欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教学资源>初一数学期末重点知识复习资料

初一数学期末重点知识复习资料

2023-08-09 09:04:04 收藏本文 下载本文

“椰子树朗姆酒”通过精心收集,向本站投稿了5篇初一数学期末重点知识复习资料,下面就是小编给大家分享的初一数学期末重点知识复习资料,希望大家喜欢!

初一数学期末重点知识复习资料

篇1:初一数学期末重点知识复习资料

一、概念知识

1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

18、全等图形:两个能够重合的图形称为全等图形。

19、变量:变化的数量,就叫变量。

20、自变量:在变化的量中主动发生变化的,变叫自变量。

21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形

叫做轴对称图形。

23、对称轴:轴对称图形中对折的直线叫做对称轴。

24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂

直平分线。(简称中垂线)

二、计算能力

(A)整式的计算。

1、整式的加减

去括号,合并同类项!

2、幂运算(七个公式)

①同底数幂相乘:底数不变,指数相加。②幂的乘方:底数不变,指数相乘。

③积的乘方:等于每个因数乘方的积。④同指数幂相乘:指数不变,底数相乘。

三、相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

与互为邻补角。+=180°;+=180°;+=180°;

+=180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;=。

5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当a⊥b时,====90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样

的两个角叫同位角。图3中,共有对同位角:与是同位角;

与是同位角;与是同位角;与是同位角。

②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则=;=;=;=。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则=;=。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+=180°;

+=180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果=

或=或=或=,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b。

判定3:同旁内角互补,两直线平行。如图5所示,如果+=180°;

+=180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

篇2:初一数学期末重点知识复习资料

-----------3.1一元一次方程及其解法

①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:

1)未知数所在的式子是整式(方程是整式方程);

2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)

3)经整理后方程中未知数的次数是1.

④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。方程的解代入满足,方程成立。

⑤等式的性质:

1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。a=b得:a+(-)c=b+(-)c

2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)

注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:

去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;

以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个

步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,

要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:

⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含

分母的项;分子是一个整体,去分母后应加上括号;

注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;

⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);

⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;

⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,

不能像计算或化简题那样写能连等的形式.

⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)

的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)

--------3.2一次方程的应用:

(一)、概念梳理

⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;

①解:设出未知数(注意单位),

②根据相等关系列出方程,

③解这个方程,

④答(包括单位名称,检验)。

⑵一些固定模型中的等量关系:

①数字问题:表示一个三位数,则有=100a+10b+c(数位上的数字×位数)

②行程问题:基本公式:路程=时间×速度

甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程

甲走的时间=乙走的时间;

甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离

③工程问题(整体1):基本公式:工作量=工作时间×工作效率

各部分工作量之和=总工作量;

④储蓄问题:本息和=本金+利息;利息=本金×利率×时间

⑤商品销售问题:商品利润=售价-进价(成本价)

商品利润率=(售价-进价)/进价

⑥等积变形问题:面积或体积不变

⑦和、差、倍、分问题:多、少、几倍、几分之几

⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x

⑨资源调配问题:资源、人员的调配(有时要间接设未知数)

(二)、思想方法(本单元常用到的数学思想方法小结)

⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.

⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想.

⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去

分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想.

⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助

于线段示意图和图表等来分析数量关系,使问题中的数量关系很直

观地展示出来,体现了数形结合的优越性.

⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线

上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符

号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题

的过程中往往也要注意分类思想在过程中的运用.

-----------3.3二元一次方程组及其解法

①由两个一次方程组成的,并含有两个未知数的方程组叫做二元一次方程组

②消元法解方程组:

1、二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解(注意格式﹛)

2、代入消元法:从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法。

3、加减消元法:把两个方程的两边分别相加或相减(左边-左边=右边-右边)消去一个未知数的方法,叫做加减消元法,简称加减法(一定要使某个未知数的系数相等或相反)

-------------3.4二元一次方程组的应用

两个未知数,两个相等关系(见一次方程的应用)

第四章直线与角

-------------4.1几何图形

形状:方的、圆的等

(1)①几何图形大小:长度、面积、体积等

位置:相交、垂直、平行等

②几何体也简称体。包围着体的是面。

③常见的立体图形:圆柱(一曲面二平面)、圆椎(一曲面一平面)、圆台、球(一曲面)、长方体(六面八点十二棱)、四面体(三棱锥)、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。)新课标第一网

④点线面体:是组成几何图形的基本元素(是几何图形);点动成线,线动成面,面动成体。

(2)展开与折叠:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;正方体展开六个面可用“1字型”、“Z字型”模型认识。

(3)三视图:主视图(从正面看)、左视图(从左面看)、俯视图

(从上面看)。

----------4.2直线、射线、线段

1.特点与表示方法:

①直线没有端点,向两方无限延伸(不能用延长描述),可用两个大

写字母或小字字母表示;

②射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意

一点表示;端点相同,延伸方向相同的两条射线是同一条射线(两个相同)。

③线段有两个端点,可用两个大写字母或小字字母表示(不能延长)。

2.连接两点间的线段的长度,叫做这两点之间的距离。线段是图形,距离有大小。

3.经过两点有一条直线,并且只有一条直线。(两点确定一条直线)。

4.经过两点的所有连线中----------线段最短(两点之间,线段最短)

------------4.3线段的长短比较

①线段的比较:叠合法(线段上、线段的延长线上)或度量法。

②中点:将一条线段分成两条相等的线段的点称这条线段的中点。

③线段的和、差、倍、分(整体求部分,部分求整体)可以设未知数

④点在线段上、点在线段的延长线上、甚至在线段外。

-----------4.4角

1、定义:有公共端点的两条射线组成的图形叫角。角的端点为顶点,两条射线为角的两边(一条射线绕端点旋转后形成的图形)。

2、1°=60′1′=60″1周角=360度1平角=180度;

直角=90度;钟表上分针每分钟走6°,时针每分钟走0.5°.

3、度化为度、分、秒(整数不动,小数下放);度、分、秒化为度(逐级上调)。

4、度、分、秒的加、减、乘、除(余数下放)运算:对口(秒与秒、分与分、度与度)运算,满60进1,借1算60

-----------4.5角的比较与补(余)角

①角的比较:叠合法(在角的内部、在角的外部)或度量法。

②角的平分线:角平分线把一个角分成两个相等的角,角平分线是一条射线。

③如果两个角的和等于90度(直角),(∠⒈+∠⒉=90°)就说这两个叫互为余角,即其中每一个角是另一个角的余角。(不要遗漏)。

④如果两个角的和等于180度(平角),(∠⒈+∠⒉=180°)就说这两个叫互为补角,即其中每一个角是另一个角的补角(不要遗漏)。

⑤等角(同角)的补角相等。等角(同角)的余角相等。

⑥角的和、差、倍、分(角在角的内部、在角的外部)可以设未知数

⑦方位角:北偏东30o(就是从北望东旋转30o),西南方向:就是南偏西45o

--------------4.6用尺规作线段与角

1、尺规作图:几何中,通常用没有刻度的直尺和圆规来画图,这种画

图的方法叫做尺规作图

2、作一条线段等于已知线段:(1)作一条射线AM(2)在射线AM

上,以点A为圆心,以线段a的长度为半径画弧,交射线AM于点B则

线段AB为所求作的线段

3、作一个角等于已知角:(1)在∠AOB上以O为圆心,任意长为半径画弧,分别交OA、OB于点P、Q

(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点D;

(3)以点D为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;

(4)作射线EF,∠DEF即为所求作的角

第五章数据的收集与整理

----------------5.1数据的收集

1、全面调查(普查):对全体对象进行的调查叫做全面调查

2、抽样调查:从被考察的全体对象中抽出一部分对象进行考察的调查方式

3、总体:所要考察对象的全体叫做总体

4、个体:其中的每一个考察对象叫做个体

5、样本:从总体中所抽取的一部分个体叫做总体的一个样本

6、样本容量:样本中个体的数目叫做样本容量

------------5.2数据的整理

1、常用的统计图:条形统计图、折线统计图、扇形统计图

2、扇形统计图:用圆和扇形来表示总体和部分的比例关系,即用圆(36

o)表示总体,用扇形表示构成总体的各个部分,通过扇形的大小来反

映各个部分占总体的百分率大小,像这样的统计图叫做扇形统计图

3、扇形的中心角计算公式:360°×该部分占总体的百分率

-------------5.3用统计图描述数据

(1)条形统计图能清楚表示出事物的绝对数量。

(2)折线统计图能清楚地反映事物的变化趋势。

(3)扇形统计图能清楚地表示各部分占总体的百分率。

--------------5.4从图表中的数据获取信息

图表带来有利于决策的各种信息的同时,使用不当的图表来表达数据,

会给人以误导。在从图表中获取信息时,要关注数据的来源、收集的

方法和描述的形式,以便获取更多合理的信息。

备注:①1+2+3+4+------+n=n×(n+1)/2②1+3+5+7+----+(2n-1)=n2

③2+4+6+8+-----+2n=n×(n+1)④1/2×3=1/2-1/3(1/3×4=1/3-1/4)

⑤22o13-22o12=22o12×(2-1)⑥98/99=1-1/99

⑦如果在直线a上有n个点(线段AB上有n个点可以构成(n+1)×(n+2)/2条线段),则共有2n条射线,n×(n-1)/2条线段;

⑧同一平面内有n条两两相交的直线,最少有一个交点,最多有n×(n-1)/2个交点;

⑨同一平面上共有n个点(n≥3),其中任意三个点都不在同一条直线上,那么连接任意两点,可画n×(n-1)/2条直线;

⑩平面上从点A发出n条射线,可以组成n×(n-1)/2个角;(角内发出n条射线,,可以组成(n+1)×(n+2)/2个角

篇3:初中数学期末重点知识复习资料

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

重点知识:

初中数学第一课,认识正数与负数!新初一的来~

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

③有理数的绝对值都是非负数.

2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

重点知识:

初中数学第二课,有理数的相关知识!新初一的来~

4.有理数大小比较

1.有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:

(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

(3)作差比较:

若a﹣b>0,则a>b;

若a﹣b<0,则a

若a﹣b=0,则a=b.

5.有理数的减法

有理数减法法则

减去一个数,等于加上这个数的相反数。 即:a﹣b=a+(﹣b)

方法指引:

①在进行减法运算时,首先弄清减数的符号;

②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);

注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。

减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

6.有理数的乘法

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数同零相乘,都得0。

(3)多个有理数相乘的法则:

①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.

②几个数相乘,有一个因数为0,积就为0。

(4)方法指引

①运用乘法法则,先确定符号,再把绝对值相乘.

②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.

7.有理数的混合运算

1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。

有理数混合运算的四种运算技巧:

(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.

(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.

(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.

(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.

8.科学记数法—表示较大的数

1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

2.规律方法总结

①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。

②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.

重点知识:

初中数学第八课:科学计数法,新初一的来~

9.代数式求值

(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值。

题型简单总结以下三种:

①已知条件不化简,所给代数式化简;

②已知条件化简,所给代数式不化简;

③已知条件和所给代数式都要化简.

10.规律型:图形的变化类

首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。探寻规律要认真观察、仔细思考,善用联想来解决这类问题。

11.等式的性质

1.等式的性质

性质1 等式两边加同一个数(或式子)结果仍得等式;

性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。

2.利用等式的性质解方程

利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.

应用时要注意把握两关:

①怎样变形;

②依据哪一条,变形时只有做到步步有据,才能保证是正确的.

新初一第二章知识点总结:整式的加减,为孩子收藏!

12.一元一次方程的解

定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13.解一元一次方程

1.解一元一次方程的一般步骤

去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

使方程逐渐转化为ax=b的最简形式体现化归思想。

将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

14.一元一次方程的应用

1.一元一次方程解应用题的类型

(1)探索规律型问题;

(2)数字问题;

(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

(5)行程问题(路程=速度×时间);

(6)等值变换问题;

(7)和,差,倍,分问题;

(8)分配问题;

(9)比赛积分问题;

(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

2.利用方程解决实际问题的基本思路

首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

列一元一次方程解应用题的五个步骤

(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

(3)列:根据等量关系列出方程.

(4)解:解方程,求得未知数的值.

(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

15.正方体相对两个面上的文字

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

16.直线、射线、线段

(1)直线、射线、线段的表示方法

①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:

①点经过直线,说明点在直线上;

②点不经过直线,说明点在直线外。

17.两点间的距离

(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

18.角的概念

(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。

(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示。

(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。

(4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″。

19.角平分线的定义

从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线。

①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC。

②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB。

20.度分秒的运算

(1)度、分、秒的加减运算。

在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。

(2)度、分、秒的乘除运算

①乘法:度、分、秒分别相乘,结果逢60要进位。

②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。

21.由三视图判断几何体

(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状。

(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。

篇4:五年级数学期末重点复习资料

一、我会填。(每空1分,共22分)

1、在45、9、5三个数中,( )是( )的因数,( )是( )和( )的倍数。

2、15和9的最大公因数是( ),最小公倍数是( )。

3、1~20的自然数中奇数有( )个,偶数有( )个,质数有( )个,合数有( )个。

4、两个完全一样的三角形,拼成一个面积是8.2平方厘米的平行四边形,其中一个三角形的面积

是( )平方厘米。

5、梯形的面积用字母表示( )。

6、一个平行四边形面积是38平方厘米,底是9.5厘米,高是( )。

7、把3吨煤平均分成3堆,每堆煤重( )吨,每堆煤是3吨煤的( )。

8、把3米长的绳子平均分成5份,每份占全长的( ),每份长有( )米。

9、口袋里有大小相同的8个红球和4个黄球,从中任意摸出1个球,摸出红球的可能性是( ),

摸出黄球的可能性是( ),摸出( )球的可能性最大。

10、分母是8的最简真分数有( )个。

二、我会判断。(对的在括号里打“√”,错的打“×”。)(共5分)

1、三角形的面积等于平行四边形面积的一半。 ( )

2、假分数都比1大。 ( )

3、除数是小数的除法,商一定小于被除数。 ( )

4、自行车车轮的转动是平移现象。 ( )

5、把一个长方形拉成一个平行四边形,它的面积不变。 ( )

三、我会选,把正确答案前面的字母填在括号里。(每题1分,共8分)

1、要使41□5能被3整除,□中可填的数有( )。

A、1个 B、2个 C、3个 D、无法比较

2、投掷3次硬币,有2次正面朝上,有1次反面朝上。那投掷4次硬币反面朝上的可能性是( )。

3、一个平行四边形的面积是24平方厘米,底是6厘米,高是( )。

A、4厘米 B、6厘米 C、8厘米 D、3厘米

4、42分=( )小时。 A、0.42 B、4.2 C、0.7 D、0.07

5、一根16米长的绳子,对折后又对折,每段长是( )。

A、8 B、4 C、2 D、16

6、最小的质数与最小的合数的积是( )。

A、2 B、4 C、6 D、8

7、已知两个质数的积是21,这两个质数的和是( )。

A、9 B、10 C、11 D、12

8、两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于( )。

A、梯形的高 B、梯形的上底 C、梯形上底与下底之和。

四、计算。(共41分)

1、直接写出得数。(共5分。)

2.1÷0.7= 9×0.003= 12.4÷0.4= 2.8÷0.2= 5.1÷17=

0.4÷8 = 1.25×4= 0.54÷6= 7.2÷0.6= 0.125×16=

2、竖式计算(要验算,共6分)

11.7÷2.6= 6.29÷6.1 6.48÷4.5

(得数保留两位小数) (得数保留两位小数)

2、脱式计算。(每小题2分,共8分。)

4.8÷0.16÷3 (0.56+1.52)÷0.8 7.32-4.37×0.9 2.8×4.5+5.5×2.8

3、计算面积。(单位:米)(6分)

4、找出下列各数的最大公因数和最小公倍数。(4分)

14,15 14,28 16,24 18,12,30

5、下面的分数是最简分数的画上圆圈,不是最分数的约分。(5分)

46 713 1751 1248 1391

6、通分比较下列各分数的大小。(7分)

59 和 35 548 和772 56 、1924 和1316

五、在方格纸中分别画一个三角形、一个梯形和一个平行四边形,使它们的面积都是12cm?。(每小格的面积为1平方厘米)(共3分。)

六、解决问题。(1-3题每题3分,4-6题每题4分,共21分)

1、一根绳子长34.8米,做一根跳绳需1.8米,最多可以剪成几根这样的跳绳?

2、小张8分钟做了5个零件,小李9分钟做了7个同样的零件,谁做得快?

3、一个果园的形状是平行四边形,底是115米,高是80米,如果每棵果树占地10 米?,这个果园一共可植多少棵树?

4、一个油桶最多装油2.5千克,要把36千克的油装在这样的油桶里,至少需要多少个油桶?

5、教室的长是8米,宽是6米,如果用边长是2分米的方砖铺地,需要多少块方砖?如果每块方砖30元,一共要多少元?

6、一艘轮船,每小时行驶25.6千米,3.5小时到达目的地。返回时用了2.8小时,返回时平均每小时行驶多少千米?

第一单元小数乘法

1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c

减法:减法性质:a-b-c=a-(b+c)

除法:除法性质:a÷b÷c=a÷(b×c)

第二单元位置

8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。

第三单元小数除法

10、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

11、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

14、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32

15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。

五年级数学期末重点复习资料大全

篇5:初一上册语文重点知识复习资料

一、课文理解

1、《在山的那边》选自《长江文艺》,作者王家新,这是一首现代诗,诗人运用象征的手法,取象于群山和大海。用大海比喻理想,用群山比喻重重困难,用爬山比喻艰苦奋斗。告诉人们:奔向理想的人生征途是漫长的,但是,只要百折不挠地坚持奋斗,理想境界终将实现。

2、《走一步,再走一步》的作者是美国作家莫顿?亨特,本文记叙的是“我”童年时一次“脱险”的经历。文章却蕴含着一个哲理:在人生道路上,不管面对怎样的艰难险阻,只要把大困难分解为小困难,一个一个地认真解决小困难,终将战胜巨大的困难,赢得最后的胜利。

3、《生命 生命》是香港女作家杏林子(本名刘侠)的一篇散文。这篇文章通过三个事例引出了对“生之欲望”、“生命力”和“生命”的感悟,并从不同的侧面引发出了三点思考:即必须对自己负责,好好地使用生命,让人生更有意义;要让有限的生命发挥无限的价值,使我们活得更为光彩有力;要珍惜生命,珍惜时间,不懈努力,为生命奋斗,勇敢地活下去。

4、《紫藤萝瀑布》选自《铁箫人语》,是女作家宗璞的一篇散文。这篇文章通过对一树盛开的紫藤萝的驻足观赏,使原先的悲痛和焦虑化为宁静和喜悦。悟到“花和人都会遇到各种各样的不幸,但是生命的长河是无止境的”。不能让昨天的不幸把人压垮,每个人都应该像紫藤萝的花朵一样,以饱满的生命力,投身到生命的长河中去,在闪光的花的河流上航行。

5、《童趣》选自清代文学家沈复《浮生六记》中的“闲情记趣”一章,本文的主旨是写作者儿时的“物外之趣”。

6、《理想》是诗人流沙河的一首现代哲理诗。这首诗从理想的历史意义、人格意义和人生意义三个方面告诉人们:人生要有理想,只要树立了理想,并为之不懈地奋斗,就会取得丰硕的收获。

7、《短文两篇》中的《行道树》是由台湾女作家张晓风所作。这篇文章借行道树的自白,抒写了奉献者的襟怀,赞美了奉献者的崇高精神,文中行道树的形象就是无私奉献者的形象。另一篇文章《第一次真好》,由台湾女作家周素珊所作。文章表达了作者的感悟:生命中的第一次愈多,生命也就愈益多姿多彩。当然,作者所说的第一次,都是有益身心的第一次。

8、《人生寓言》的作者是周国平。其中《白兔和月亮》告诉人们:拥有巨大的利益会勾起无穷的得失之患。《落难的王子》通过王子的经历又告诉人们:厄运能使脆弱的人变得坚强起来。

9、《我的信念》的作者是波兰科学家玛丽?居里(即居里夫人),在这篇文章中,作者阐述了一个位科学工作者应当具备三个方面的品质。其一,科学工作的宗旨是探讨真理,而不是“谋求物质上的利益。”其二,科学工作需要自由,需要宁静,需要时间。其三,科学研究需要献身精神。其中献身精神是全文的核心。也是居里夫人思想品质的根本。

10、《论语》是记录孔子和他的弟子言行的一部书,共20篇,是儒家经典之一。课文所选的十则,有的谈学习方法,如“学而时习之,不亦说乎”,“学而不思则罔,思而不学则殆”;有的谈学习态度,如“见贤思齐焉,见不贤而内自省也。”“三人行,必有我师焉,择其善者而从之,其不善者而改之。”还有变修身做人的,如“士不可以不弘毅,任重而道远。”“己所不欲,勿施于人。”等。

11、《春》是一篇写景抒情的散文,作是朱自清,字佩弦,代表作有《荷塘月色》《背影》等。在《春》中,作者按照盼春、绘春和赞春的思路来结构全文。在绘春部分,依次描绘了五幅美丽的图画,分别是春草图,春花图,春风图,春雨图和迎春图。最后运用比喻,突出了春天新、美、力的特征。

12、老舍,原名舒庆春,字舍予,代表作有长篇小说《骆驼祥子》和话剧《茶馆》等。《济南的冬天》一文,开篇就以对比的写法突出了济南无风、无雾(响晴),无毒日(温晴)的宝地特点,然后,从阳光朗照下的山;薄雪覆盖下的山;不结冰的水三个方面写了济南的冬天。表达了对济南的赞美之情。

13、《夏感》描写夏季的景象,表现夏季紧张、热烈、急促的特点,表达作者对夏季独有的钟情。全文共五段 。第一段概述夏季总体特点,中间三段具体描述夏季的自然风光和夏季里农民劳作的景象,最后一段表达作者对夏季的热爱和赞美。

14、《秋天》这首诗,选自诗人、评论家何其芳的《预言》。这是一幅绚丽多彩的乡村秋景图。由农家丰收图、霜晨归渔图和少女思恋图组成。

15、《古代诗歌四首》分别出自汉乐府、唐诗(五律、七律)和元曲。

第一首《观沧海》由东汉政治家、军事家曹操所作,全诗以“观”字统领全篇,通过描写茫茫沧海波澜壮阔的景象,表达了诗人宏伟的抱负、宽广的胸襟,表现了诗人豪迈自信的思想感情。这首诗的基调苍凉慷慨,历来被视为“建安风骨”的代表作。

第二首《次北固山下》由唐代诗人王湾所作,作者通过对江南残冬早春景象新鲜而又精致的描绘,表达出诗人无比热爱江南水乡和怀念家乡及亲人的思想感情。

第三首《钱塘湖春行》由唐代大诗人,晚年又叫香山居士的白居易所作。这首诗通过抓住环境和季节特征,选取典型景物描绘了钱塘湖的早春风光,抒发了作者的喜悦心情。

第四首《天净沙?秋思》是元代戏曲作家马致远所作。天净沙是曲牌名。这支“曲”通过九个具有明显深秋色彩的互不相干的事物(前三句所写景物)。在苍凉的深秋暮色笼罩下构成了一个统一体。通过相互映衬达到情景妙合无痕的效果,真切地表达出天涯沦落人的孤寂愁苦之情。

16、《化石吟》是一首赞颂化石的抒情诗,“吟”是古典诗歌的和种名称,这里是“赞颂”的意思。作者以优美的语言,富有感情地赞颂了会讲话的奇异的化石。本文先通过几个疑问句启发人们和作者一起去想像亿万年前那神秘的世界,去倾听化石讲述那奇幻的神话。

17、《看云识天气》是一篇科普文。作者用生动形象的语言从两个方面介绍了云和天气的关系:不同形态的云和天气的关系;不同光彩的云和天气的关系。在结构上,全文运用了总——分——总的关系。

18、《绿色蝈蝈》是法国的昆虫学家法布尔的一篇妙趣横生的小品文。选自他的作品《昆虫的故事》(《昆虫记》),作者采用生动活泼的笔法,把蝈蝈写得活灵活现。鲁迅曾把《昆虫记》称为“讲昆虫故事”“讲昆虫生活”的楷模。

19、《月球上的足迹》真实地记录了美国宇航员登月的全过程。文章从“准备、登月、升空、返航”四个方面按时间顺序作了记叙。这是一篇饶有兴味的科普小品。全文写得清楚明白,生动形象,吸引人。

20、《山市》选自《聊斋志异》(一部文言短篇小说集),作者是清代文学家蒲松龄,字留仙,别号柳泉居士,世称“聊斋先生”。山市,山中蜃景,与“海市蜃楼”相似,是一种因折光反射而形成的自然现象。本文再现了山市由生成到消失的全过程,描述了山市的美景。

21、《风筝》选自鲁迅的散文诗集《野草》。鲁迅,原名周树人,字豫才。浙江绍兴人,我国伟大的思想家,文学家,革命家。他在1918年第一次以“鲁迅”为笔名发表中国现代文学第一篇白话小说《狂人日记》。1921年发表了代表作《阿Q正传》。鲁迅的作品集有:小说集《呐喊》《彷徨》,历史小说集《故事新编》,散文集《朝花夕拾》,散文诗集《野草》,杂文集《二心集》《坟》《三闲集》《而已集》等。本文以“风筝”为线索,围绕“风筝”叙写了封建教育思想对儿童精神上的压制,表现了作者的自我剖析精神和对冷酷现实的极端憎恶。

22、张之路的《羚羊木雕》以“羚羊木雕”为线索, 通过“查问木雕——赠送木雕——取回木雕”几个情节,表现了一家人不同的心态,并提出疑问:要木雕还是要友情。要不要取回木雕是整个事件的高潮和矛盾的焦点。

23、《散步》以时间顺序叙写散步的过程,为我们展现了一幅动人的画面。体现了中华民族尊老爱幼的传统美德,昭示中年人应肩负起承前启后的责任,给人以深刻启示。

24、诗两首。《金色花》以“假如我变成了一朵金色花”生发想象,展开三幅耐人寻味的画面,让我们感受到母子情深,感受到母子之爱,那么一种亲昵,那么一种亲热。寄寓了母子情深以及人类天性的美好与圣洁。《荷叶》是一首描写母爱的颂歌。纯洁的母爱,总在我们遇到风雨时悄然而至,给我们慰藉和力量;无私的母爱,将永远保护我们,伴我们一生。

25、《世说新语》两则。《咏雪》选自南朝宋时刘义庆组织人员编写的《世说新语》,它是六朝志人小说的代表作。全书共8卷,分为德行、言语、文学、政事等36门。本文编入“言语”门。通过谢太傅一家雪后赏景的故事,对才女谢道韫给予了有力的赞赏。谢朗的诗形象地写出了雪落的颜色和姿态;而谢道韫的诗在追求形似的同时,更注重了神似,有深刻的意象。《陈太丘与友期》记陈记七岁时的故事,表现了他的聪慧,但主要是写了他懂得为人的道理。“无信”和“无礼”为全篇核心。

26、《皇帝的新装》是19世纪丹麦的童话大师安徒生初期创作的童话作品。本文通过一个昏庸无能而又穷奢极欲的皇帝受骗上当的故事,揭露和讽刺了皇帝和大臣们的虚伪、愚蠢和自欺欺人的丑行。

27、《郭沫若诗两首》。《天上的街市》取材于我国古代有关牛郎织女的传说。它借丰富新奇的联想和想象,描绘了美妙的天街景象,表达了诗人摆脱封建束缚、追求理想、向往自由幸福的思想感情。《静夜》在写法和风格上和《天上的街市》很相似,都是在前面写景的基础上,转而进入想象的世界,收尾出人意料,让人产生无尽的回味和向往。这首诗立足“静夜”,描绘月光、松树、疏星等景物,展开联想,有一位鲛人在天河岸边对着月夜无声地流下了珍珠泪。寄托诗人的失望情绪,隐含对祖国、家乡和亲人的思念之情。

28、《女娲造人》以时间为序,记叙了女娲造人的全过程,表现了原始初民对人类自身来源的好奇、追索,以及在当时社会生活条件下所做出的极富想象力的解释。文中处处充满了人类诞生的喜悦之情。

29、《盲孩子和他的影子》是一篇美丽的抒情童话,它营造了一种纯真、友好的氛围,具有诗情画意的境界。文章从“影子”“萤火虫”对盲孩子的关爱、帮助中,启示我们都应该来关爱弱者,只有“爱”才能使他们感受到生活的光明和美好。

30、伊索寓言《赫耳墨斯和雕像者》对盲目自高自大的赫耳墨斯进行了讽刺,告诉我们要重视事物的本质,不能爱慕虚荣;另一则《蚊子和狮子》则提醒我们,取得成绩后不要骄傲自满,得意忘形。《智子疑邻》提醒我们不能根据亲疏远近去判断人和事情,不能心存偏见。《塞翁失马》告诉我们,祸福在一定条件下是可以相互转化的。

二、文言文翻译句子

(1)能张目对日,明察秋毫:能睁大眼睛对着太阳,非常细小的东西也看得很清楚。或:能睁大眼睛对着太阳,目力足以看清秋天鸟兽身上新长的细毛。

(2)心之所向,则或千或百,果然鹤也:心里这样去想,那么成千成百的蚊子果然像变成鹤一样。或:心时想的是鹤,那么呈现在眼前或是成千,或是上百飞舞的都是鹤了。 (3)故时有物外之趣:所以常常有超出事物本身的乐趣。

(4)神定,捉虾蟆,鞭数十,驱之别院:定下神来,抓住了癞虾蟆,用鞭子打了几十下,把它赶到其它院里去了。

(5)三人行,必有我师焉;择其善者而从之,其不善者而改之:几个人在一起行路,一定有可以做我的老师的人在中间;选择他们的长处来学习,他们的短处,自己如果有,就要改掉它。

(6)学而不思则罔,思而不学则殆:光读书学习,却不知道思考,就迷惑不解;光思考却不去读书学习,就会疑惑而无所得。

(7)温故而知新,可以为师矣:温习旧的知识,进而懂得新的知识,这样的人可以做老师了。

(8)学而时习之,不亦说乎?学习了以后时时温习它,不也是快乐的吗?

(9)吾日三省吾身:我每天多次地检查我自己。

(10)士不可以不弘毅:士人不可以不胸怀宽广,意志坚定。

(11)己不所欲,勿施于人:自己不喜欢的事,不要施加在别人身上。

(12)孙公子禹年与同人饮楼上:公子孙禹年和同业朋友在楼上喝酒。

(13)念近中无禅院:想想附近没有这样的寺院。

(14)或凭或立,不一状:有的靠着,有的立着,姿态各不相同。

(15)然数年恒不一见:但经常几年也不出现一次。

(16)中有楼若者,堂若者,坊若者,历历在目,以亿万计:其中,有的像楼台,有的像殿堂,有的像牌坊,清清楚楚地呈现在眼前,数量有亿万个。

(17)既而风定天清,一切乌有,惟危楼一座,真接霄汉:不久,风住天清,一切都没有了,惟独有一座高楼,上与天接。

(18)撒盐空中差可拟:跟把盐撒在空中差不多。

(19)未若柳絮因风起:不如比作风吹柳絮满天飞。

(20)即公大兄无奕女,左将军王凝之妻也:(谢道韫)就是太傅大哥谢无奕的女儿,左将军王凝之的妻子。

(21)非人哉!与人期行,相委而去:真不是人!跟别人约好一块走,却丢下我走了。

(22)日中不至,则是无信;对子骂父,则是无礼:您正午不到,就是不守信用;对着人家儿子骂他的父亲,就是失礼。

(23)暮而果大亡其财:晚上果然丢失了大量的财物。

(24)其家甚智其子,而疑邻人之父:这家人很赞赏儿子聪明,却怀疑是隔壁的老人干的。

(25)家富良马,其子好骑,堕而折其髀:家里有的是好马,他儿子喜欢骑着玩,从马上摔下来,摔断了大腿。

(26)居一年,胡人大入塞,丁壮者引弦而战:过了一年,胡人大举进攻,进了长城,壮年男子都拿起武器作战

【初一数学期末重点知识复习资料】相关文章:

1.初二数学期末整式重点知识总结

2.初一数学复习资料

3.二年级数学预习重点知识

4.四年级上册数学期末复习资料

5.初三上册期末数学复习资料

6.人教版五年级数学期末复习资料

7.初一数学的有理数的复习资料

8.初一下册语文重点知识总结

9.初中所有的数学重点知识

10.考研数学11个重点知识模块

下载word文档
《初一数学期末重点知识复习资料.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部