欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>平行线的性质教案

平行线的性质教案

2024-01-19 08:56:58 收藏本文 下载本文

“kason928”通过精心收集,向本站投稿了14篇平行线的性质教案,以下是小编为大家准备的平行线的性质教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

平行线的性质教案

篇1:平行线的性质教案

【教学目标】

1、经历平行线的性质:两直线平行,同位角相等的发现过程。

2、掌握平行线的性质:两直线平行,同位角相等。

3、会用两直线平行,同位角相等进行简单的推理和判断,并学会表达。

【教学重点】平行线的性质:两直线平行,同位角相等。

【教学难点】例2的推理过程要用到平行线的判定和性质。

【教学预设】

【活动1】复习引入

1、如果两条直线被第三条直线所截,那么符合怎样的条件才能得到两直线平行的结论?(学生口答,教师板书。)

条件 结论

同位角相等, 两直线平行。

内错角相等, 两直线平行。

同旁内角互补, 两直线平行。

2、练习:

(1) 如图①,A、B、C三点在一条直线上。

如果3 =6,那么 ∥ 。( )

如果6 =9,那么 ∥ 。( )

如果1 +2 +3 =180,那么 ∥ 。( )

如果 ,那么BE∥CD。( )

(2) 如图②,看图填空:

∵1 =2(已知)

∥ 。( )

又∵2 =3(已知)

∥ 。( )

【活动2】

1、引入新课的课堂练习:

(1)你们练习本上的横线与横线成什么关系?(平行)

(2)请画出其中二条(二条之间可空若干行),分别用a、b 表示,a∥b,再画一条c分别与a、b相交。

(3)标出一对同位角,用1、2表示,并量一下度数。

(4)1与2有何关系?(2)

在这个练习中,两直线平行是给出的条件,而得到的结论是什么?

学生回答

这就是平行线的一个重要性质:两条平行直线被第三条直线所截,同位角相等。

简单地说成:两直线平行,同位角相等。

【活动3】知识应用:

例1、如图,梯子的各条横档互相平行,1=1000,求2的度数。

此题比较简单,让学生自己分析,个别同学发表自己的分析过程,后学生书写过程。强调过程的书写。

例2、如图,已知2。若直线bm,则直线am。请说明理由。

这是一道平行线的判定和性质综合的.题目,引导学生用逆向推理的方法来分析。

3、课内练习

给学生10分钟的时间让他们自行完成,然后校对

强调说明过程的书写规范

机动:作业题4

【活动4】小结

请同学们回答平行线的两个性质,指出其中的条件与结论。

【活动5】布置作业

见作业本

【教学反思】

10.3平行线的性质(2)

【教学目标】

1、经历平行线的性质:两直线平行,内错角相等两直线平行,同旁内角互补的发现过程。

2、掌握平行线的两个性质:两直线平行,内错角相等两直线平行,同旁内角互补。

3、会用平行线的性质进行简单的推理和判断。

【教学重点】平行线的性质。

【教学难点】平行线的性质和判定的综合应用。

【教学预设】

【活动1】知识回顾:

1、平行线的判定

2、平行线的性质

【活动2】1.合作学习:

如图,直线AB∥CD,并被直线EF所截。2与3相等吗?3与4的和是多少度?

思考下列几个问题:

(1)图中有哪几对角相等?

(2)3与1有什么关系?4与2有什么关系?

2.你发现平行线还有哪些性质?

【活动3】平行线的性质:

两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

【活动4】知识应用

1、做一做:

如图,AB,CD被EF所截,AB∥CD(填空)

若1=120,则2= ( )

3= -1= ( )

2、例3 如右下图,已知AB∥CD,AD∥BC。判断1与2是否相等,并说明理由。

思考下列几个问题:

(1)1与BAD是一对什么的角?它们是否相等?为什么?

(2)2与BAD是一对什么的角?它们是否相等?为什么?

(3)那么1与2是否相等?为什么?

解:2

∵AB∥CD(已知)

BAD=180(两直线平行,同旁内角互补)

∵AD∥BC(已知)

BAD=180(两直线平行,同旁内角互补)

2(同角的补角相等)

讨论:还有其它解法吗?如不用两直线平行,同旁内角互补这个性质是否可以解?

3、练一练:(课内练习1、2)

4、例4如右图,已知ABC+C=180,BD平分ABC。CBD与D相等吗?请说明理由。

思考下列几个问题:

(1)AB与CD平行吗?为什么?

(2)D与ABD是一对什么的角?它们是否相等?为什么?

(3)CBD与ABD相等吗?为什么?

解:CBD

∵ABC+C=180(已知)

AB∥CD(同旁内角互补,两直线平行)

ABD(两直线平行,内错角相等)

∵BD平分ABC(已知)

CBD=ABD=D

想一想:是否还有其它方法?(用三角形内角和定理等)

5、练一练:

如图,已知2,3=65,求4的度数。

【活动5】拓展

1、如图1,已知AD∥BC,BAD=BCD。判断AB与CD是否平行,并说明理由

2、如图2,已知AB∥CD,AE∥DF。请说明BAE=CDF

【活动6】知识整理:

1、平行线的性质:

两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

2、思维方法:如不能直接说明其成立,则需说明它们都与第三个量相等。

3、要注意一题多解。

4、到目前为止说明两个角相等有哪些方法?课后归纳。

【活动7】布置作业:见作业本

篇2:探索平行线的性质的教案

探索平行线的性质的教案

洼子店中学  吴庆会

一、案例实施背景

本节课是-第二学期开学第一周笔者在一农村中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程标准实验教科书七年级数学(下册)。

二、案例主题分析与设计

本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容――探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活・数学”、“活动・思考”、“表达・应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标

1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

2、数学思考: 在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、解决问题: 通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

4、4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

四、案例教学重、难点

11、重点:对平行线性质的掌握与应用

22、难点:对平行线性质1的探究

五、案例教学用具

11、教具:多媒体平台及多媒体课件

22、学具:三角尺、量角器、剪刀

六、案例教学过程

(一)创设情境,设疑激思

1、播放一组幻灯片。

内容: ① 供火车行驶的铁轨上; ② 游泳池中的泳道隔栏;③ 横格纸中的线。

2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

3、学生活动:针对问题,学生思考后回答――① 同位角相等两直线平行; ② 内错角相等两直线平行; ③ 同旁内角互补两直线平行;

4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2 探索平行线的性质(板书)

(二)数形结合,探究性质

1、画图探究,归纳猜想

教师提要求,学生实践操作:任意画出两条平行线( a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

教师提出研究性问题一:

指出图中的同位角,并度量这些角,把结果填入下表:

教师提出研究性问题二:

将画出图中的同位角任先一组剪下后叠合。

学生活动一:画图 ----度量----填表

----猜想

学生活动二:画图 ----剪图----叠合

让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

教师提出研究性问题三:

再画出一条截线 d,看你的猜想结论是否仍然成立?

学生活动:探究、按小组讨论,最后得出结论:仍然成立。

2、教师用《几何画板》课件 验证猜想,让学生直观感受猜想

3.教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

(三)引申思考,培养创

教师提出研究性问题四:

请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

学生活动:独立探究 ----小组讨论----成果展示。

教师活动:评价学生的研究成果,并引导学生说理

因为a ∥ b (已知)

所以∠ 1= ∠ 2(两直线平行,同位角相等)

又 ∠ 1= ∠ 3(对顶角相等)

∠ 1+ ∠ 4=180°(邻补角的定义)

所以∠ 2= ∠ 3(等量代换)

∠ 2+ ∠ 4=180°(等量代换)

教师展示:

平行线性质2:两条线被第三条直线所截,内错角相等。(两直 线平行,内错角相等)

平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两 直线平行,同旁内角互补)

(四)实际应用,优势互补

1、(抢答)课本P13 练一练 1、2及习题7.2 1、5

2、(讨论解答)课本P13习题7.2 2、3、4

(五)课堂总结

这节课你有哪些收获?

1、学生总结:平行线的性质1、2、3

2、教师补充总结:

⑴ 用“运动”的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)

⑵ 用数形结合的方法来解决问题 ; (如我们前面将同位角测量后分析问题)

⑶ 用准确的语言来表达问题;(如平行线的性质1、2、3的.表述)

⑷ 用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

(六)作业

学习与评价P5 1、2、3(填空);

4、5、6(选择);

7、8(拓展与延伸)

七、教学反思:

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

这节课的教学实现了三个方面的转变:

① 教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。

② 学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。

③ 课堂氛围的转变:整节课以 “流畅、开放、合作、‘隐'导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!

篇3:初中数学《平行线的性质》教案

教学目标

(一)知识技能

经历探索平行线的性质的过程,初步掌握平行线的性质

(二)过程与方法

通过观察、操作、推理、交流等活动,进一步发展学生的空间观念结合推理能力。

(三)情感、态度、价值观

在学习过程中皮衣学生的唯物主义观点,使学生逐步养成言之有理的习惯。

教学重点

1、平行线性质的探索和对性质的理解

2、应用性质解决实际问题

教学难点

有条理地写出推理的过程。

课前准备:

预习课本

教具准备:

直尺、三角板

教法:

引导、探究、

学法:

研讨、探究

教学进程

情景导入

(一)动手操作:

(1)利用一块三角板和一把画两条互相平行的直线a、b;

(2)画直线c使它与直线a、b均相交;

(3)写出一组同位角、一组内错角、一组同旁内角,并用量角器量出它们的度数;

(4)观察各组角度数的关系,你可以得到怎样的结论?

(二)交流、探究

观察发现,得出结论:

两直线平行,同位角相等。

两直线平行、内错角相等。

两直线平行、同旁内角互补。

请你根据“两直线平行,同位角相等。”

说明成立的理由。

因为a∥b,

所以∠1=∠2

又因为∠1与∠3是对顶角

∠1=∠3

所以∠2=∠3

类似地、请根据“两直线平行、同位角相等。”说明“两直线平行、同旁内角互补”成立的理由,并与同学们交流。

学生画图板演

小组讨论合作学习

(三)应用、提高

AD∥BC,∠A=∠C,试说明AB∥DC

解:因为AD∥BC

所以∠C=∠CDE

又因为∠A=∠C

所以∠A=∠CDE

根据“同位角相等两直线平行”

可以知道AB∥DC

练一练:

a∥b∠1=55、∠2=68,求∠3、∠4、∠5的度数

(四)总结升华

老师画了一个△ABC,他问同学们∠A+∠B+∠C等于多少度?你能有几种方法得到结论、画图并简述你的理由。

(五)布置作业:P23、(3、4、5)

教学反思

这节课我是这样处理的

1、系生活实际,创设问题情境。

2、组织合作交流,营造探究氛围。使学生成为教学活动的主动参与者,真正实现学有所得,学有所用,学有所思,有效地培养学生的探究能力和创新思维。

3、尊学生需要,关注学习过程。,更是放手让学生大胆去作、比较、争论、分析归纳,课堂上百家争鸣、百花齐放,使不同层次的学生都得到了应有的发展。

4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。

课后反思:这节课存在的问题:

1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。

2、由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程的书写格式还不够规范

篇4:初中数学《平行线的性质》教案

一、教材分析

教材的地位和作用

《平行线的性质》是人教版版七年级数学下册第五章第三节的内容本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。

教学重难点

重点:平行线的三个性质及运用。

难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。

二、目标分析

根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:

知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。

过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。

三、教法、学法

教法:

为了让学生真正成为课堂的主人,这节课我选用下面教学方法:

1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。

2、多媒体、导学案结合:充分利用多媒体教学技术,给学生以直观的感受,配合导学案,学练结合,加深学生的印象。

3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。

学法指导:

通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

四、教学过程

创设情境引入

在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行、第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?

【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。

2、探索新知

(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质。

前提是要两条平行线,帮助学生区分平行线的性质与判定。

(2)讲解平行线的性质一。

【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。独立思考后得出推导过程,小组内会的辅导不会的同学。

【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

(4)总结平行线的性质

性质1:两直线平行,同位角相等、

性质2:两直线平行,内错角相等、

性质3:两直线平行,同旁内角互补、

(5)平行线的性质和平行线的判定区别:

要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

3、知识运用

(1)解决引入时提出的问题

(2)利用所学的知识小组交流20页例题

(4)完成导学案上课堂练习

【设计意图】:通过交流,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

4、回顾总结

(1)、通过这节课的学习,同学们有什么收获?你们感受最深的是什么?

(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你们能区分清楚吗?

【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。

5、课堂检测

完成导学案上课堂检测习题

设计意图:通过检测一方面充分激发了学生的学习兴趣。另一方面及时了解课堂掌握情况,为课外辅导做好准备。

6、作业设计

P24第4、12题

【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。

五、说板书设计

平行线的性质

1.平行线的性质:

性质1:例题:练习:

性质2:

性质3:

2.平行线的性质与

判定的区别

【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。

篇5:初中数学《平行线的性质》教案

一、教材分析

(一)、教材内容的地位和作用

《代数式的'值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?

(二)、教学目标

根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:

知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。

情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。

(三)、教学重点、难点

教学重点:代数式求值的书写格式。

教学难点:代数式求值的书写格式,变式训练知识的运用。

二:教法、学法分析

本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

板书设计:

代数式的值

一、定义四、小试牛刀七、练习二、例1五、阶段小结八、总结三、例2六、例3九、作业

三:评价与反思

新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。

教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。

以上是我对《代数式的值》一课的说课,不当之处请各位评委、老师批评指正,谢谢。

篇6:初中数学平行线的性质教案

【知识要点】

1.三角形:由不在同一条直线上的三条线段首尾顺次链接所围成的封闭图形叫做三角形

这三条线段叫做这个三角形的边;(AB、BC、CA)

相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)

相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)

三角形的内角的邻补角叫做这个三角形的外角

2.三角形的表示为△ABC

3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫

做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;

三条内角平分线交于一点,这个点叫做三角形的内心)

4.三角形内角和定理以及相关的结论

(1)三角形的内角和为180°

(2)直角三角形的两个锐角互余

(3)三角形的外角和为360°

(4)三角形的一个外角等于与它不相邻的两个内角的和

(5)三角形的一个外角大于与它不相邻的任何一个内角

5.三角形的三边关系定理

三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边

6.三角形具有稳定性

7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫

做多边形

这些线段叫做这个多边形的边;

相邻两条边的公共端点叫做这个多边形的顶点;

相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角

多边形的内角的邻补角叫做这个多边形的`外角

8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线

由一个顶点出发的对角线有( n -3)条;( n 表示边数)

多边形共有条对角线( n 表示边数)

9.多边形的内角和及外角和

(1)多边形的内角和为(n-2).180°( n 表示边数)

(2)多边形的外角和为360°

阶段练习

一、回答下列各问题

1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?

2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?

3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?

为什么?

4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画

出来

5.△ABC中有几条角平分线?试画图说明

6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?

试画图说明

7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?

8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?

9.三角形的一个外角与它不相邻的两个内角之间有什么关系?

二、填空题

1.三角形的外角和是内角和的_____________倍

2.四边形的外角和是内角和的____________倍

3.六边形的外角和是内角和的_______________倍

4.一个多边形的内角和是900°,则这个多边形是________边形

三、解答题

已知AC、AD是五边形ABCDE的对角线,求证:AB+BC+CD+DE+EA>AC+CD+DA

篇7:数学教案-平行线的性质

教学建议

1、教材分析

(1)知识结构

平行线的性质:

(2)重点、难点分析

本节内容的重点是平行线的性质.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质.

2、教法建议

由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.

(1)讲授新课

首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用“∵”、“∴”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美.

(2)综合应用

理解平行线的判定和性质区别,并能在推理过程中正确地应用它们成为了教学难点 .老师可以设计一些有两步推理的证明题,让学生填充理由.在应用知识的过程中,组织学生进行讨论,结合题目的已知和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正地被灵活应用.

(3)适当总结

几何的学习,既可以培养学生的逻辑思维能力,,也可以培养学生分析问题,解决问题的能力.对于好的学生,可以引导他们总结如何学好几何.注意文字语言,图形语言,符号语言间的相互转化.对简单的`题目,能做到想得明白,写得清楚,书写逐渐规范.

教学目标 :

1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.

2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力.

3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.

教学重点:平行线性质的研究和发现过程是本节课的重点.

教学难点 :正确区分平行线的性质和判定是本节课的难点.

教学方法:开放式

教学过程 :

一、复习

1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?

2、把这三句话已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。

如、“若a=b,则a2=b2”是正确的,但“若a2=b2,则a=b”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。

二、新课

1、我们先看刚才得到的第一句话“两直线平行,同位角相等”。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?

上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“平行线的性质公理”,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。

2、现在我们来用这个性质公理,来证明另两句话的正确性。

想想看,“两直线平行,内错角相等”这句话有哪些已知条件,由哪些图形组成?

已知:如图,直线a∥b

求证:(1)∠1=∠4;(2)∠1+∠2=180°

证明:∵a∥b(已知)

∴∠1=∠3(两直线平行,同位角相等)

又∵∠3=∠4(对顶角相等)

∴∠1=∠4

(2)∵a∥b(已知)

∴∠1=∠3(两直线平行,同位角相等)

又∵∠2+∠3=180°(邻补角的定义)

∴∠1+∠2=180°

思考:如何用(1)来证明(2)?

例1、如图,是梯形有上底的一部分,已经量得∠1=115°,∠D=100°,梯形另外两个角各是多少度?

解:∵梯形上下底互相平行

∴∠A与∠B互补,∠D与∠C互补

∴∠B=180°-115°=65°

∠C-180°-100°=80°

答:梯形的另外两个角分别是65,80°

练习:P79  1、2、3

小结:平行性质与判定的区别

作业 :P87  9、10

篇8:《平行线的性质》数学教案

教学目标:

(1)知识与技能:

探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

(2)过程与方法:

在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

(3)情感态度、价值观:

在课堂练习中,体验几何与实际生活的密切联系。

教学重点:平行线的性质。

教学难点:平行线的性质定理与判定定理的区别。

教学模式:发现教学模式。

教学方法:直观教学法、发现教学法、主体互动法。

教学手段:计算机辅助教学。

教学过程:

教学环节教师活动

学生活动教学意图复习提问

复习提问:判定两直线平行的方法有哪些?怎样用符号语言表述?

思考、回答

了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。

进行新课

【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)

随后同桌同学交换,再次测量、填表。

关注:对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。

画图、测量、填表

思考、动手尝试,方法可能多种多样

激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。

给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的`空间观念,理解平行线的性质是十分重要的。

【提问】能否将我们发现的结论给予较为准确的文字表述?

总结、表述

锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。

【大屏幕】平行线的性质:定理1.两条平行线被第三条直线所截,同位角相等。简言之:两直线平行,同位角相等。

定理2.两条平行线被第三条直线所截,内错角相等。简言之:两直线平行,内错角相等。

定理3.两条平行线被第三条直线所截,同旁内角互补。简言之:两直线平行,同旁内角互补。

【提问】讨论这些性质定理与前面所学的判定定理有什么不同?

理解、记忆

思考、讨论、回答

进行文字语言的规范。

避免出现概念的混淆,渗透“命题”与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。

【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?

【大屏幕】符号语言:(不唯一)

性质定理1.∵l1∥l2∴∠1=∠5(两直线平行,同位角相等)

性质定理1.∵l1∥l2∴∠3=∠5(两直线平行,内错角相等)

性质定理1.∵l1∥l2

∴∠3+∠6=180o(两直线平行,同旁内角互补)

思考、一位同学板书。

观察、理解

为今后进一步学习推理打基础,并进行符号语言的规范。

【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?

鼓励学生使用符号语言表述推导过程。

【大屏幕】规范定理的推导过程。

思考、尝试回答

培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。

例题示

范【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?

思考、尝试运用符号语言进行推理。

要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。

趣味练习【大屏幕】(见附录2)

思考、讨论、解释结论,寓教于乐,进一步让学生感受“认识来源于实践”。

巩固练习【大屏幕】巩固练习(见附录3)

积极思考、展开讨论、踊跃回答,循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。

拓展思路【大屏幕】探究题(见附录4)

【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。

猜测、讨论,寻找规律

使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。

课堂小结【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?

回顾、归纳将本节课知识进行回顾。

布置作业【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12

课后完成

课后能进一步巩固,鼓励学生去发现身边的数学问题。

附录1:

如图,请选取条格纸上的任意两条直线l1、l2,

画一条直线l3与这两条平行线相交,标出这些角。度量这些角,把结果填入下表:

各对同位角、内错角、同旁内角的度数之间有什么关系?大胆的去猜想,试着说一说!

附录2:

趣味练习:一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的方向上平行前进,那么这两次转弯的角度可以是

A、先右转80o,再左转100o B、先左转80o,再右转80o

C、先左转80o,再左转100o D、先右转80o,再右转80o

附录3:巩固练习:

1、如图,直线a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?

2、请在括号中填写理由:

①∵∠B=∠3∴AB∥CE

②∵AB∥CE∴∠A=∠2()

③∵AB∥CE∴∠B+∠BCE=180o()

④∵∠A=∠2∴AB∥CE()

3、如图,填空:

①∵ED∥AC(已知)

∴∠1=∠C()

②∵DF∥

(已知)

∴∠2=∠BED()

③∵AB∥DF(已知)

∴∠3=∠()

④∵AC∥ED(已知)

∴∠=∠

(两直线平行,内错角相等)

4、请结合图形,根据所给定的平行线填入所需的角,并说明理由。(能否找出所有的情况)

①∵AB∥CD

∴∠____=∠_____()

②∵AD∥BC

∴∠____=∠_____()

③∵AE∥CF

∴∠____=∠_____()

附录4:探究题:

如图甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?试加以说明。

当已知条件不变,而图形变为如图乙时,结论改变了吗?图丙中的∠1+∠2+∠3+∠4是多少度呢?如果如丁图所示,∠1+∠2+∠3+…+∠n的和又为多少度?你找到了什么规律吗?

篇9:七年级数学下册《平行线的性质》教案

【教学目标】

1.经历从性质公理推出性质的过程;

2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

【对话探索设计】

〖探索1反过来也成立吗

过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.

现在换一个例子:如果一个整数个位上的'数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?

结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.

〖探索2

上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?

〖探索3

(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.

结论:两条平行线被第三条直线所截,同位角相等.

与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中总结出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.

〖探索4

如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:

两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.

现在我们来试一试:如何根据性质1说出性质2成立的道理.

如图,

∵a∥b(已知),

∴∠1=∠3(____________________).

又∠3=________(对顶角相等),

∴∠1=∠2(___________).

以上过程说明了:由性质1可以得出性质2.

〖探索5

我们学过判定两直线平行的第三种方法:

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)

把这条定理反过来,可以简单说成_____________________.

猜一猜:把这条定理反过来以后,还成立吗?

〖练习

P22练习

说一说:求这三个角的度数分别根据平行线的哪一条性质?

〖作业

P25.1、2、3

〖补充作业

如图:直线a、b被直线c所截,

(1)若a∥b,可以得到∠1=∠2.根据什么?

(2)若∠1=∠2,可以得到a∥b.根据什么?

(注意:(1)、(2)的根据一样吗?)

篇10:平行线的性质优秀教案设计

教学目标

1.使学生理解平行线的性质和判定的区别.

2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

重点难点

重点:平行线的三个性质.

难点:平行线的三个性质和怎样区分性质和判定.

关键:能结合图形用符号语言表示平行线的三条性质.

教学过程

一、复习

1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?

2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

二、新授

1.实验观察,发现平行线第一个性质

请学生画出下图进行实验观察.

设l1∥l2,l3与它们相交,请度量1和2的大小,你能发现什么关系?

请同学们再作出直线l4,再度量一下3和4的大小,你还能发现它们有什么关系?

平行线性质1(公理):两直线平行,同位角相等.

2.演绎推理,发现平行线的其它性质

(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.

求证:1= 2.

(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.

求证:2=180.

在此基础上指出:平行线的性质2 (定理)和平行线的性质3 (定理).

3.平行线判定与性质的区别与联系

投影:将判定与性质各三条全部打出.

(1)性质:根据两条直线平行,去证角的相等或互补.

(2)判定:根据两角相等或互补,去证两条直线平行.

联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.

三、例题

例2如图所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.

此题一定要强调,哪两条直线被哪一条直线所截.

答:相等的角为:2,4,6,8.互补的角为:BAC+ACD=180,ABD+CDB=180,CAB+DBA=180,ACD+BDC=180.

相等的角还有:ACD=ABD,BAC=BDC.(同角的补角相等)

例3如图所示.已知:AD∥BC,AEF=B,求证:AD∥EF.

分析:(执果索因)从图直观分析,欲证AD∥EF,只需AEF=180,

(由因求果)因为AD∥BC,所以B=180,又AEF,所以AEF=180成立.于是得证.

证明:因为 AD∥BC,(已知)

所以 B=180.(两直线平行,同旁内角互补)

因为 AEF=B,(已知)

所以 AEF=180,(等量代换)

所以 AD∥EF.(同旁内角互补,两条直线平行)

四、练习:

1.如图所示,已知:AE平分BAC,CE平分ACD,且AB∥CD.

求证:2=90.

证明:因为 AB∥CD,

所以 BAC+ACD=180,

又因为 AE平分BAC,CE平分ACD,

所以 , ,

故 .

即 2=90.

(理由略)

2.如图所示,已知:2,

求证:4=180.

分析:(让学生自己分析)

证明:(学生板书)

小结

我们是如何得到平行线的'性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.

作业:

1.如图,AB∥CD,1=102,求2、3、4、5的度数,并说明根据?

2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果B=40,2=75,那么1、3、C、BAC+C各是多少度,为什么?

3.如图,已知AD∥BC,可以得到哪些角的和为180?已知AB∥CD,可以得到哪些角相等?并简述理由.

5.3平行线性质(二)

[教学目标]

经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力

理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论

能够综合运用平行线性质和判定解题

[教学重点与难点]

重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念

难点:平行线性质和判定灵活运用

[教学设计]

一.复习引入

1.平行线的判定方法有哪些?

2.平行线的性质有哪些?

3.完成下面填空

已知:BE是AB的延长线,AD//BC,AB//CD,若 则

4. 那么a,c的位置关系如何?

二.新课

1.例1,已知a//c, 直线b与c垂直吗?为什么?

例2如图是一块梯形铁片的残余部分,量得 ,梯形另外两个角分别是多少度?

2.实践 与探究

(1)学生操作:用三角尺和直尺画平行线,做成一张

个格子的方格纸。观察并思考:做出的方格纸的一部分,

线段 都与两条平行线 垂直

吗?它们的长度相等吗?

教师给出两条平行线的距离定义:同时垂直于两条平行线,

并且夹在这两条平行线间的线段长度叫做两条平行线的距离。

问题:AB//CD,在CD上任取一点E,作 垂足F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?

结论:两条平行线的距离处处相等,而不随垂线段的位置而改变

3.命题和它的构成

下列语句,分析语句的特点

(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。

(2)对顶角相等

(3)等式两边同加上同一个数,结果仍是等式

(4)如果两条直线不平行,那么同位角不相等

这些句子都是对某一件事情作出是或不是的判断

命题:判断一件事情的句子,叫做命题

(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项 (2)形式:通常写成如果,那么的形式,

三.巩固练习

1.等式两边乘以同一个数,结果仍是等式是命题吗?如果是,它的题设和结论分别是什么?

2举出一些命题的例子

四.作业

篇11:-11-06 平行线的性质教案 刘锦海

-11-06 平行线的性质教案 刘锦海

一、教学目标 1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。 2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。 3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。 二、教学重点和难点 重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。 难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。 三、教材分析平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。 教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。 因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。 五、课前准备 课前准备:多媒体课件、三角尺、直尺。 六、教学过程 问题与情境 师生互动 设计意图 活动1 你身边的问题 问题: 如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。   学生观察,小组讨论,交流问题并发表见解, 教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。 本次活动应关注的问题是: 1、不改变方向,在数学中理解应是什么, 2、在这个问题中包含了什么问题 3、如何将它转化为数学问题。 通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起 活动2: 探究平行线的性质 问题: 1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么? 2、自己阅读课本的21页“探究”部分,并把空填好。 用电脑展示在画平行线时三角尺在其中取到的作用。 学生通过学习测量比较得到这些角中上下两个角的关系, 关注的问题是: 1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的'推导过程 。 2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。 通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。 活动3: 运用与推理 问题: 你能根据性质1,说出性质2,性质3成立的理由吗?如图, 因为a∥b. 所以 ∠1=∠2(_______) 又∠3=∠_____,(对顶角相等) 所以∠2=∠3, 类似地,对于性质3,你能说出道理吗?   想一想:这节课开始的那个问题应该如何解决? 学生回答,再由同学补充。老师纠正。 教师引导学生观察因为所以之间的关系。 通过学生做和说,培养学生的一定的表达能力和逻辑推理能力。 活动4 巩固与提高 问题1:如图直线a,b被直线c所截 , 1、如果a∥b ,∠1=60°,那么∠2,,∠3,∠4为多少度。为什么? 2、如果∠1=60°,∠3=120°,直线a、b有什么关系?为什么?   问题2:∠1=100°,∠5=100°,∠2=60°, 那么∠4、∠3为多少度?   解:∵ ∠1=100°,∠5=100° ∴ ∠1=∠____ ( ) 所以 _____∥_______ ( ), 又因为 ∠2 =60° ( ) 所以 ∠4=∠______=______( ) 又因为 ∠4与∠3________ ( ) 所以 ∠3=180°-_____=______° 问题3:填一填 如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°, (1) 因为 ∠1=∠ABC, 所以 AD∥_____ ( ) (2) 因为 ∠3=∠5 所以 AB∥_____ ( ) 所以 ______∥______ ( ) 所以______∥______ ( ) 所以 _______∥______ ( )   问题4,学与用: 某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100°,为了便于连接,那么另一侧应以什么角度铺设?为什么? 小结: 布置作业 课本25页的第1、2、3题 由学生独立完成,老师指导,引导学生注意这些之间的关系。 应关注的问题是: 1、平行线的性质和判定的不同。 2、几何推理证明的要领。 3、正确分清推理中因为和所以所表达的意义 通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力。

篇12:平行线性质

1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角互补。

4.在同一平面内的两线平行并且不在一条直线上的直线。

篇13:平行线性质

1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

如:AB平行于CD ,写作AB∥CD

2.平行公理:过直线外一点有且只有一条直线与已知直线平行。

3.平行公理的推论(平行的传递性):

平行同一直线的两直线平行。

∵a∥c,c ∥b

∴a∥b

平行线的判定:

1. 两条直线被第三条所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

2. 两条直线被第三条所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

3 . 两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

平行线的性质: 1. 两条平行线被第三条直线所截,同位角相等.

简单说成:两直线平行,同位角相等。

2. 两条平行线被第三条直线所截,同旁内角互补.

简单说成:两直线平行,同旁内角互补。

3 . 两条平行线被第三条直线所截,内错角相等.

简单说成:两直线平行,内错角相等。

两个角的数量关系两直线的位置关系:

垂直于同一直线的两条直线互相平行。

平行线间的距离,处处相等。

如果两个角的两边分别平行,那么这两个角相等或互补。

基本规律

1.平行线的性质和判定中的条件和结论恰好相反。

2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。

3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。

2

篇14:《平行线的性质》

《平行线的性质》教案     天津市第五十四中学 王振红

教学目标:

(1)知识与技能:

探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

(2)过程与方法:

在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

(3)情感态度、价值观:

在课堂练习中,体验几何与实际生活的密切联系。

【平行线的性质教案】相关文章:

1.平行线的性质听课反思

2.初中数学平行线的性质知识点摘抄

3.平行线的性质定理练习题及答案

4.七年级数学下册《5.3平行线的性质》的教学反思

5.平行线说课稿

6.《小数的性质》教案

7.三角形的性质教案

8.教学性质教案范文

9.分数的基本性质教案

10.《平行线》教学反思设计

下载word文档
《平行线的性质教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部