欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>《数的整除》复习课教案

《数的整除》复习课教案

2022-07-16 08:21:03 收藏本文 下载本文

“闭门羹”通过精心收集,向本站投稿了13篇《数的整除》复习课教案,下面是小编给大家带来关于《数的整除》复习课教案,一起来看看吧,希望对您有所帮助。

《数的整除》复习课教案

篇1:《数的整除》复习课教案

《数的整除》复习课教案

教学目的: 1、使学生掌握整除、约数和倍数、质因数、互质数等概念。 2、使学生掌握能被2、3、5整除的数的特征。 3、 使学生掌握最小公倍数、最大公约数的概念,会求最小公倍数和最大公约数。 教学重、难点: 学生对数的整除概念的掌握和运用。 教具准备:多媒体课件 教学过程: 一、激趣导入 1、学生谈自己的兴趣、爱好。 2、教师介绍自己的爱好:植树,从而引出3和12这两个独特的数字。 3、 看到3和12这两个数,你想到了哪些有关数的整除的知识? 二、概念复习1、学生思考、小组讨论:看到3和12这两个数想到的有关数的整除的知识。 2、学生汇报、交流,学生说到哪个概念教师即书。 三、概念运用 通过做练习,考查学生对概念的掌握程度。 1、在20÷5=4、0.56÷8=0.07、10÷3=0.333……三个算式中,哪道是整除的算式?为什么? 2、 12的约数有哪些?12的`倍数有哪些?比较这两个问题,可以得出什么结论? 3、火眼金睛来判别:   45 26 120 400 107 能被2整除的数           能被3整除的数           能被5整除的数           4、 按要求写出两个互质的数。 (1)、一个是质数,一个是合数。 (2)、两个都是合数。 (3)、两个都是质数。 5、聪明的你一定有一个正确的选择。   将24分解质因数是( )   (1)、24=4×6   (2)、2×2×2×3=24   (3)、24=1×2×2×2×3   (4)、24=2×2×2×3 6、很快说出下列各组数的最大公约数和最小公倍数,并说明理由。    2和3 7和14 7、求出18和24的最大公约数和最小公倍数。 8、小组交流找出每题中与众不同的数,并说明理由。 (1)、12  2  33  15  28 (2)、11  13  2  21  23 (3)、100  19  36  9  4 四、活用概念 我县的一户人家有一部电话,每个数字都设置了密码,请你当一回情报员,来破译这个密码。 号码:A  B  C  D  E  F  G  A、21的最大质因数 B、10以内的最大质数 C、既不是质数也不是合数 D、加上1就是最小的合数 E、只能被1和5整除 F、2和3的最小公倍数 G、最小的质数的3倍 五、课堂小结 这节课你有哪些收获?  

篇2:《数的整除》复习反思

我在复习数的整除这一课时,只出示植树节的日期(3月12日)这简单的两个数,根据这两个数,让学生说出有关数的整除的相关数学知识,学生没有想出的,我再把这两个数进行引导一些数学的概念。用两个数代替所有例子,代替所有概念,把的有关数的整除的知识点都“带”出来了。这些概念既有联系,又有区别,让学生把这些概念形成知识网。这样,把多个知识点都具体地贯穿了起来,并突出了它们之间的联系,减少了逐个知识点单独复习的`时间,起到了“以一当十”的效果。

我先让学生同桌之间互相说出每个概念的意义,要求学生扎扎实实的理解每一个概念,并针对学生的实际情况做好复习课中一些查漏补缺的工作,我再关注每个学生是否都掌握了每一个概念。

另外,在练习最后一题里让学生猜老师的手机电话号码,学生个个积极思考,主动探索,利用已学的概念猜出电话号码,并请同学们自己充分利用数的整除的概念:约数、倍数、质数、合数等知识,也来“设计”一道题目,来考考大家。这样,学生的学习积极性很高,都在为自己家的号码精心“设计”好的问题,都想通过自己有“挑战性”的问题来

在这复习课中,有一个教学环节还较欠缺。请学生算出最大公约数和最小公倍数的这环节可以省略,这样效果更好一些。

篇3:数的整除复习( 一 )参考教案二

教学目标

1.明确自然数和整数的意义;

2.理解数的整除、约数、倍数、质数、合数的意义;

3.掌握能被2,3,5整除的数的特征。

教学重点和难点

使学生明确数的整除、约数、倍数、质数、合数的内在联系,形成知识网络。

教学过程设计

(一)复习整除概念

出示以下算式:

4÷2 0.8÷0.4 1÷3

30÷5 7÷318÷4

上面这些题都用什么方法计算?(除法)

(板书,用集合圈把算式圈起来。)

直接口答结果:

1÷3和7÷3能不能得出有限小数?为什么?(除不尽)

(把1÷3 7÷3两个算式移到除不尽的圈里)另外几个算式都能除尽吗?(能除尽)

(板书:除尽)

在能除尽的算式里,哪些是整除式?(4÷2 30÷5)

(板书:整除。并把4÷2,30÷5两个算式放在整除圈里。)

谁来说说什么叫“整除”?

(指名叙述整除的概念。)

整除和除尽有什么关系?(凡是整除的算式一定能够除尽,但是除尽的算式不一定能整除。)

篇4:数的整除复习( 一 )参考教案二

(二)复习整数和自然数的概念

在讲数的整除时,我们所说的数,一般只指自然数,不包括0。0是什么数?

板书:

上面的整除算式中,谁能被谁整除?(30能被5整除,4能被2整除。)

30能被5整除,我们就说30是5的倍数,5是30的约数。

谁来把约数、倍数的概念概括一下?(板书:约数、倍数)

判断老师这样说对吗?为什么?

数a能被数b整除,a叫倍数,b叫约数。

(指名说,并说明为什么不对。)

请你想想,一个数的倍数的个数有多少?最小是几?最大呢?

一个数的约数的个数是有限的,还是无限的'?最小是几?最大是几?你会求一个数的约数和倍数吗?

口答:(幻灯出示)

(1)16的约数有哪些?( )

(2)1~30各数中,2的倍数有( ),能被3整除的数有( ),有约数5的数为( )。

你们说说,能被2整除的数有什么特征?

是不是所有能被2整除的数都叫偶数?(板书:偶数)

相反,不能被2整除的数叫奇数?(板书:奇数)

能被3整除的数的特征呢?

能被5整除的数的特征呢?

现在老师想看看你们是不是真正掌握了。

(幻灯出示)

(1)请用数字4,7,0,5,1写出一个能被2整除的最大三位数。(学生在反馈小黑板上写出754。)

754最少减去几就能被3整除?为什么?

(2)能同时被3,5整除的最小偶数是( ),最大三位数是( )。

(3)在下列各数的方框中填上适当的数字,使这些数能同时被2,3,5整除。

24□ 9□0

(学生在反馈小黑板上写出数。)

我们掌握了数的整除特征,就能很快判断出一个数能被哪几个数整除,也就找出了这个数的约数。我们做一次找约数的竞赛,找出下面各数的约数。

(幻灯出示)

37的约数有( );

29的约数有( );

17的约数有( );

2的约数有( );

1的约数有( );

4的约数有( );

18的约数有( );

33的约数有( );

6的约数有( )。

根据约数个数的情况,可以把这几个数分成几类?

(板书)

只有2个约数,也就是除了1和它本身以外,不再有别的约数,这个数叫什么?

什么叫合数?1是质数还是合数?

找一找,你们手里的数字卡片有质数吗?举起来。有合数吗?举起来。

谁既不是质数,也不是合数?举起来。

(三)练习

1.判断题。(对的画“√”,错的画“×”)

(1)一个合数至少有三个约数。 ( )

(2)一个质数与2的和一定是奇数。 ( )

(3)两个质数相乘的积一定是合数。 ( )

2.选择题。

(1)下面三个数中既是奇数又是质数的数是[ ]。

A.43

B.9

C.51

(2)下面三个数中是偶数而不是质数的数是[ ]。

A.14

B.47

C.2

(3)最小的质数与最小的合数的积是 [ ]。

A.6

B.8

C.4

看来我们做上面题时,要想正确迅速地选择答案,不但20以内的质数要熟,而且百以内的质数表也要熟。百以内的质数有多少个?

(学生起立,边拍手边背百以内质数的顺口溜。)

二,三,五,七,一十一;

一三,一九,一十七;

二三,二九,三十七;

三一,四一,四十七;

四三,五三,五十九;

六一,七一,六十七;

七三,八三,八十九;

再加七九,九十七;

25个质数不能少;

百以内质数心中记。

(四)总结

这节课我们复习了数的整除的一部分知识,并用网络图表示出来了。谁能把各部分知识之间的联系说说?

同学们总结得很好,请打开书。

1.做书上的练习。

2.补充题。

判断:(对的画“√”,错的画“×”。)

(1)奇数都是质数。 ( )

(2)偶数都是合数。 ( )

(3)一个数的约数总比这个数的倍数小。( )

(4)15×12的积一定能同时被2,3,5整除。 ( )

(5)两个不同的奇数的和是合数。 ( )

(6)10以内质数和是1+2+3十5+7+9=27。 ( )

(7)一个除法算式只要商是整数,没有余数就叫整除。 ( )

课堂教学设计说明

本节课是根据整除这部分知识之间的内在联系而精心设计的。边复习边板书,边复习知识点边练习,最后使学生形成知识网络。

第一步:通过6道除法式题,用集合圈逐层分类,复习了整除的概念,明确了整除和除尽的关系,以及约数、倍数的概念。

第二步:复习整数和自然数的概念,明确我们现在研究数的整除是在自然数范围研究的。自然数按能否被2整除而分为奇数和偶数;按照约数的个数分,分为质数、合数和1。

第三步:根据知识之间的内在联系,做综合练习,使学生灵活地运用所学的知识解决问题。

板书设计

篇5:数的整除复习教学设计

数的整除(复习)教学设计

教学目的:掌握数的整除、约数和倍数、质数和合数等概念;

知道它们之间的联系与区别;

掌握能被2、3、5整除的数的特征;

会分解质因数,会求最大公约数和最小公倍数。

教学重难点:概念之间的联系与区别

教学过程:

1、导入:

前面已复习了有关数的意义、改写及大小比较等方面的内容。

从这节课开始,我们复习有关数的性质内容,先复习“数的整除”。

2、整除

出示:某车间26人,平均分成2组,每组多少人?

1)怎么列式?26÷2=13     数量关系式是什么?

2)26能被2整除吗?用手势表示。为什么?符合整除的条件

什么叫整除?也就是整除的意义是什么?

1.5÷5=0.3是不是整除算式?必须都是整数,且没有余数。还有什么条件?

除数也是整数,有没有什么限制?可不可以为0?除数不能为0。

3)1.5÷5=0.3不是整除算式,是什么算式?除尽算式。整除算式除尽了吗?

可不可以说整除是除尽中一种特殊情况?说明除尽是包含整除这种情况的。

判断:整除是除尽。  除尽是整除。

4)在26能被2整除的前提下,这句话还可以怎么说?2能整除26。

整数a能被整数b整除,整数b能整除整数a。(b≠0)

3、约数和倍数

1)26能被2整除,26是2的什么?倍数。2是26的什么?约数。

找概念。同意吗?手势表示。

什么叫约数?什么叫倍数?学生说。

2)能不能说2是约数,26是倍数?应该怎么说?

2是26的约数,26是2的倍数。说明什么?约数和倍数是相互依存的。

你还记得哪些相互依存不可单独存在的概念?学生说说。

在什么前提下才有约数和倍数的?整除

4、倍数

1)从26÷2=13这个式子中,可以看成26是谁的倍数?2的倍数还有吗?你还能说出2的倍数吗?有多少个?最小的倍数是几?也就是它的本身,对不对?有没有最大的倍数呢?

2)从26÷2=13这个式子中,可以看出26不仅是2的倍数,还是谁的倍数?

26既是2的倍数,又是13的倍数,那么26是叫2和13的'什么倍数?

找概念,同意吗?

什么是公倍数?能不能26是公倍数?要说清什么?26是谁和谁的公倍数。

说明什么?相互依存

3)2和13的公倍数是不是只有26一个呢?还有哪些?

举例。你还能举出更多的2和13的公倍数吗?有多少个?

在这些公倍数中,最小的是哪个?

在这些公倍数中,还有没有比26更小的公倍数?什么是最小公倍数?

这些公倍数中,26这个最小公倍数和其它公倍数之间有什么样关系呢?

在2和13的公倍数中,你能找到最大的公倍数吗?找找试试。

能找到最大的公倍数吗?说明2和13有没有最大的公倍数?

怎么求几个数的最小公倍数?用什么方法?短除法

4)判断:

两个数的最小公倍数,一定是这两个数的公倍数。

两个数的公倍数,一定是这两个数的最小公倍数的倍数。

5)小结:

依据26÷2=13,请运用整除、倍数、公倍数、最小公倍数来说明等式中各数之间的关系。

5、约数

1)我们说26是2的倍数,2是26的约数,除2以外,26还有其它的约数吗?

26还有哪些约数?1、13、26。还有吗?有多少个?无数个吗?有限个数

可以怎么样找到它的所有约数呢?你有没有好办法?

可以成对找,从小到大找。

这些约数中,最小的约数是几?最大的约数是几?可以说最大约数是它本身?

2)前面说过,在一个数的倍数中,最小倍数是它本身,现在一个数的最大约数也是它本身,那么一个数的最小倍数和最大约数是不是相等的?

一个数的最小倍数和最大约数都等于多少?它本身

3)26有约数1、2、13、26,那2有哪几个约数呢?13有哪几个约数呢?

其中,1既是2的约数,又是13的约数,我们可以说1是2和13的什么?

找概念。

什么叫公约数?26有没有公约数?一个数能不能说公约数?

公约数至少是几个数之间的关系?

4)26和2的公约数有哪些?最大的一个叫26和2的什么?

最大公约数。找概念

什么叫最大公约数?26和2的最大公约数是几?

怎样求几个数的最大公约数?用什么方法?短除法

26和13的最大公约数是几?最小公约数是几?

6、互质数

1)2和13存在公约数吗?是几?有最大公约数吗?是几?

2)2和13只有公约数1,也就是最大公约数是1,我们说2和13是什么关系的两个数?互质关系

2和13叫什么数?找概念

什么叫互质数?能不能说2是互质数,13是互质数?说明什么?相互依存

3)举出具有互质关系的两个数

7、质数和合数

1)26有几个约数?2呢?13呢?

按照约数的个数的不同可以分为几类?哪几类?质数、合数

像2和13这样只有1和它本身两个约数的数叫什么数?

什么叫质数?谁是质数?还有其他的质数?自然数中最小的质数是几?

说说怎样的数是合数?哪个数是合数?

举出其他的例子。自然数中最小的合数是几?

从约数的个数来说,质数和合数分别是怎样的数?

2)小结:质数只有2个数(1和它本身),合数至少有3个约数。

3)自然数中除了质数就是合数,对吗?

自然数按约数的个数,可以分为哪几类?(1既不是质数,也不是合数。)

8、分解质因数:

1)把26÷2=13改写成26=2×13,2和13都是质数,2和13叫26的什么数?

质因数应具备什么条件?2和13是质因数,对吗?应该怎样说呢?

说明什么?质数不能单独存在,依靠于哪个概念?合数

2)把26写成2和13这两个质因数相乘的形式,叫什么?写成一个怎样的形式?

2×13=26是不是分解质因数?

9、能被2整除的数的特征

1)26能被2整除,除了26,还有许多能被2整除的数,如:2、4、6、8……。

能被2整除的数有什么特征呢?

2)还有什么看个位就能确定能否整除?有什么特征?

3)能被3整除的数有什么特征?

4)根据能否被2整除,可以把自然数分为哪几类?奇数和偶数

怎样的数是偶数?怎样的数是奇数?举例

5)判断:自然数中,除了奇数就是偶数。

6)0能不能被2整除?0是不是偶数?

判断:0是任何自然数的倍数。

10、刚刚复习过的概念有哪些概念不能单独存在?

也就是两个数同时出现,相互依存。

哪些概念可以填入下图?

说明这些概念存在什么关系?(包含关系)

11、练习:

1)判断并改正。

①因为1.5÷5=0.3,所以1.5能被5整除。

②1与任何自然数都互质。

③21.36能被3除尽。

④一个自然数的最小公倍数是它本身。

⑤一个自然数的倍数一定比它的约数大。

⑥相邻两个自然数一定互质。

⑦一个质数与比它小的任何自然数都是互质数。

2)填空。

①自然数中最小的奇数是    ,最小的偶数是    ,最小的质数是    ,

最小的合数是    ,    既不是质数也不是合数。

②10以内      既是奇数又是合数,       既是偶数又是质数。

3)求出16和24的最大公约数。

4)求出8、12和18的最小公倍数。

5)分解质因数:128=

江西省余江画桥镇中心小学 汤全康

篇6:“数的整除复习”教学设计

“数的整除整理复习”教学设计

“数的整除整理复习”教学设计[ 作者:陆正娟    自:本站原创    点击数:68    更新时间:-8-15    文章录入:青铜时代 ]

江苏省江都实验小学  陆正娟

教学目的:

1、归纳整理“数的整除”这一单元的有关概念,使学生理解每个概念,并能够掌握概念间的内在联系,形成完整的认知结构。

2、向学生渗透数学知识的逻辑性和系统性的观念。

3、激发学生的学习兴趣,培养学生学习的主动性。

教学重点:复习概念,找出概念之间的内在联系。

教学准备:实物投影仪。

教学过程:

一、揭示课题,回忆整理

同学们,这节课我们复习数的整除(板书课题:数的整除   复习)

请大家回忆一下这部分内容,你们都学过哪些知识呢?(生答,师板书:整除,能被2、5、3整除的数的特征,奇数、偶数,约数、倍数、互质数、质数、合数、分解质因数、公约数、最大公约数、公倍数、最小公倍数、质因数。)

请同学们继续研究这些知识,根据它们的意义和它们之间的联系,能不能用线连起来呢?(教师根据学生回答的顺序,用彩色的粉笔连接相关的概念)

(师指黑板)这样的整理同学们满意吗?(生:不满意)

为什么?(生:太乱了)

怎么办呢?(生:重新整理)

这节课我们就对“数的整除”这部分知识进行系统的整理,好吗?(师在课始课题空白处添上“整理”)

二、沟通联系,形成网络

现在小组合作,按照你们自己的想法,根据概念间的联系,把“数的整除”这部分知识用你喜欢的方式,整理在纸上,比一比,哪组整理得既完整又科学美观。(生活动,教师巡视参与学生的活动中,可用彩笔勾画轮廓)

下面请各小组选一名代表来展示一下你们的设计(实物投影仪展示),在展示过程中,要讲清楚自己设计的意图,其他组进行评议。(学生表达方式有很多集合图、枝形图、表格,还有同学借助生活中的具体事物来展示)

三、巩固练习,深化理解

1、从下面的几个概念中任意挑一个说一句话。

偶数  合数   奇数   质数

2、找出每题中与众不同的数,并说明理由

42  3   33  15   22

2   13  21  31   11

3、(1)小明要将一块长24厘米,宽16厘米的长方形纸剪成同样大小的正方形,而且没有剩余,请你猜一猜,正方形的边长最长是多少厘米?

(2)东站是1路车、4路车和7路车的起点站,1路车每8分钟发车一次,4路车每12分钟发车一次,7路车每18分钟发车一次,这三路车同时发车后,至少再过多少个分钟又同时发车?

四、归纳总结,拓展延伸

通过今天这节课,你学到了哪些新本领?(学生可以从数学知识掌握方面讲,也可以从学习技能方面讲)。

数学知识之间是有联系的,只要抓住它们的'内在联系,就能把零乱无序的内容形成一个有序的知识网络。

这节课同学们的表现非常好,老师真心希望和你们交个朋友,你们愿意吗?(生:愿意),那我们留个联系方式吧,电话号码可以吗?

老师的电话号码是7位数,每一个数字的密码依次 :

(1)2和3的最小公倍数

(2)最大的一位数

(3)最小奇数的最小质数的和

(4)最小的合数加1

(5)10以内的最大质数

(6)有约数2和3的一位数

(7)能被2整除的最大一位数

你知道老师的电话号码吗?(6935768)

请将你家电话号码的密码写在纸上,让你的同学猜一猜好吗?

篇7:数的整除

数的整除

教学内容:教材第60―61页数的整除和“练一练”,练习十一第11~18题。

教学要求:

1、使学生进一步认识数的整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析、判断,进一步发展思维能力。

2、使学生正确掌握分解质因数和求两个数的最大公约数、求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的最大公约数、两个或三个数的最小公倍数。

教学过程():

一、揭示课题

1、口算。

小黑板出示练习十一第11题,指名学生口算。

2、引入新课。

我们已经复习了整数和小数的意义,今天复习数的整除。(板书课题)通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求最大公约数、最小公倍数。

二、复习约数和倍数

1、提问:什么是数的整除?(板书:整除)如果a能被b整除,必须具备哪些条件? 当a能被b整除,也就是b整除a时,还可以怎样说?

2、做“练一练”第l题。

让学生在课本上画出是整除的式子。指名口答,口答时强调倍数和约数的依存关系。并要求说明其余三个式子为什么不是整除。

3、学生练习。

(1)从小到大写出9的五个倍数。

(2)写出18所有的约数。

学生先写在练习本上,再指名口答。提问:怎样找出一个数的倍数?一个数的倍数有多少个?一个数的约数个数是有限还是无限的?怎样找一个数的约数比较方便?(一对一对找)谁来说说你是怎样找出18所有约数的?

三、复习质数和合数

1、提问:按照一个数约数的个数分类,除0以外的自然数可以怎样分?怎样的数是质数?怎样的数是合数?1为什么既不是质数也不是合数?

2、口答。

(1)说出比10小的质数和合数。

(2)最小的质数和最小的合数各是几?

(3)下面的数哪些是质数,哪些是合数?

78    5l    23    57    91    90

3、提问:你能把90写成质数相乘的形式吗?(板书)这里每个因数又叫做90的什么数?追问:一个数的质因数一定要是怎样的数?(要是它的因数,又要是质数。把90用质因数相乘的形式表示出来,叫做什么?谁来完整地说一说,什么是分解质因数?

4、做“练―练”第3题。

先让学生写在练习本上,再指名口答,老师板书。结合提问为什么有些约数不是30的质因数。

四、复习公约数和公倍数

1、学生练习。

(1)写出18和24所有的公约数,指出其中的'最大公约数。

(2)从小到大写出4和6的五个公倍数,指出其中的最小公倍数。学生口答,老师板书。提问:什么叫做公约数和最大公约数?什么叫做公倍数和最小公倍数?

2、做“练―练”第4题。

让学生求出结果写在练习本上。指名口答。提问:9和8公约数只有几?公约数只有1的两个数叫什么数?你能举出几组互质数的例子吗?这三组数各是怎样求最大公约数和最小公倍数的?

(板书:

最大公约数      最小公倍数

一般关系:所有除数的积  所有除数和商的积

倍数关系:  小  数          大  数

互质关系:    1            两数之积)

追问:用短除法求最大公约数和最小公倍数有什么相同和不同的地方?

五、复习能被2、5、3整除的数的特征

1、提问:在数的整除里,我们还学习了什么知识?能被2、5、3整除的数各有什么特征?

2、做“练―练”第5题。

指名学生口答。让学生找一找哪几个数能同时被2、5、3中两个或三个数整除,并说说理由。

3、提问:上面的题里,能被2整除的都是什么数?不能被2整除的呢?按照能不能被2整除,自然数又可以分为哪几类?追问:怎样的数叫偶数?怎样的数叫奇数?

4、口答。

说出比10小的奇数和偶数各有哪些?

六、课堂小结

谁来根据黑板上的内容,说一说复习了哪些知识,相互之间有什么联系?

七、课堂练习

1、做练习十一第12题。

让学生做在课本上。小黑板出示,学生口答。

2、课堂作业。

练习十一第15、16题,第17题(3)、(4),第18题。

篇8:数学法证明整除

数学归纳法证明整除

数学归纳法证明整除

数学归纳法

当n=1 的时候

上面的式子 = 3^4-8-9=64

成立

假设 当n=k 的'时候

3^(2k+2)-8k-9能够被64整除

当n=k+1

式子= 3^(2k+4)-8k-17

=9[3^(2k+2) -8k-9] +64k+64

因为 3^(2k+2)-8k-9能够被64整除

∴ 9[3^(2k+2) -8k-9] +64k+64 能够被64整除

n=k+1 时 ,成立

根据上面的由数学归纳法

3的2n+2次方-8n-9(n属于N*)能被64整除。

2

当n=1时 3^4-8-9=81-17=64 能被4整除・・・・・(特殊性)

设当n=k时,仍然成立。

当n=k+1时,・・・・・・・・・・・・・・・・・・・・・(一般性)

3^(2(k+1)+2)-8(k+1)-9=3^(2K+2+2)-8K-17 =9*3^(2K+2)-72K+64K-81+64=9(3^(2k+2)-8k-9)+64k+64

因为3^(2k+2)-8k-9能被64整除

不用写了吧・・

正确请采纳

数学归纳法

当n=1 的时候

上面的式子 = 3^4-8-9=64

成立

假设 当n=k (k>=1)

3^(2k+2)-8k-9能够被64整除

当n=k+1(k>=1)

式子= 3^(2k+4)-8k-17

=9[3^(2k+2) -8k-9] +64k+64

由9[3^(2k+2) -8k-9] +64k+64-(3^(2k+2)-8k-9)可以被64整出

n=k+1 时 ,成立

根据上面的由数学归纳法

3的2n+2次方-8n-9(n属于N*)能被64整

3.证明:对于任意自然数n (3n+1)*7^n-1能被9整除

数学归纳法

(1)当n=1时 (3*1+1)*7-1=27能被9整除

(2)假设当n=k时 (3k+1)*7^k-1能被9整除

则当n=k+1时 [3(k+1)+1]*7^(k+1)-1=[21k+28]*7^k-1

=(3k+1)*7^k-1+(18k+27)*7^k

=[(3k+1)*7^k-1]+9(2k+3)*7^k

括号中的代数式能被9整除 9(2k+3)*7^k能被9整除

所以当n=k+1时 [3(k+1)+1]*7^(k+1)-1能被9整除

综合(1)(2)可知 对于任意自然数n 有(3n+1)*7^n-1能被9整除

4证明:

(1)n=1时,3^(6n)-2^(6n) =3^6-2^6=665=19*35,命题成立

(2)假设n=k时命题成立,即

35能整除3^(6k)-2^(6k)

即3^(6k)-2^(6k)=35m (m∈Z+)

则n=k+1时

3^(6n)-2^(6n)

=3^(6k+6)-2^(6k+6)

=(3^6)*3^(6k)-(2^6)*2^(6k)

=64*[3^(6k)-2^(6k)]+(729-64)*3^(6k)

=64*[3^(6k)-2^(6k)]+665*3^(6k)

=64*35m+19*35*3^(6k)

=35*[64m+19*3^(6k)]

即n=k+1时,35能整除3^(6n)-2^(6n)

综合(1)(2)由数学归纳法知:

对于一切正整数n,35能整除3^(6n)-2^(6n)

===============

给定任意正整数n,设d(n)为n的约数个数,证明d(n)<2√n

证明:

若n存在一个约数a<√n

则n/a=b是n的另一个约数,且b>√n

显然a,b是一一对应的

∵a<√n

∴a的个数<√n

∴b的个数<√n

∴d(n)=a的个数+b的个数<2√n5假设n=k时成立 得3^(6k)-2^(6k)能被35整除

3^(6k+1)-2^(6k+1)-3^(6k)+2^(6k)

=(3^6-1)3^(6k)-(2^6-1)*2^(6k)

=728*3^(6k)-63*2^(6k)

=63*(3^(6k)-2^(6k))+665*3^(6k)

因为665/35=19 所以 3^(6k+1)-2^(6k+1)-3^(6k)+2^(6k)可以被35整除

那么由3^(6k+1)-2^(6k+1)-3^(6k)+2^(6k)+3^(6k)-2^(6k)

=3^(6k+1)-2^(6k+1)

可得到

3^(6k+1)-2^(6k+1)

必定可以被35整除

当n=1时3^(6n)-2^(6n)能被35整除

所以 证明完成

篇9:数学教案-数的整除

数学教案-数的整除

教学目标

1、使学生理解自然数与整数的意义.

2、使学生掌握整除、约数与倍数的概念.

3、培养学生抽象概括与观察物的能力.

教学过程()

一、建议自然数与整数的概念

1、谈话引入:今天这节课,我们学习数的整除.(板书课题)

2、教师提问:既然是数的整除,自然就与数有关,同学们都学过什么数?

(教师板书:整数、小数、分数)

同学们会数数吧?(学生数数)

(教师板书:1、2、3、4、5、)

继续数下去,能数到头吗?

数不到头,我们可以用一个什么标点符号来表示呢?

(教师板书:“……”)

3、教师小结:

用来表示物体个数的1、2、3、4、5等等,叫做自然数.(板书:自然数)

提问:最小的自然数是几?有最大的自然数吗?

当一个物体也没有时,我们用几来表示?(板书:0)

二、建立整除的概念

1、教师明确:数的整除,不仅与数有关,还与除有关,一说到除,在家就会想到两个数相除,那么整除又是什么意思呢?整除也是两个数相除,但是在小学阶段,我们研究整除不包括“0”.

2、出示卡片    1.2÷4

提问:在数的整除中研究这样的两个数相除吗?为什么?

3、再出示卡片:10÷20,16÷5,15÷3,36÷9,24÷2

提问:这几个式子中的被除数和除数都是什么数?

教师明确:被除数和除数都是自然数,这是我们研究数的整除的一个非常重要的条件.

4、教师说明:被除数和除数都是自然数,如:10÷20,我们能不能说10能被20整除呢?还不能,还要看它的商.

组织学生口算出5张卡片的商.(其中16÷5指定回答“商几余几”)

提问:被除数和除数都是自然数,商可能有哪几种情况?

排除没有整除关系的卡片,指15÷3=5一类的卡片,说明:只有这样的,我们才能说15能被3整除.

5、学生举例

6、提问:用字母a表示这样的被除数,用b表示这样的除数,商怎么样,我们就说a能被b整除呢?

这样看来,整除除了被除数和除数都是自然数外,还得有一个什么条件?

教师明确:商是自然数,没有余数是整除的又一个重要的条件.

7、出示卡片(区别整除和除尽)

4÷3=1.3 18÷18=1 7÷5=1.4

4÷0.2=20 42÷6=7

三、建立约数与倍数的概念

1、教师说明:当数a能被数b整除时,a就是b的`倍数;b就是a的约数.

2、联想训练:教师说一句由学生说出另外两句.

如:教师:15能被3整除(生:15是3的倍数,3是15的约数)

教师:36是9的倍数(生:36能被9整除,9是36的约)

教师:2是24的约数  (生:24能被2整除, 24是2的倍数)

教师:7不能被4整除(生:7不是4的倍数,4又不是7的约数)

3、区分“倍数”与“几倍”

教师提问:能说4是0.2的倍数吗?为什么?

4、判断

12是3的倍数 (    )    7是21的约数 (    )

1是25的约数 (    )    3.6是3的倍数 (    )

4是约数 (      ) (说明:通过此题,深化倍数、约数相互依存的关系)

四、巩固练习

思考题:1,3,6,9,12这几个数中谁与谁之间有约数和倍数的关系?

五、课堂小结

1、数的整除是在自然数范围内讨论的.

2、两个数之间,一旦具备整除关系,那么这两个数之间必定还具有约数、倍数的关系.所以,整除是前提,倍数、约数是在这个前提下必然产生的一种结果.

六、布置作业

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,……的约数.

2、一个数是42的约数,同时又是3的倍数.这个数可以是多少?

七、板书设计

数的整除

整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)

如果数a能被数b(b≠0)整除,a就叫做b的倍数, b就叫做a的约数(或因数).

探究活动

把数分类

活动目的

1、使学生掌握奇数、偶数、约数、倍数的交叉关系和区别.

2、帮助学生建立完整的知识结构.

活动题目

桌上有20张卡片,在这些卡片上分别写着1,2,3,…19,20这20个数.请将这20个数加以分类.

活动过程

1、学生以小组为单位讨论.

2、汇报讨论结果.

3、交流收获.

参考答案

要把这20个数分类,首先确定分类标准,不同的标准有不同的分类方法.

1、根据数的奇偶性分类.

奇数:1,3,5,7,9,11,13,15,17,19

偶数:2,4,6,8,10,12,14,16,18,20

2、根据数的位数分类.

一位数:1,2,3,4,5,6,7,8,9

两位数:10,11,12,13,14,15,16,17,18,19,20

3、根据是否大于8分类.

大于8:9,10,11,12,13,14,15,16,17,18,19,20

不大于8:1,2,3,4,5,6,7,8

4、根据约数个数的多少分类.

一个约数:1

两个约数:2,3,5,7,11,13,17,19

两个以上约数:4,6,8,9,10,12,14,15,16

5、根据约数的个数是否是奇数分类.

约数的个数是奇数:1,4,9,16

约数的个数是偶数:2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20

篇10:认识更大的数复习课教案

认识更大的数复习课教案(原创)

教学目标: 1、知识与技能:通过复习,巩固所学的计数单位和相邻两个单位之间的进率,掌握数位顺序表,能正确地读写大数,掌握改写和省略的方法。进一步培养学生的数感。 2、过程与方法:使学生参与复习的全过程,通过合作交流等活动,使学生形成知识网络。 3、情感、态度和价值观:培养学生的反思意识和合作精神。重点:数的概念、读写数的方法、改写和省略的方法难点:数中间和末尾有0的读写法、用四舍五入法求近似数 教学过程: 一、合作学习,梳理知识 1、师:我们已经学过了更大的数,在这单元你学到了很多知识。 小组合作采用自己喜欢的方法整理知识点,全班汇报交流,投影作品。 2、师:生发言说的全面具体(计数单位、数位、数位顺序表、读写数、改写数、求近似数)师板书知识点。 二、实践练习,体验成功 师:我们学过了这么多的知识,下面我们要运用掌握的知识解决一些问题了。我们进行闯关练习! 第一关:数位顺序记得牢 师:聪聪不小心把数位顺序表弄破了,你能帮他修复好吗? 1、出示表格,生在练习纸上完成数位顺序表 汇报:生说师课件演示: 师:兔博士有问题要考考大家!投影显示,抢答 (1)从个位起,第五位是(万位),计数单位是(万),第九位是(亿位),计数单位是(亿),第十二位是(千亿位),计数单位是(千亿) (2)10个一千是(一万),(10)个百万是一千万,(100)个百万是一亿,(  10 )个亿是十亿。 师:数位顺序表熟记于心,可以帮助我们更好的读数写数呢! 第二关:读数写数我最棒 1.师:投影4005 2136(四千零五万二千一百三十六)   1084 3005 (一千零八十四亿三千零五万两千零一十九) 我们已经学习了更大数的读法,那么在读的时候要注意什么问题?  生:第一步要分级,用虚线隔开,再从高位往低位读起。 2.中间和末尾有零的读法。 师:这有两个数会不会读?生读你是怎么读的?. 如:789 0000   读作:七百八十九万 45 6300 0000   读作:四十五亿六千三百万 师总结:每一级末尾的零都不读。 师:再看看下面的'两个数,这两个数有什么特点?读出来  如:4005 2136    1435 0071 0532 师:你是怎么读的? 4.师:读和写是一对好朋友,我们练习写数。 5.师:如:五百二十一万(521 0000)怎么写的? 6.师:七千万零五十。(7000  0050)是不是读零的地方都写一个零? 生:要对准数位一位一位往下写,哪一位上一个单位也没有就写0占位。如:一亿零六十四万零七百 师小结:同学们表现的太棒了,我们继续闯关吧! 第三关:变变改改我不迷 1.改写整亿整万的数。举例如:470 0000=470万 127 0000 0000=127亿 师:这样的数要怎样改写的?生独立完成。 生:整万的数要省略四个零,后面加一个万字,整亿的数要省略亿后面的八个零,加一个亿字。 2.改写成以“万”或“亿”为单位的近似数。 (1)美国的超级圆顶体育场能容纳76791人。 (2)通信卫星离地面35860千米。 (3)截止 11月1日,我国总人口为1295330000人。 师:近似数该怎么求?  生:省略万后面的尾数要看千位上的数,根据四舍五入法,然后省略后面的数,加一个万字。省略亿后面的尾数要看千万位上的数,根据四舍五入法,然后省略后面的数,加一个亿字。 师:我们在改写整万数或整亿数和求近似数时用的连接符号是不同的。 师总结:看来大家对这一单元的知识掌握的很好。要我要在班里组织一次争星比赛,看谁能运用所学知识得到的星最多。想不想参加比赛,准备好了吗? 三、课堂小测,巩固练习四、课堂小结,畅谈收获

篇11:数的整除复习(二)(人教版六年级教案设计)

教学目标

1.使学生熟练地掌握有关数的整除概念,弄清概念间的联系与区别。

2.提高判断能力,能灵活运用概念解决实际问题,使学生进一步认识到概念之间相辅相承相互依存的辩证关系。

教学重点和难点

数的整除概念。数的整除概念间的联系与区别。

教学过程设计

(一)导入

今天我们复习数的整除这一单元的部分知识。(板书:数的整除复习--概念)通过这节课复习,我们要准确掌握概念,并理解概念,弄清概念间的内在联系与区别,从而灵活运用知识解决实际问题。

(二)复习过程

1.复习倍数→公倍数→最小公倍数。

请大家看投影片上的三道算式:

①10÷6=1.6  ②38÷2=19  ③15÷6=2.5

(1)第①和②、③两道算式有什么不同?

(2)②和③相比较又有什么不同?(板书:整除)并追问:什么叫整除?

(3)观察整除式38÷2=19,谁能被谁整除?为什么?

(4)在38能被2整除的前提下,38是2的什么? 2又是38的什么?(板书;倍数、约数)

(5)什么叫倍数?什么叫约数?

(6)倍数、约数能单独存在吗?它依存于哪个概念?

(7)从38÷2=19这个式子中,可以看出38是2的倍数,还能看出38是谁的倍数?那么38可以叫做2和19的什么?(板书:公倍数)

(8)2和19只有38这一个公倍数吗?有多少个?为什么?

(9)既然2和19的公倍数是无限多个,那么有最大的公倍数吗?有最小的吗?是多少?

(板书:最小公倍数)

(10)什么叫公倍数?什么叫最小公倍数?

(11)依据38÷2=19这个等式,谁能用整除、倍数、公倍数、最小公倍数来说明等式中3个数之间的关系?

2.复习约数→公约数→最大公约数。

(1)我们已经知道38是2的倍数,2是38的约数,除2以外,38还有哪些约数?(板书;1,2,19,38)

(2)2的约数有哪些?19的约数有哪些?

(3)观察38,2,19这三个数的约数,你能指出它们的公约数吗?(板书:公约数)

(4)几个数的公约数的个数是有限的还是无限的?为什么?

(5)38和2的公约数中最大的一个叫38和2的什么?(板书:最大公约数)

(6)38和2的最大公约数是几?38和19的最大公约数是几?

(7)什么叫公约数?什么叫最大公约数?

(8)2和19有公约数吗?是几?有最大公约数吗?是几?

(9)2和19的最大公约数是1,2和19是什么关系?

(10)什么叫互质数?(板书:互质数)

(11)请你举出有互质关系的两个数。

3.复习质数、合数、质因数、分解质因数。

(1)观察38,2,19的约数的个数,并以此为标准,给这三个数分类,可以分几类?

(2)什么叫质数?什么叫合数?(板书:质数、合数)

(3)如果把38÷2=19改写成38=2×19,2和19叫38的什么?为什么?(板书:质因数)

(4)说“2和19是质因数”对吗?为什么?

(5)质因数能单独存在吗?它必须依存于什么概念?还有什么概念不能单独存在?

(6)把38这个合数写成2和19,这两个质因数相乘的形式叫什么?(板书:分解质因数)

4.复习能被2,3,5整除的数的特征。

(1)在计算中,我们常常需要判断一个数能不能被另一个数整除,我们可以根据数的一些特征来判断。我们都学过哪些数的整除特征?(板书:能被2,5,3整除的数的特征)

(2)38,2,19中哪个数能被2整除。为什么?能被2整除的数的特征是什么?

(3)能被2整除的数叫什么数?不能被2整除的数呢?(板书:奇数、偶数)

(4)判断一个数是奇数还是偶数的依据是什么?

(5)能被5,3整除的数有什么特征?

(6)改38中的一个数字,使它能被3整除,怎样改?

(7)能同时被2和5整除的数有什么特征?能同时被2,3,5整除的数有什么特征?你能分别举几个数吗?

(三)复习概念间的关系

(1)在刚才复习的这些概念中,有哪些概念不能单独存在,请你列举出来。(板书:倍数、约数、质因数)

(2)倍数、约数、质因数分别依存于什么概念?这些概念之间的关系是依存关系。(板书:依存关系)

(3)哪些概念之间的关系可以用下图表示?

(4)它们之间的这种关系叫什么关系?(板书:包含关系)

(5)小结:我们通过观察38÷2=19这个等式中三个数之间的关系,不仅整理出了数的整除有关概念的网络图,还通过分析了解了概念间的关系。

(四)练习

(1)填空。

①在自然数中,既是质数又是偶数的最小的一个数是(  );既是质数又是奇数的最小的一个数是(  );既是奇数又是合数的最小的一个数是(  );既是偶数又是合数的最小的一个数是(  );既不是质数又不是合数的一个数是(  )。

②所有自然数的最大公约数是(  )。

③能被3和5同时整除的最小三位数是(  );最大三位数是(  )。

④小于10的所有质数的和是(  )。

⑤一个四位数,千位上的数既是奇数又是合数,百位上的数既是偶数又是质数,十位上的数是自然数,但既不是质数又不是合数,个位上的数是最小合数,这个四位数是(  )。

(2)判断题。(对的画“√”,错的画“×”。)

①相邻的两个自然数一定互质。 (  )

②最小的质数是自然数中全部偶数的最大公约数。  (  )

③任意两个自然数的积,一定是合数。  (  )

(3)思考题。

有14,30,33,35,39,75,143,169八个数。①把这八个数分别分解质因数;②把这八个数分成两组,每组四个数,且使它们的乘积相等。应该怎样分?

课堂教学设计说明

本节课分三个层次教学。

1.通过一题多问,从具体到抽象,把本单元的主要概念联系起来,形成网络。即:

复习倍数→公倍数→最小公倍数。

复习约数→公约数→最大公约数。

复习质数、合数、质因数、分解质因数。

复习能被2,5,3整除的数的特征。从而有目的、有计划的将这部分知识进行了系统整理,使学生对这块知识一目了然。

2.进一步分析概念之间的各种联系,明确概念间的不同关系。从而提高和深化对所学知识的认识:如:约数和倍数与整除的依存关系等。

3.应用概念综合练习。

练习充分,有层次,注意培养学生综合运用知识的能力,充分调动学生学习的积极性,达到巩固知识和提高思维能力的目的。

板书设计

篇12:数的整除复习(一)(人教版六年级教案设计)

教学目标

1.明确自然数和整数的意义;

2.理解数的整除、约数、倍数、质数、合数的意义;

3.掌握能被2,3,5整除的数的特征。

教学重点和难点

使学生明确数的整除、约数、倍数、质数、合数的内在联系,形成知识网络。

教学过程设计

(一)复习整除概念

出示以下算式:

4÷2  0.8÷0.4  1÷3

30÷5   7÷3   18÷4

上面这些题都用什么方法计算?(除法)

(板书,用集合圈把算式圈起来。)

直接口答结果:

1÷3和7÷3能不能得出有限小数?为什么?(除不尽)

(把1÷3 7÷3两个算式移到除不尽的圈里)另外几个算式都能除尽吗?(能除尽)

(板书:除尽)

在能除尽的算式里,哪些是整除式?(4÷2 30÷5)

(板书:整除。并把4÷2,30÷5两个算式放在整除圈里。)

谁来说说什么叫“整除”?

(指名叙述整除的概念。)

整除和除尽有什么关系?(凡是整除的算式一定能够除尽,但是除尽的算式不一定能整除。)

(板书:数的整除复习(一))

(二)复习整数和自然数的概念

在讲数的整除时,我们所说的数,一般只指自然数,不包括0。0是什么数?

板书:

上面的整除算式中,谁能被谁整除?(30能被5整除,4能被2整除。)

30能被5整除,我们就说30是5的倍数,5是30的约数。

谁来把约数、倍数的概念概括一下?(板书:约数、倍数)

判断老师这样说对吗?为什么?

数a能被数b整除,a叫倍数,b叫约数。

(指名说,并说明为什么不对。)

请你想想,一个数的倍数的个数有多少?最小是几?最大呢?

一个数的约数的个数是有限的,还是无限的?最小是几?最大是几?你会求一个数的约数和倍数吗?

口答:(幻灯出示)

(1)16的约数有哪些?(  )

(2)1~30各数中,2的倍数有(  ),能被3整除的数有(  ),有约数5的数为(  )。

你们说说,能被2整除的数有什么特征?

是不是所有能被2整除的数都叫偶数?(板书:偶数)

相反,不能被2整除的数叫奇数?(板书:奇数)

能被3整除的数的特征呢?

能被5整除的数的特征呢?

现在老师想看看你们是不是真正掌握了。

(幻灯出示)

(1)请用数字4,7,0,5,1写出一个能被2整除的最大三位数。(学生在反馈小黑板上写出754。)

754最少减去几就能被3整除?为什么?

(2)能同时被3,5整除的最小偶数是(  ),最大三位数是(  )。

(3)在下列各数的方框中填上适当的数字,使这些数能同时被2,3,5整除。

24□  9□0

(学生在反馈小黑板上写出数。)

我们掌握了数的整除特征,就能很快判断出一个数能被哪几个数整除,也就找出了这个数的约数。我们做一次找约数的竞赛,找出下面各数的约数。

(幻灯出示)

37的约数有(  );

29的约数有(  );

17的约数有(  );

2的约数有(  );

1的约数有(  );

4的约数有(  );

18的约数有(  );

33的约数有(  );

6的约数有(  )。

根据约数个数的情况,可以把这几个数分成几类?

(板书)

只有2个约数,也就是除了1和它本身以外,不再有别的约数,这个数叫什么?

什么叫合数?1是质数还是合数?

找一找,你们手里的数字卡片有质数吗?举起来。有合数吗?举起来。

谁既不是质数,也不是合数?举起来。

(三)练习

1.判断题。(对的画“√”,错的画“×”)

(1)一个合数至少有三个约数。 (  )

(2)一个质数与2的和一定是奇数。  (  )

(3)两个质数相乘的积一定是合数。 (  )

2.选择题。

(1)下面三个数中既是奇数又是质数的数是  [  ]。

A.43

B.9

C.51

(2)下面三个数中是偶数而不是质数的数是  [  ]。

A.14

B.47

C.2

(3)最小的质数与最小的合数的积是 [  ]。

A.6

B.8

C.4

看来我们做上面题时,要想正确迅速地选择答案,不但20以内的质数要熟,而且百以内的质数表也要熟。百以内的质数有多少个?

(学生起立,边拍手边背百以内质数的顺口溜。)

二,三,五,七,一十一;

一三,一九,一十七;

二三,二九,三十七;

三一,四一,四十七;

四三,五三,五十九;

六一,七一,六十七;

七三,八三,八十九;

再加七九,九十七;

25个质数不能少;

百以内质数心中记。

(四)总结

这节课我们复习了数的整除的一部分知识,并用网络图表示出来了。谁能把各部分知识之间的联系说说?

同学们总结得很好,请打开书。

1.做书上的练习。

2.补充题。

判断:(对的画“√”,错的画“×”。)

(1)奇数都是质数。 (  )

(2)偶数都是合数。 (  )

(3)一个数的约数总比这个数的倍数小。(  )

(4)15×12的积一定能同时被2,3,5整除。   (  )

(5)两个不同的奇数的和是合数。 (  )

(6)10以内质数和是1+2+3十5+7+9=27。   (  )

(7)一个除法算式只要商是整数,没有余数就叫整除。    (  )

课堂教学设计说明

本节课是根据整除这部分知识之间的内在联系而精心设计的。边复习边板书,边复习知识点边练习,最后使学生形成知识网络。

第一步:通过6道除法式题,用集合圈逐层分类,复习了整除的概念,明确了整除和除尽的关系,以及约数、倍数的概念。

第二步:复习整数和自然数的概念,明确我们现在研究数的整除是在自然数范围研究的。自然数按能否被2整除而分为奇数和偶数;按照约数的个数分,分为质数、合数和1。

第三步:根据知识之间的内在联系,做综合练习,使学生灵活地运用所学的知识解决问题。

板书设计

篇13:复习课教案

复习课教案

总复习《分数的意义和性质》 教学内容:课本 138页分数的意义和性质 教学目标: 1 、通过复习,帮助学生梳理本单元的知识要点及知识间的联系。 2 、培养学生归纳、整理知识的能力,掌握整理和复习知识的方法。 3 、通过整理复习,使学生感受到学习的快乐,使每个学生得到不同的发展。 教学重难点:分数的意义及基本性质的应用 教具准备:多媒体课件 课前参与:整理分数的意义和性质的知识网络 教学过程: 一、导入复习出示课题:我们已经知道了整理的重要性,今天这节课我们就一起来整理一下我们学过的分数知识 二、交流前参、建构网络 1、学生小组归纳、梳理知识点 提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?(小组间交流归纳) 2、全班交流归纳,集体补充 小组汇报并随机板书 (1)分数的意义――单位“1”的含义 (2)分数与除法的关系:a÷b= (b≠0) (3)真分数和假分数、假分数与带分数 (4)分数的基本性质的――约分 最大公因数 ――通分 最大公倍数 (分数大小的比) (5)分数和小数的互化 3、引导学生梳理交流各知识间的联系 三、重点复习、强化提高 1、 出示:1/3  4/5 4/6 7/7 9/6 31/30 2、交流  (1)选一个分数,说说这个分数表示的意义是什么?分数单位是什么?有几个这样的分数单位? (2)把它写成除法的形式吗?分数与除法又有什么联系呢? 用字母怎么表示?板书:a÷b=a/b  (b ≠ 0) (3)对这些分数进行分类、说说假分数是怎样化成带分数或整数的 (4)这个单元里的'哪些知识运用了分数的基本性质?(约分、通分) (5)这五个分数中哪些可以约分?怎样约分?大家试着在自己的练习本上进行约分(指名板演) 你是怎么想的? (6)通分的方法是怎样的呢? 请你选两个分数通分。 (7)分数可以化成小数,小数也能化成分数,谁愿意来说一个小数考考你的同学,看他能不能化成分数? 四、自主检测,完善提高 1、填一填: ①把4米长的绳子平均剪成5段,每段绳子是全长的( ), 每段长(  )÷(  )=(  /  )米。 提问:你是怎么想的? ②分母是最大的一位数,分子是最小的合数,这个分数化成小数是( )(保留两位小数) ③分母是10的最简真分数有( )个 ④4/5的分子加上12,要使分数的大小不变,分母应该加上(  )。 ⑤在()里填上“<””“>”或“=”?你是用什么方法比较的? 2/5  2/7 3/4  5/6   15/20  5/8 5/8  9/7 2、课本138页4题 3、课本138页5题 五、小结: 复习完这节课,你想说些什么? 拓展延伸: 用1、2、3、4、5、6、7、8、9九个数字,写出三个大小相等的分数,每个数字只能使用一次。  

【《数的整除》复习课教案】相关文章:

1.数的整除知识点总结

2.小学数学说课教案

3.初中数学说课教案

4.《数的运算》复习课的教学反思

5.小学语文复习课教案

6.六下数与代数复习课教学设计

7.小学五年级数学能被2、5整除的数教案

8.化学平衡电离平衡复习课教案

9.人教版五年数学复习课教案

10.人教版六年级语文复习课教案

下载word文档
《《数的整除》复习课教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部