高考导数知识点总结
“奶油小羊”通过精心收集,向本站投稿了18篇高考导数知识点总结,以下是小编整理后的高考导数知识点总结,希望你喜欢,也可以帮助到您,欢迎分享!
篇1:高考导数知识点总结
高考导数知识点总结
一、函数的单调性
在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0.
f(x)f(x)在(a,b)上为增函数.
f(x)f(x)在(a,b)上为减函数.
二、函数的极值
1、函数的极小值:
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f(a)=0,而且在点x=a附近的左侧f(x)0,右侧f(x)0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
2、函数的极大值:
函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f(b)=0,而且在点x=b附近的左侧f(x)0,右侧f(x)0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
三、函数的最值
1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.
四、求可导函数单调区间的一般步骤和方法
1、确定函数f(x)的定义域;
2、求f(x),令f(x)=0,求出它在定义域内的一切实数根;
3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;
4、确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性.
五、求函数极值的步骤
1、确定函数的定义域;
2、求方程f(x)=0的根;
3、用方程f(x)=0的`根顺次将函数的定义域分成若干个小开区间,并形成表格;
4、由f(x)=0根的两侧导数的符号来判断f(x)在这个根处取极值的情况.
六、求函数f(x)在[a,b]上的最大值和最小值的步骤
1、求函数在(a,b)内的极值;
2、求函数在区间端点的函数值f(a),f(b);
3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.
特别提醒:
1、f(x)0与f(x)为增函数的关系:f(x)0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-,+)上单调递增,但f(x)0,所以f(x)0是f(x)为增函数的充分不必要条件.
2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.
3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.
篇2:导数知识点总结
苏教版导数知识点总结
苏教版导数知识点总结
考试内容:
导数的背影.
导数的概念.
多项式函数的导数.
利用导数研究函数的单调性和极值.函数的最大值和最小值.
考试要求:
(1)了解导数概念的某些实际背景.
(2)理解导数的几何意义.
(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的`导数公式,会求多项式函数的导数.
(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.
(5)会利用导数求某些简单实际问题的最大值和最小值.
知识要点:
知识要点:
篇3:高等数学导数知识点总结
高等数学导数知识点总结
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!
导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0
锐角三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
“一划、二批、三试、四分”的预习方法
一划:就是圈划知识要点,基本概念。
二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。
三试:就是尝试性地做一些简单的练习,检验自己预习的效果。
四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。
篇4:数学导数知识点总结
数学导数知识点总结
导数
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!
导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0
函数与导数
第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。
第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。
第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。
第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。
第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)
第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。
第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
棱柱的分类
1、棱柱的底面可以是三角形,四边形,五边形,我们把这样的棱柱叫分别叫做三棱柱、四棱柱、五棱柱。
2、斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。
3、直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。
4、正棱柱:底面是正多边形的直棱柱叫做正棱柱。
5、平行六面体:底面是平行四边形的棱柱。
6、直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。
7、长方体:底面是矩形的直棱柱叫做长方体。
篇5:高中导数知识点总结
高中导数知识点总结
导数的定义:
当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
一般地,我们得出用函数的导数来判断函数的增减性(单调性)的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值
求导数的步骤:
求函数y=f(x)在x0处导数的步骤:
① 求函数的增量Δy=f(x0+Δx)—f(x0)
② 求平均变化率
③ 取极限,得导数。
导数公式:
① C'=0(C为常数函数);
② (x^n)'= nx^(n—1) (n∈Q*);熟记1/X的导数
③ (sinx)' = cosx; (cosx)' = — sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 —(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanxsecx (cscx)'=—cotxcscx (arcsinx)'=1/(1—x^2)^1/2 (arccosx)'=—1/(1—x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=—1/(1+x^2) (arcsecx)'=1/(|x|(x^2—1)^1/2) (arccscx)'=—1/(|x|(x^2—1)^1/2)
④ (sinhx)'=hcoshx (coshx)'=—hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=—1/(sinhx)^2=—(cschx)^2 (sechx)'=—tanhxsechx (cschx)'=—cothxcschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2—1)^1/2 (artanhx)'=1/(x^2—1) (|x|<1) (arcothx)'=1/(x^2—1) (|x|>1) (arsechx)'=1/(x(1—x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)
⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(—1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(—1) (1/x)'=—x^(—2)
导数的应用:
1.函数的单调性
(1)利用导数的符号判断函数的增减性 利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。 一般地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递减。 如果在某个区间内恒有f'(x)=0,则f(x)是常数函数。 注意:在某个区间内,f'(x)>0是f(x)在此区间上为增函数的`充分条件,而不是必要条件,如f(x)=x3在R内是增函数,但x=0时f'(x)=0。也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0。
(2)求函数单调区间的步骤(不要按图索骥 缘木求鱼 这样创新何言?1。定义最基础求法2。复合函数单调性) ①确定f(x)的定义域; ②求导数; ③由(或)解出相应的x的范围。当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数。
2.函数的极值
(1)函数的极值的判定
①如果在两侧符号相同,则不是f(x)的极值点;
②如果在附近的左右侧符号不同,那么,是极大值或极小值。
3.求函数极值的步骤
①确定函数的定义域; ②求导数; ③在定义域内求出所有的驻点与导数不存在的点,即求方程及的所有实根; ④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。
4.函数的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念。
(2)求f(x)在[a,b]上的最大值与最小值的步骤 ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
5.生活中的优化问题
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题。解决这些问题具有非常现实的意义。这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题。
篇6:高中数学导数知识点总结
高中数学导数知识点总结
(一)导数第一定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义
(二)导数第二定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义
(三)导函数与导数
如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。
(四)单调性及其应用
1.利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2.用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)>0的解集与定义域的.交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间
学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。
篇7:高考导数题型总结
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导
篇8:高考导数题型总结
首先,关于二次函数的不等式恒成立的主要解法:
1、分离变量;2变更主元;3根分布;4判别式法
5、二次函数区间最值求法:(1)对称轴(重视单调区间)
与定义域的关系(2)端点处和顶点是最值所在
其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决:
第一步:令得到两个根;
第二步:画两图或列表;
第三步:由图表可知;
其中不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种:
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)
第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);
例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,
(1)若在区间上为“凸函数”,求m的取值范围;
(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.
解:由函数得
(1)在区间上为“凸函数”,
则在区间[0,3]上恒成立
解法一:从二次函数的区间最值入手:等价于
解法二:分离变量法:
∵当时,恒成立,
当时,恒成立
等价于的最大值恒成立,
而()是增函数,则
(2)∵当时在区间上都为“凸函数”
则等价于当时恒成立
变更主元法
再等价于在恒成立(视为关于m的一次函数最值问题)
请同学们参看第三次周考:
例2:设函数
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的不等式恒成立,求a的取值范围.
(二次函数区间最值的例子)
解:(Ⅰ)
令得的单调递增区间为(a,3a)
令得的单调递减区间为(-,a)和(3a,+)
∴当x=a时,极小值=当x=3a时,极大值=b.
(Ⅱ)由||≤a,得:对任意的恒成立①
则等价于这个二次函数的对称轴(放缩法)
即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数.(9分)
∴
于是,对任意,不等式①恒成立,等价于
又∴
点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系
第三种:构造函数求最值
题型特征:恒成立恒成立;从而转化为第一、二种题型
例3;已知函数图象上一点处的切线斜率为,
(Ⅰ)求的值;
(Ⅱ)当时,求的值域;
(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
解:(Ⅰ)∴,解得
(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减
又
∴的值域是
(Ⅲ)令
思路1:要使恒成立,只需,即分离变量
思路2:二次函数区间最值
二、题型一:已知函数在某个区间上的单调性求参数的范围
解法1:转化为在给定区间上恒成立,回归基础题型
解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;
做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集
例4:已知,函数.
(Ⅰ)如果函数是偶函数,求的极大值和极小值;
(Ⅱ)如果函数是上的单调函数,求的取值范围.
解:.
(Ⅰ)∵是偶函数,∴.此时,,
令,解得:.
列表如下:
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
+
0
-
0
+
递增
极大值
递减
极小值
递增
可知:的极大值为,的极小值为.
(Ⅱ)∵函数是上的单调函数,
∴,在给定区间R上恒成立判别式法
则解得:.
综上,的取值范围是.
例5、已知函数
(I)求的单调区间;
(II)若在[0,1]上单调递增,求a的取值范围。子集思想
(I)
1、
当且仅当时取“=”号,单调递增。
2、
单调增区间:
单调增区间:
(II)当则是上述增区间的子集:
1、时,单调递增符合题意
2、,
综上,a的取值范围是[0,1]。
三、题型二:根的个数问题
题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题
解题步骤
第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;
第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;
第三步:解不等式(组)即可;
例6、已知函数,,且在区间上为增函数.
求实数的取值范围;
若函数与的图象有三个不同的交点,求实数的取值范围.
解:(1)由题意∵在区间上为增函数,
∴在区间上恒成立(分离变量法)
即恒成立,又,∴,故∴的取值范围为
(2)设,
令得或由(1)知,
①当时,,在R上递增,显然不合题意…
②当时,,随的变化情况如下表:
—
↗
极大值
↘
极小值
↗
由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得
综上,所求的取值范围为
根的个数知道,部分根可求或已知。
例7、已知函数
(1)若是的极值点且的图像过原点,求的极值;
(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。高1考1资1源2网
解:(1)∵的图像过原点,则,
又∵是的极值点,则
(2)设函数的图像与函数的图像恒存在含的三个不同交点,
等价于有含的三个根,即:
整理得:
即:恒有含的三个不等实根
(计算难点来了:)有含的根,
则必可分解为,故用添项配凑法因式分解,
十字相乘法分解:
恒有含的三个不等实根
等价于有两个不等于-1的不等实根。
题2:切线的条数问题====以切点为未知数的方程的根的个数
例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.
(1)由题意得:
∴在上;在上;在上
因此在处取得极小值
∴①,②,③
由①②③联立得:,∴
(2)设切点Q,
过
令,
求得:,方程有三个根。
需:
故:;因此所求实数的范围为:
题3:已知在给定区间上的极值点个数则有导函数=0的根的个数
解法:根分布或判别式法
例8、
解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,
=x2-7x+10,令,解得或.
令,解得
可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.
(Ⅱ)=x2-(m+3)x+m+6,
要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)
根分布问题:
则,解得m>3
例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.
解:(1)
当时,令解得,令解得,
所以的递增区间为,递减区间为.
当时,同理可得的递增区间为,递减区间为.
(2)有且仅有3个极值点
=0有3个根,则或,
方程有两个非零实根,所以
或
而当或时可证函数有且仅有3个极值点
其它例题:
1、(最值问题与主元变更法的.例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数的取值范围.
解:(Ⅰ)
令=0,得
因为,所以可得下表:
0
+
0
-
↗
极大
↘
因此必为最大值,∴因此,,
即,∴,∴
(Ⅱ)∵,∴等价于,
令,则问题就是在上恒成立时,求实数的取值范围,
为此只需,即,
解得,所以所求实数的取值范围是[0,1].
2、(根分布与线性规划例子)
(1)已知函数
(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;
(Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.
解:(Ⅰ).由,函数在时有极值,
∴
∵∴
又∵在处的切线与直线平行,
∴故
∴…………………….7分
(Ⅱ)解法一:由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,
∴所求一条直线L的方程为:
另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,
由得点F的横坐标为:
由得点G的横坐标为:
∴即
解得:或(舍去)故这时直线方程为:
综上,所求直线方程为:或.…………….………….12分
(Ⅱ)解法二:由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,∴所求一条直线L的方程为:
另一种情况由于直线BO方程为:,设直线BO与AC交于H,
由得直线L与AC交点为:
∵,,
∴所求直线方程为:或
3、(根的个数问题)已知函数的图象如图所示。
(Ⅰ)求的值;
(Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;
(Ⅲ)若方程有三个不同的根,求实数a的取值范围。
解:由题知:
(Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0
得
(Ⅱ)依题意=–3且f(2)=5
解得a=1,b=–6
所以f(x)=x3–6x2+9x+3
(Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>0)
=3ax2+2bx–3a–2b由=0b=–9a①
若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<8a
由①②得–25a+3<8a<7a+3
所以当
4、(根的个数问题)已知函数
(1)若函数在处取得极值,且,求的值及的单调区间;
(2)若,讨论曲线与的交点个数.
解:(1)
………………………………………………………………………2分
令得
令得
∴的单调递增区间为,,单调递减区间为…………5分
(2)由题得
即
令……………………6分
令得或……………………………………………7分
当即时
-
此时,,,有一个交点;…………………………9分
当即时,
+
—
,
∴当即时,有一个交点;
当即时,有两个交点;
当时,,有一个交点.………………………13分
综上可知,当或时,有一个交点;
当时,有两个交点.…………………………………14分
5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.
(Ⅰ)若函数在处有极值,求的解析式;
(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.
篇9:函数与导数知识点总结
函数与导数知识点总结
第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。
第二、带绝对值的函数单调性判断错误带绝对值的.函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。
对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。
第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。
在用定义进行判断时,要注意自变量在定义域区间内的任意性。
第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。
抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。
第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<0。那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0。这个c也可以是方程f(c)=0的根,称之为函数的零点定理,分为“变号零点”和“不变号零点”,而对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时,考生需格外注意这类问题。
第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。
因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。
第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。
解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
篇10:高二数学《导数》知识点总结
高二数学《导数》知识点总结
1、导数的定义: 在点 处的导数记作 .
2. 导数的几何物理意义:曲线 在点 处切线的斜率
①=f/(x0)表示过曲线=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。
3.常见函数的导数公式: ① ;② ;③ ;
⑤ ;⑥ ;⑦ ;⑧ 。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;
注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。
(2)求极值的步骤:
①求导数 ;
②求方程 的根;
③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;
(3)求可导函数最大值与最小值的步骤:
ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!
导数是微积分中的`重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0
篇11:高二数学导数模块知识点总结
一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。
二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{d/dx)=li(/x)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的.值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四、实无限将异军突起微积分第二轮初等化或成为可能 微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
篇12:高二数学导数模块知识点总结
导数: 导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义: 在点 处的导数记作 .
2. 导数的几何物理意义:曲线 在点 处切线的斜率
①=f/(x0)表示过曲线=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。
3.常见函数的导数公式: ① ;② ;③ ;
⑤ ;⑥ ;⑦ ;⑧ 。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;
注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。
(2)求极值的步骤:
①求导数 ;
②求方程 的根;
③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;
(3)求可导函数最大值与最小值的步骤:
ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!
导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0
篇13:高二数学导数知识点
导数基础
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,当a=e时有y=lnx y'=1/x。
这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果。
以上就是高二数学常用导数公式大全的全部内容,大家都记好了吗,只有记住公式才能更好地解题!
篇14:高考知识点总结
高三英语必修三知识点复习
go ahead
(1) 进行;发生 新桥的建设将会按照计划进行。
(2) 前进;继续做 尽管天气不好,他们仍按计划继续前进。
(3) 取得进展,取得进步
He is always going ahead. 他一直在进步。
(4) (祈使句) 做吧,请吧
— May I start now?我可以开始了吗?
— Yes, go ahead.好,开始吧。
stare at 注视,盯着看
He stared at the word trying to remember what it meant. 我盯着那个词看,想要回忆起它的意思。
It’s rude to stare at other people. 盯着别人看是不礼貌的。 When day broke, I found myself in a small village. 破晓,我发现我身处在一个村庄里。 I found myself lying on the bed. 我发现我躺在床上。
He found himself surrounded by many students. 他发现他被许多学生围着。
He found himself walking in the direction of the park. 他发现他正在往公园的方向前行。
I found him difficult to get along well with. 我发现他很难相处。
spot spotlessspotted
(1) v. (用眼睛)挑出,察出,认出
I spotted her in the crowd. 我从人群中认出了他。
(2) v 使……染上斑点;点上污点
The ink spotted her white shirt. 我把她的白色衬衫上弄上了污点。
(3) n 斑点;污点;圆点
She had spots on her face when she was ill. 她生病的时候,脸上出现了斑点。
(4) n 地点;场所
This is a nice spot for a house. 这是一个建房子的好地方。
高考语文复习资料
1、意境类:描绘画面(忠于原诗,语言优美)+概括氛围+分析思想感情+点出境界特点
2、手法类:揭示手法+结合诗句分析(怎样用)+思想感情+作用效果(对读者、意境、中心等的效果)
3、语言特色类:揭示语言特色+结合诗句具体分析+思想感情+作用效果
4、炼字类:该字的本来意义及在句中的含义+技巧(活用、倒装、手法)+放入句中描述景象+意境感情(作用效果)
5、关键词类:主旨作用+结构作用
6、感情类:运用什么手法+通过__内容+抒发(寄寓/揭露)__感情
7、概括主旨类:诗歌定位+各句内容+通过__手法+抒发__感情+评价
8、鉴赏类:写了什么+怎样写的(技巧+语言风格+字句特色)+表达效果(感情)
9、形象类:找到诗句+分析基本含义(形象类型+特点)+为何要写(主旨)+作用效果
10、诗歌含义:表层含义+深层含义
高三数学必修三总复习资料
(1)直线的倾斜角
定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于_1,所以它的方程是_=_1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于_轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
篇15:高中导数题型总结
高中导数题型总结
首先,关于二次函数的不等式恒成立的主要解法。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决:
第一步:令得到两个根;
第二步:画两图或列表;
第三步:由图表可知;
其中不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种:
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)
第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);
例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,
(1)若在区间上为“凸函数”,求m的取值范围;
(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.
解:由函数得
(1)在区间上为“凸函数”,
则在区间[0,3]上恒成立
解法一:从二次函数的区间最值入手:等价于
解法二:分离变量法:
∵当时,恒成立,
当时,恒成立
等价于的最大值()恒成立,
而()是增函数,则
(2)∵当时在区间上都为“凸函数”
则等价于当时恒成立
变更主元法
再等价于在恒成立(视为关于m的一次函数最值问题)
请同学们参看第三次周考:
例2:设函数
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的不等式恒成立,求a的取值范围.
(二次函数区间最值的例子)
解:(Ⅰ)
令得的单调递增区间为(a,3a)
令得的单调递减区间为(-,a)和(3a,+)
∴当x=a时,极小值=当x=3a时,极大值=b.
(Ⅱ)由||≤a,得:对任意的恒成立①
则等价于这个二次函数的对称轴(放缩法)
即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数.(9分)
∴
于是,对任意,不等式①恒成立,等价于
又∴
点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系
第三种:构造函数求最值
题型特征:恒成立恒成立;从而转化为第一、二种题型
例3;已知函数图象上一点处的切线斜率为,
(Ⅰ)求的值;
(Ⅱ)当时,求的`值域;
(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
解:(Ⅰ)∴,解得
(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减
又
∴的值域是
(Ⅲ)令
思路1:要使恒成立,只需,即分离变量
思路2:二次函数区间最值
二、题型一:已知函数在某个区间上的单调性求参数的范围
解法1:转化为在给定区间上恒成立,回归基础题型
解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;
做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集
例4:已知,函数.
(Ⅰ)如果函数是偶函数,求的极大值和极小值;
(Ⅱ)如果函数是上的单调函数,求的取值范围.
解:.
(Ⅰ)∵是偶函数,∴.此时,,
令,解得:.
列表如下:
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
+
0
-
0
+
递增
极大值
递减
极小值
递增
可知:的极大值为,的极小值为.
(Ⅱ)∵函数是上的单调函数,
∴,在给定区间R上恒成立判别式法
则解得:.
综上,的取值范围是.
例5、已知函数
(I)求的单调区间;
(II)若在[0,1]上单调递增,求a的取值范围。子集思想
(I)
1、
当且仅当时取“=”号,单调递增。
2、
单调增区间:
单调增区间:
(II)当则是上述增区间的子集:
1、时,单调递增符合题意
2、,
综上,a的取值范围是[0,1]。
三、题型二:根的个数问题
题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题
解题步骤
第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;
第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;
第三步:解不等式(组)即可;
例6、已知函数,,且在区间上为增函数.
求实数的取值范围;
若函数与的图象有三个不同的交点,求实数的取值范围.
解:(1)由题意∵在区间上为增函数,
∴在区间上恒成立(分离变量法)
即恒成立,又,∴,故∴的取值范围为
(2)设,
令得或由(1)知,
①当时,,在R上递增,显然不合题意…
②当时,,随的变化情况如下表:
—
↗
极大值
↘
极小值
↗
由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得
综上,所求的取值范围为
根的个数知道,部分根可求或已知。
例7、已知函数
(1)若是的极值点且的图像过原点,求的极值;
(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。
解:(1)∵的图像过原点,则,
又∵是的极值点,则
(2)设函数的图像与函数的图像恒存在含的三个不同交点,
等价于有含的三个根,即:
整理得:
即:恒有含的三个不等实根
(计算难点来了:)有含的根,
则必可分解为,故用添项配凑法因式分解,
十字相乘法分解:
恒有含的三个不等实根
等价于有两个不等于-1的不等实根。
题2:切线的条数问题====以切点为未知数的方程的根的个数
例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.
(1)由题意得:
∴在上;在上;在上
因此在处取得极小值
∴①,②,③
由①②③联立得:,∴
(2)设切点Q,
过
令,
求得:,方程有三个根。
需:
故:;因此所求实数的范围为:
题3:已知在给定区间上的极值点个数则有导函数=0的根的个数
解法:根分布或判别式法
例8、
解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,
=x2-7x+10,令,解得或.
令,解得
可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.
(Ⅱ)=x2-(m+3)x+m+6,
要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)
根分布问题:
则,解得m>3
例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.
解:(1)
当时,令解得,令解得,
所以的递增区间为,递减区间为.
当时,同理可得的递增区间为,递减区间为.
(2)有且仅有3个极值点
=0有3个根,则或,
方程有两个非零实根,所以
或
而当或时可证函数有且仅有3个极值点
其它例题:
1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数的取值范围.
解:(Ⅰ)
令=0,得
因为,所以可得下表:
0
+
0
-
↗
极大
↘
因此必为最大值,∴因此,,
即,∴,∴
(Ⅱ)∵,∴等价于,
令,则问题就是在上恒成立时,求实数的取值范围,
为此只需,即,
解得,所以所求实数的取值范围是[0,1].
2、(根分布与线性规划例子)
(1)已知函数
(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;
(Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.
解:(Ⅰ).由,函数在时有极值,
∴
∵∴
又∵在处的切线与直线平行,
∴故
∴…………………….7分
(Ⅱ)解法一:由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,
∴所求一条直线L的方程为:
另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,
由得点F的横坐标为:
由得点G的横坐标为:
∴即
解得:或(舍去)故这时直线方程为:
综上,所求直线方程为:或.…………….………….12分
(Ⅱ)解法二:由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,∴所求一条直线L的方程为:
另一种情况由于直线BO方程为:,设直线BO与AC交于H,
由得直线L与AC交点为:
∵,,
∴所求直线方程为:或
3、(根的个数问题)已知函数的图象如图所示。
(Ⅰ)求的值;
(Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;
(Ⅲ)若方程有三个不同的根,求实数a的取值范围。
解:由题知:
(Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0
得
(Ⅱ)依题意=–3且f(2)=5
解得a=1,b=–6
所以f(x)=x3–6x2+9x+3
(Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>0)
=3ax2+2bx–3a–2b由=0b=–9a①
若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<8a
由①②得–25a+3<8a<7a+3
所以当
4、(根的个数问题)已知函数
(1)若函数在处取得极值,且,求的值及的单调区间;
(2)若,讨论曲线与的交点个数.
解:(1)
………………………………………………………………………2分
令得
令得
∴的单调递增区间为,,单调递减区间为…………5分
(2)由题得
即
令……………………6分
令得或……………………………………………7分
当即时
-
此时,,,有一个交点;…………………………9分
当即时,
∴当即时,有一个交点;
当即时,有两个交点;
当时,,有一个交点.………………………13分
综上可知,当或时,有一个交点;
当时,有两个交点.…………………………………14分
5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.
(Ⅰ)若函数在处有极值,求的解析式;
(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.
篇16:导数大题方法总结
导数大题方法总结
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。
导数大题方法总结
一 总论
一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。
二 主流题型及其方法
(1)求函数中某参数的值或给定参数的值求导数或切线
一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:
先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。
(2)求函数的单调性或单调区间以及极值点和最值
一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是:
首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。
极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。
最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。
注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下场。
(3)恒成立或在一定条件下成立时求参数范围
这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。这就需要我们一定的综合能力。不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。方法如下:
做这类恒成立类型题目或者一定范围内成立的题目的`核心的四个字就是:分离变量。一定要将所求的参数分离出来,否则后患无穷。有些人总是认为不分离变量也可以做。一些简单的题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。所以面对这样的问题,分离变量是首选之法。当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。
分离变量后,就要开始求分离后函数的最大或者最小值,那么这里就要重新构建一个函数,接下来的步骤就和(2)中基本相同了。
注意:①分离时要注意不等式的方向,必要的时候还是要讨论。②要看清是求分离后函数的最大值还是最小值,否则容易搞错。③分类要结合条件看,不能抛开大前提自己胡搞一套。
最后,这类题还需要一定的不等式知识,比如均值不等式,一些高等数学的不等数等等。这就需要我们有足够的知识储备,这样做起这样的题才能更有效率。
(4)构造新函数对新函数进行分析
这类题目题型看似复杂,但其实就是在上述问题之上多了一个步骤,就是将上述的函数转化为了另一个函数,并没有本质的区别,所以这里不再赘述。
(5)零点问题
这类题目在选择填空中更容易出现,因为这类问题虽然不难,但要求学生对与极值和最值问题有更好的了解,它需要我们结合零点,极大值极小值等方面综合考虑,所以更容易出成填空题和选择题。如果出成大题,大致方法如下: 先求出函数的导函数,然后分析求解出函数的极大值与极小值,然后结合题目中所给的信息与条件,求出在特定区间内,极大值与极小值所应满足的关系,然后求解出参数的范围。
三 总结
以上就是导数大题的主要题型及方法,当然有很多题型不能完全的照顾到,有很多的创新题型没有涉及,那么如何解决这个问题呢?就是我们要明白导数题的核心是什么。导数题的核心就是参数,就是对参数的把握,而对参数的理解与分析正是每一道题目的核心。只要我们能够从参数入手,能够对参数进行分析,那么不论一道题有多么的繁琐,我们都能够把握这道题的主线,能有一个明确的脉络,做出题目。所以我总结的导数题的八字大纲,不一定对,但我认为对于解决北京市的高考题有一定的帮助,那就是“分离变量,一步到位”。一切的一切,都应该围绕着参量来展开。相信导数虽然是第18或者19题,但也一定会被我们大家淡定的斩于马下。
篇17:高考物理知识点总结
1、大的物体不一定不能够看成质点,小的物体不一定可以看成质点。
2、参考系不一定会是不动的,只是假定成不动的物体。
3、在时间轴上n秒时所指的就是n秒末。第n秒所指的是一段时间,是第n个1秒。第n秒末和第n+1秒初就是同一时刻。
4、物体在做直线运动时,位移的大小不一定是等于路程的。
5、打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。
6、使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。
7、物体的速度大,其加速度不一定大。物体的速度为零时,其加速度不一定为零。物体的速度变化大,其加速度不一定大。
8、物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。
9、物体的速度大小不变时,加速度不一定为零。
10、物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。
11、位移图象不是物体的运动轨迹。
12、图上两图线相交的点,不是相遇点,只是在这一时刻相等。
13、位移图象不是物体的运动轨迹。解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。
14、找准追及问题的临界条件,如位移关系、速度相等等。
15、用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。
16、杆的弹力方向不一定沿杆。
17、摩擦力的作用效果既可充当阻力,也可充当动力。
18、滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。
19、静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。
20、使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。
21、合力不一定大于分力,分力不一定小于合力。
22、三个力的合力值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。
23、两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。
24、物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的“冲力”的说法是错误的。
25、所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。
26、牛顿第二定律在力学中的应用广泛,也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。
27、用牛顿第二定律解决动力学的两类基本问题,关键在于正确地求出加速度,计算合外力时要进行正确的受力分析,不要漏力或添力。
28、超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。
29、判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。
30、两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。
<<<返回目录
高考物理复习技巧
建立错题档案是很有必要的,尤其是考试前的复习,它可以让你有的放矢,查缺补漏,在最短的时间内有最大的收获。错题档案关键在于其建立过程,建立错题档案不是简单地抄下答案,而是应该先抄下题目,看懂答案,隔一定的时间自己在做,要注意找出错误原因,找出解题突破口,举一反三。
很多同学觉得物理难学,其实就是没有建立起很好的物理模型思维,如果平时做题的过程中注重分析总结归纳,把很多经典的物理模型都归纳出来,记在笔记本上,并反复对其进行变形训练的话,一切难题都会迎刃而解,因为出题人无非就是从那几个经典的模型中变化出新鲜的高考题来的,所以准备一本模型笔记本对一个物理的考生是十分重要的。
<<<返回目录
物理高考必背知识点归纳
一、力
1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力
(1)重力是由于地球对物体的吸引而产生的.
[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力
(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g
(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.
3.弹力
(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.
(2)产生条件:①直接接触;②有弹性形变.
(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.
②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.
(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.
胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.
4.摩擦力
(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.
(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.
(3)判断静摩擦力方向的方法:
①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.
②平衡法:根据二力平衡条件可以判断静摩擦力的方向.
(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N 进行计算,其中FN 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解. ②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.
5.物体的受力分析
(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上.
(2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.
(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.
6.力的合成与分解
(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.
(2)力合成与分解的根本方法:平行四边形定则.
(3)力的合成:求几个已知力的合力,叫做力的合成.
共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 .
(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).
在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.
7.共点力的平衡
(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.
(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.
(3)共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx =0,∑Fy =0.
(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.
二、直线运动
1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.
2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.
路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.
4.速度和速率
(1)速度:描述物体运动快慢的物理量.是矢量.
①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.
②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.
(2)速率:
①速率只有大小,没有方向,是标量.
②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.
5.加速度
(1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率.
(2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示.
(3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致.
[注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大.
6.匀速直线运动
(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动.
(2)特点:a=0,v=恒量.
(3)位移公式:S=vt.
7.匀变速直线运动
(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.
(2)特点:a=恒量
(3)公式:速度公式:V=V0+at 位移公式:s=v0t+ at2 速度位移公式:vt2-v02=2as平均速度V=
以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.
8.重要结论
(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Sn+l –Sn=aT2 =恒量
(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:
9.自由落体运动
(1)条件:初速度为零,只受重力作用.
(2)性质:是一种初速为零的匀加速直线运动,a=g.
(3)公式:
10.运动图像
(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;
②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;
③图像与横轴交叉,表示物体从参考点的一边运动到另一边.
(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;
②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.
③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.
④图线与横轴交叉,表示物体运动的速度反向.
⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.
三、牛顿运动定律
1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止.
(1)运动是物体的一种属性,物体的运动不需要力来维持.
(2)定律说明了任何物体都有惯性.
(3)不受力的物体是不存在的.牛顿第一定律不能用实验直接验证.但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的.它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律.
(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系.
2.惯性:物体保持匀速直线运动状态或静止状态的性质.
(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关.因此说,人们只能“利用”惯性而不能“克服”惯性.(2)质量是物体惯性大小的量度.
3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F 合 =ma
(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础.
(2)对牛顿第二定律的数学表达式F 合 =ma,F 合 是力,ma是力的作用效果,特别要注意不能把ma看作是力.
(3)牛顿第二定律揭示的是力的瞬间效果.即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度.
(4)牛顿第二定律F 合 =ma,F合是矢量,ma也是矢量,且ma与F 合 的方向总是一致的.F 合 可以进行合成与分解,ma也可以进行合成与分解.
4.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.
(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失.(2)作用力和反作用力总是同种性质的力.
(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加.
5.牛顿运动定律的适用范围:宏观低速的物体和在惯性系中.6.超重和失重
(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力F N (或对悬挂物的拉力)大于物体的重力mg,即F N =mg+ma.(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g时F N =0,物体处于完全失重.(3)对超重和失重的理解应当注意的问题
①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力.②超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重.
③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等. 6、处理连接题问题----通常是用整体法求加速度,用隔离法求力。
四、曲线运动万有引力
1.曲线运动
(1)物体作曲线运动的条件:运动质点所受的合外力(或加速度)的方向跟它的速度方向不在同一直线 (2)曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向.质点的速度方向时刻在改变,所以曲线运动一定是变速运动.
(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等.
2.运动的合成与分解
(1)合运动与分运动的关系:①等时性;②独立性;③等效性.
(2)运动的合成与分解的法则:平行四边形定则.
(3)分解原则:根据运动的实际效果分解,物体的实际运动为合运动.
3.平抛运动
(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动.
(2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动.
①建立直角坐标系(一般以抛出点为坐标原点O,以初速度vo方向为x轴正方向,竖直向下为y轴正方向);
②由两个分运动规律来处理(如右图). 4.圆周运动
(1)描述圆周运动的物理量
①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向
②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度.其方向在中学阶段不研究.
③周期T,频率f ---------做圆周运动的物体运动一周所用的时间叫做周期.
做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率.
⑥向心力:总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小.大小 [注意]向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力.
(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动.
(3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小).一般而言,合加速度方向不指向圆心,合力不一定等于向心力.合外力在指向圆心方向的分力充当向心力,产生向心加速度;合外力在切线方向的分力产生切向加速度. ①如右上图情景中,小球恰能过最高点的条件是v≥v临 v临由重力提供向心力得v临 ②如右下图情景中,小球恰能过最高点的条件是v≥0。
5.万有引力定律
(1)万有引力定律:宇宙间的一切物体都是互相吸引的.两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.
公式:
(2)应用万有引力定律分析天体的运动
①基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供.即 F引=F向得:
应用时可根据实际情况选用适当的公式进行分析或计算.②天体质量M、密度ρ的估算:
(3)三种宇宙速度
①第一宇宙速度:v 1 =7.9km/s,它是卫星的最小发射速度,也是地球卫星的最大环绕速度.
②第二宇宙速度(脱离速度):v 2 =11.2km/s,使物体挣脱地球引力束缚的最小发射速度.
③第三宇宙速度(逃逸速度):v 3 =16.7km/s,使物体挣脱太阳引力束缚的最小发射速度.
(4)地球同步卫星
所谓地球同步卫星,是相对于地面静止的,这种卫星位于赤道上方某一高度的稳定轨道上,且绕地球运动的周期等于地球的自转周期,即T=24h=86400s,离地面高度 同步卫星的轨道一定在赤道平面内,并且只有一条.所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着.
(5)卫星的超重和失重
“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同.“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用.
五、动量
1.动量和冲量
(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致.
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.
2.动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p 或 Ft=mv′-mv
(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.
(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.
(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.
3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.
表达式:m 1 v 1 +m 2 v 2 =m 1 v 1 ′+m 2 v 2 ′
(1)动量守恒定律成立的条件
①系统不受外力或系统所受外力的合力为零.
②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.
③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.
(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.
4.爆炸与碰撞
(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.
(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.
(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.
5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.
六、机械能
1.功
(1)功的定义:力和作用在力的方向上通过的位移的乘积.是描述力对空间积累效应的物理量,是过程量.
定义式:W=F·s·cosθ,其中F是力,s是力的作用点位移(对地),θ是力与位移间的夹角.
(2)功的大小的计算方法:
①恒力的功可根据W=F·S·cosθ进行计算,本公式只适用于恒力做功.②根据W=P·t,计算一段时间内平均做功. ③利用动能定理计算力的功,特别是变力所做的功.④根据功是能量转化的量度反过来可求功.
(3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.
发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d是两物体间的相对路程),且W=Q(摩擦生热)
2.功率
(1)功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.
(2)功率的计算
①平均功率:P=W/t(定义式) 表示时间t内的平均功率,不管是恒力做功,还是变力做功,都适用. ②瞬时功率:P=F·v·cosα P和v分别表示t时刻的功率和速度,α为两者间的夹角.
(3)额定功率与实际功率: 额定功率:发动机正常工作时的最大功率. 实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率.
(4)交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引力的功率.
①以恒定功率P启动:机车的运动过程是先作加速度减小的加速运动,后以最大速度v m=P/f 作匀速直线运动,
②以恒定牵引力F启动:机车先作匀加速运动,当功率增大到额定功率时速度为v1=P/F,而后开始作加速度减小的加速运动,最后以最大速度vm=P/f作匀速直线运动。
3.动能:物体由于运动而具有的能量叫做动能.表达式:Ek=mv2/2
(1)动能是描述物体运动状态的物理量.
(2)动能和动量的区别和联系
①动能是标量,动量是矢量,动量改变,动能不一定改变;动能改变,动量一定改变.
②两者的物理意义不同:动能和功相联系,动能的变化用功来量度;动量和冲量相联系,动量的变化用冲量来量度.
③两者之间的大小关系为EK=P2/2m
4.动能定理:外力对物体所做的总功等于物体动能的变化。
(1)动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变力及物体作曲线运动的情况.
(2)功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式.
(3)应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷.
(4)当物体的运动是由几个物理过程所组成,又不需要研究过程的中间状态时,可以把这几个物理过程看作一个整体进行研究,从而避开每个运动过程的具体细节,具有过程简明、方法巧妙、运算量小等优点.
5.重力势能
(1)定义:地球上的物体具有跟它的高度有关的能量,叫做重力势能,
①重力势能是地球和物体组成的系统共有的,而不是物体单独具有的.
②重力势能的大小和零势能面的选取有关.
③重力势能是标量,但有“+”、“-”之分.
(2)重力做功的特点:重力做功只决定于初、末位置间的高度差,与物体的运动路径无关.WG =mgh.
(3)做功跟重力势能改变的关系:重力做功等于重力势能增量的负值.即WG = -
6.弹性势能:物体由于发生弹性形变而具有的能量.
<<<返回目录
篇18:高考语文知识点总结
一、名词活用。
主语 + [状语 ] + 谓语 +〈补语〉+宾语
如上所示,名词一般处于主语或宾语的位置,如若它处在了谓语或状语的位置,则必活用。要么名词活用为动词,要么活用为使动或意动。文言文中的使动,其实就是现代汉语中的兼语句;文言文中的意动,其实就是一种主语以宾语怎么样的句式。
(1)左右欲刃相 如。 (2)先破秦入咸阳者王之。
(3)邑人奇之,稍稍宾客其父。 (4)鼎铛玉石,金块珠砾。
以上四个例句都是名词处在了谓语的位置,它首先必须活用为动词。例(1)、(4)分别活用为用刀杀、把鼎当作把玉当作把金子当作把珍珠当作。但(2)、(3)却不能直接翻译为称王他、当作宾客他的父亲,而必须翻译为使他称王、以他的父亲为宾客。
(5)君为我呼之入,吾得兄事之。
(6)(愚公等人)箕畚运于渤海之尾。
以上两例名词都处在了状语的位置,而在现代汉语中,名词是不能做状语的,所以如果名词处在谓语的前面,它不是做主语,就是活用为状语。(5)、(6)两例分别译作像对待兄长那样、用箕畚。
(7)乃丹书帛曰:大楚兴,陈胜王。置人所罾鱼腹中。
所字结构,所的后面一般跟动词,起着改变词性的作用,如说是动词,而所说则指所说的话,变成了名词。(7)中的罾本意是渔网,是名词。所以此处应活用为动词捕捉。
二、动词活用。
主语+[状语]+谓语+〈补语〉+宾语
动词一般处于谓语的位置,有及物动词和不及物动词之分,及物动词和现代汉语一样,可以带宾语,而不及物动词现代汉语中不能带宾语,文言文中如若带了宾语,则一般活用为使动或为动。同时,现代汉语中动词不能处于宾语的位置,文言文中如若处于宾语的位置,则须活用为名词。
(8)项伯杀人,臣活之。
(9)曹军方连船舰,可烧而走(之)也。
(10)等死,死国可乎?(《陈涉起义》)
(8)、(9)两句,现代汉语中没有活了他、逃跑了他这种说法,都属于不及物动词带了宾语,都应活用为使动:使活了下来、使逃跑。(10)不能译为死了国家而应活用为为动为而死。
(11)惧有伏焉。(《崤之战》)
动词埋伏处在了宾语的位置,必须活用为名词伏兵。
三 、形容词活用。
主语+[状语]+谓语+〈补语〉+宾语
现代汉语中,形容词可以做谓语,但不能带宾语,一旦带了宾语,要么活用为动词,要么活用为使动或意动。同时,形容词不能处在宾语的位置,如若处在宾语的位置,则活用为名词。
(12)(项伯)素善留侯张良。
(13)大王必欲急臣。
(14)且庸人尚羞之。
以上三例,都是形容词作谓语,且都带了宾语,(12)可直接活用为动词与交好,但(13)、(14)却不能直接译为着急我、羞耻这件事,而必须分别活用为使动和意动,分别译为使着急、以为羞耻。
此外,数词也有活用现象,也可以用分析语法的方式加以判断。
(15)此三子者与臣而将四矣。(《唐雎不辱使命》)
(16)二三其德。(《诗经·氓》)
分析语法,(15)中的四处于谓语的位置,故活用为动词成为四个人。(16)中的二三也处于谓语的位置,但后面带了宾语,故活用为使动,使二三,即不专一。
<<<返回目录
语文怎么分配时间最合理
开考后前5分钟
1. 发语文卷前,首先暗示自己:这只是一次平常测验!我自信,所以我成功!
2.接到语文试卷,要不慌不忙地在规定处按要求写上姓名、填涂考号、贴好条形码,然后检查试卷、答题卡是否有缺漏、破损情况。
3.接下来快速浏览语文全卷,大体弄清试卷的版块结构、各种题型,此时切忌一边看题一边急着抢时间考虑答案,因为你不能指望哪道题可以一眼看出答案。对于作文,无论是什么题型,无论是否熟悉,都不必深想,相信自己一定有话可说,一定可以写好。大体浏览一遍,心情就会慢慢放松,等到答卷铃响,就可集中精力答卷。
开考后前30分钟
1.开考后首先集中精力完成语文客观选择题前两题(3-5分钟),语言表达题需要5分钟。做选择题力避两种倾向:一是一味抢时间、求速度,这样势必导致审题不严,思考不周密,从而出现不应有的失误;二是速度过慢,太过谨慎小心,甚至反复徘徊不敢选。
文言文需要15-20分钟时间,选择题一定注意排除法,加大语境意识。翻译题要注重直译,逐字逐句落实。
2.语文选择题审题要细,一定要看清选是还是选非,可以在题目的正确与不正确等这样一些字眼上加上着重号。
开考后30-90分钟
1.语文第三题诗歌鉴赏,注意根据老师的指导读懂诗歌大意。然后读题、做题。时间大约6分钟。第四大题,名句填空最多4分钟。把这两题控制在10分钟之内。
2.第五、六主观题应力争在50分钟内完成,即开考后一个半小时内要完成作文以外的所有试题。
3.每年高考语文都实行网上阅卷,同学们在答主观题时一定要有强烈的规范意识:
一是书写规范,卷面整洁。答题卡上不允许书写潦草,乱涂乱画;
二是对号入座,按题号在规定的矩形框内作答。绝对不能张冠李戴甚至私自改动题号,这样会导致扫描无效,判分为零。
最后1个小时
语文作文时间要确保55分钟,利用10分钟左右的时间审题立意,并列好提纲,然后用40分钟左右的时间形成文字。
<<<返回目录
高考语文文学常识是什么
1、三教:儒教、道教、佛教
2、九流:儒家、道家、阴阳家、法家、名家、墨家、纵横家、杂家、农家
3、三皇:伏羲、女娲、神农
4、五帝:太皞、炎帝、黄帝、少皞、颛顼
5、五行:金、木、水、火、土
6、五金:金、银、铜、铁、锡
7、八卦:乾(天)、坤(地)、震(雷)、巽(风)、坎(水)、离(火)、艮(山)、兑(沼)
8、汉字六书:象形、指事、形声、会意、转注、假借
9、书法九势:落笔、转笔、藏峰、藏头、护尾、疾势、掠笔、涩势、横鳞竖勒
10、竹林七贤:嵇康、刘伶、阮籍、山涛、阮咸、向秀、王戎
11、岁寒三友:松、竹、梅
12、花中四君子:梅、兰、竹、菊
13、文人四友:琴、棋、书、画
14、文房四宝:笔、墨、纸、砚
15、四大民间传说:《牛郎织女》、《孟姜女》、《梁山伯与祝英台》、《白蛇与许仙》
16、四大文化遗产:《明清档案》、《殷墟甲骨》、《居延汉简》、《敦煌经卷》
17、元代四大戏剧:关汉卿《窦娥冤》、王实甫《西厢记》、汤显祖《牡丹亭》、洪升《长生殿》
18、七大艺术:绘画、音乐、雕塑、戏剧、文学、建筑、电影
19、四大名瓷窑:河北的瓷州窑、浙江的龙泉窑、江西的景德镇窑、福建的德化窑
20、四大名旦:梅兰芳、程砚秋、尚小云、荀慧生
21、九属:玄孙、曾孙、孙、子、身、父、祖父、曾祖父、高祖父
22、五谷:稻、黍、稷、麦、豆
23、中国八大菜系:四川菜、湖南菜、山东菜、江苏菜、浙江菜、广东菜、福建菜、安徽菜
24、四大名绣:苏绣(苏州)、湘绣(湖南)、蜀绣(四川)、广绣(广东)
25、四大名扇:檀香扇(江苏)、火画扇(广东)、竹丝扇(四川)、绫绢扇(浙江)
26、四大名花:牡丹(山东菏泽)、水仙(福建漳州)、菊花(浙江杭州)、山茶(云南昆明)
27、十大名茶:西湖龙井(杭州)、碧螺春(江苏)、信阳毛尖(信阳)、君山银针(岳阳)、六安瓜片(安徽)、黄山毛峰(安徽)、祁门红茶(安徽)、都匀毛尖(贵州)、铁观音(福建安溪)、武夷岩茶(福建崇安)
<<<返回目录
【高考导数知识点总结】相关文章:
10.高三历史高考知识点总结






文档为doc格式