关系
让学生自己尝试把数量关系用线段图表示出来。然后组织学生小组合作说说你是怎样理“实际造林比原计划造林增加了百分之几”的,在全班交流后,出示课件点拔,让学生明确实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数占原计划造林公顷数的百分之几,原计划造林的公顷数是单位“1”。
(2)、确定解决问题的方法
让学生根据分析确定解决问题的方法,并列式计算出结果。再组织交流自己的方法。出示课件组织交流,教师适时点拔及板书。
(设计意图:在理解题意,弄清数量关系的基础上,放手让学生独立解题,并鼓励学生用不同的方法解,使学生体验解题策略的多样性。)
2、观察比较,引导学生思考“原计划造林比实际造林少百分之几?”
学生很可能会回答“原计划造林比实际造林少16。7%”,教师暂不作评价。启发提问:“这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?
学生列式计算后讨论:这个答案与此前的回答一样吗?为什么不一样?
通过讨论,帮助学生总结规律:问题中是谁和谁比?谁是单位“1”?使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。
(设计意图:通过猜测、比较、计算、验证,进一步认识百分数的意义和百分数应用题中的数量关系,提高分析和解决简单实际问题的能力。)
3、概括应用
教师指出:在实际生活中,人们常用“增加百分之几”“减少百分之几”“节约百分之几”……来表达增加、减少的幅度。让学生举例说说这些话的含义。
(三)、课堂练习,巩固新知
出示课件(做一做、学以致用)
(设计意图:通过练习加深理解、消化本节课的知识,并知道数学问题来源于生活,服务于生活的特点,激发学生学习数学的兴趣。)
篇4:《用比例解决问题》数学教案
【教材分析】
本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。
【学情分析】
本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。
【教学目标】
1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。
2、提高学生分析解答应用题的能力,培养探索精神。
【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。
【教学难点】分析和理解两个数量的比校对于学生来说比较难些。
【教学过程】备注
活动一:创设情境,初步感知题意。
1、教师出示例2的情境图。
2、让学生结合图叙述题意。
活动二:动手画图,分析题意。
1、你能不能用上节课我们讲过的学习方法,借助于其它的`方法来分析一下这道的意思呢?
学生动手画线段图,分析。小组交流。
与教师共同再一次感受如何画线段图。(教师板书)
重点让学生明确谁是单位1。
2、让学生说一说是怎样想的?确定解题的思路。
3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。
4、全班交流,订正。
5、问:这两种解法有什么区别?有什么联系?
活动三:教学例3.
教师出示例3。
1、引导学生读题,理解题意。
2、根据这句话应当把什么看单位1?
3、学生试画出线段图,分析数量关系。
4、学生自己解答。
订正时,让学生说说是怎样分析的?与全班交流。
活动四:巩固练习。
1、完成21页中的做一做。
教师要求学生画线段图。
2、完成练习五中部分练习题。
订正时,让学生说说分析的思路。
活动五:课堂小结。
通过本节课的学习你都有哪些收获?
篇5:《用比例解决问题》数学教案
教学过程:
一、 复习
1.一辆汽车行驶的速度不变,行驶的时间和路程。
2.一辆汽车从甲地开往乙地,行驶的时间和速度。
看上面的题,回答下面的问题:
(1)各有哪三种量?
(2)其中哪一种量是固定不变的?
(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?
3、这节课,我们就应用比例的知识解决一些实际问题。
二、新授
1、教学例5
(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?
(2)学生读题后,思考和讨论下面的问题:
① 问题中有哪两种量?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(4)根据正比例的意义列出方程:
解:设李奶奶家上个月的水费是元。
12.8/8=/10
8= 12.8×10
=128÷8
= 16 答:李奶奶家上个月的水费是16元。
(5)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例6
(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?
(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。
(3)指名板演,全班评讲。
4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
三、巩固练习
1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。
2、完成练习九第5、6、7题。
四、总结
用比例知识解决问题的步骤是什么?
篇6:《用比例解决问题》数学教案
学习目标:
使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。
学习重难点:
重点:运用正、反比例解决实际问题。
难点:正确判断两种量成什么比例。
学习方法:
尝试教学法、引导发现法等。
学习过程:
一、旧知铺垫
1、下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
过程要求:
①说一说两种量的变化情况。
②判断成什么比例。
③写出关系式。
如:
2、根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。
70×4=56×5
二、探索新知
1、教学例5
(1)出示课文情境图,描述例题内容。
板书:8吨水10吨水
水费12.8元水费?元
(2)你想用什么方法解决问题?
过程要求:
①学生独立思考,寻找解决问题的方式。
②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。
①汇报解决问题的结果。
引导提问:
A、题中哪两种量是变化的量?说说变化情况。
B、题中哪一种量一定?哪两种量成什么比例?
c、用关系式表示应该怎样写?
②板书:解:设李奶奶家上个月的水费是X元
8X=12.8×10
X=
X=16答:略
(3)与算术解比较。
①检验答案是否一样。
②比较算理。算述解答时,关键看什么不变?
板书:先算第吨水多少元?
12、8÷8=1.6(元)
每吨水价不变,再算10吨多少元。
1、6×10=16(元)
(4)即时练习。
王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?
过程要求:
①用比例来解决。
②学生独立尝试列式解答。
③汇报思维过程与结果。
想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。
解:设王大爷家上个月用了X吨水。
12.8X=19.2×8
X=
X=12
或者:
16X=19.2×10
X=
X=12
1.教学例6。
(1)出示课文情境图,了解题目条件和问题。
(2)说一说题中哪一种量一定,哪两种量成什么比例。
(3)用等式表示两种量的关系。
每包本数×包数=每包本数×包数
(4)设末知数为X,并求解。
(5)如果要捆15包,每包多少本?
1、完成课文“做一做”。
2、课堂小结。
三、巩固练习
完成练习九第3~5题。
篇7:用正比例解决问题课件
教学内容
义务教育教科书六年级下册第61页例5
教学目标
1、掌握用正比例知识解答含有正比例关系问题的步骤和方法。
2、使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3、发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。让学生在成功解决生活中的实际问题中体会数学的价值。
教学重点
掌握用正比例知识解答含有正比例关系问题的步骤和方法。
教学难点
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。 教学过程
联系实际,复习迁移
1、判断下面每题中的两种量成什么比例?并说明理由。(小黑板出示)
(1)单价一定,总价和数量。
(2)速度一定,路程和时间。
(3)每吨水的价钱一定,水费和用水的吨数。
2、师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。
探索新知,培养能力
1.出示:李奶奶家用了10吨水,李奶奶家上个月的水费是多少?
提问:能否计算出水费,需要什么条件。
2.继续出示:张大妈家上个月用了8吨水,水费是28元。
3.学生尝试解答。
5.学生独立完成后汇报结果 ,并说一说你是怎样想的。
28÷8×10或 28×(10÷8)
=3.5×10 =28×1.25
=35(元) =35(元)
6.激励引新。
大家能用我们学过的方法先求出每吨水的价格,再算出10吨水的.价钱。(或先求出李奶奶家的用水量是张大妈家的倍数,再求李奶奶家的水费是多少)师指出:这样的问题可以应用比例的知识解答。今天我们就来学习用比例知识解答问题,引出课题,并板书:用比例解决问题
1、根据提示和同学交流解题。
小黑板出示:
(1) 题目中相关联的两种量是( )和( ).
(2)因为( )一定,所以( )和( )成( )比例。也就是说,两家的( )和( )的( )相等。
(3)它们成什么比例关系,为什么?
根据这样的比例关系,你能列出等式吗?
(4)引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。
2.学生汇报并列式。
(1)学生汇报解思路。
(2)指名学生板演。
板书:解:设李奶奶家上个月的水费是X元。
28∶8= X∶10
8X=28×10
X=280÷8
X=35 答:略。
4.你认为李奶奶用了10吨水交35元,这个答案符合实际吗?你是怎样检验的?
5、这样列式可以吗?8∶28= 10∶ X
6、变式练习
(1)小黑板出示:
张大妈家上个月用了8吨水,水费是28元,王大爷家上个月的水费是42元,他们家上个月用了多少吨水?
(2)比较一下改编后的题和例5有什么联系和区别?
例5的条件和问题改编以后,题中成正比例的关系仍没有改变,解答的方法也没有改变,只是要设需要用的水数为X吨,列出等式是:28∶8=42∶X
(3)学生独立用比例的知识解决这个问题
(4)学生汇报解思路
(5)检验结果
7、概括总结:
(1)象这样的题目,用算术方法解答应用题与用比例解答应用题均可,如果题目中没有要求的,我们采用任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。用算术方法必须求出那个不变的量的具体值,而比例方法只需根据数量关系表示出这个不变量即可,思维过程更具有广泛性、一般性。
(2)明确解题步骤
得出用比例解决问题的“五步曲”:一梳(梳理哪两种量是相关联的量、哪一个量一定)、二判(判断相关联的两种量成什么比例)、三列(设未知x,根据判断列出比例)、四解(解比例)、五检(用自己熟练的方法来检验)。
巩固提高
1、基本练习:完成课本62页“做一做”
小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用多少钱?
(学生独立完成再汇报解题过程)
2、完成课本练习十一第4、7题。
课堂总结说说收获。
课后延伸。
板书设计:
【10.4 用方程组解决问题】相关文章:






文档为doc格式